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Abstract. Two limits of Newtonian mechanics were worked out by Kolmogorov.
On one side it was shown that in a generic integrable Hamiltonian system, regular
quasi-periodic motion persists when a small perturbation is applied. This result,
known as Kolmogorov-Arnold-Moser (KAM) theorem, gives mathematical bounds
for integrability and perturbations. On the other side it was proven that almost
all numbers on the interval between zero and one are uncomputable, have positive
Kolmogorov complexity and, therefore, can be considered as random. In the case of
nonlinear dynamics with exponential (i.e. Lyapunov) instability this randomnesss,
hidden in the initial conditions, rapidly explodes with time, leading to unpredictable
chaotic dynamics in a perfectly deterministic system. Fundamental mathematical
theorems were obtained in these two limits, but the generic situation corresponds to
the intermediate regime between them. This intermediate regime, which still lacks
a rigorous description, has been mainly investigated by physicists with the help
of theoretical estimates and numerical simulations. In this contribution we outline
the main achievements in this area with reference to specific examples of both low-
dimensional and high-dimensional dynamical systems. We shall also discuss the
successes and limitations of numerical methods and the modern trends in physical
applications, including quantum computations.

1 A General Perspective

At the end of the 19th century H. Poincaré rigorously showed that a generic
Hamiltonian system with few degrees of freedom described by Newton’s equa-
tions is not integrable [1]. It was the first indication that dynamical motion
can be much more complicated than simple regular quasi–periodic behavior.
This result puzzled the scientific community, because it is difficult to reconcile
it with Laplace determinism, which guarantees that the solution of dynamical
equations is uniquely determined by the initial conditions. The main deve-
lopments in this direction came from mathematicians; they were worked out
only in the middle of 20th century by A.N. Kolmogorov and his school. In
the limiting case of regular integrable motion they showed that a generic
nonlinear pertubation does not destroy integrability. This result is nowadays
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formulated in the well–known Kolmogorov–Arnold–Moser (KAM) theorem
[2]. This theorem states that invariant surfaces in phase space, called tori,
are only slightly deformed by the perturbation and the regular nature of the
motion is preserved. The rigorous formulation and proof of this outstanding
theorem contain technical difficulties that would require the introduction of
refined mathematical tools. We cannot enter in such details here. In the next
we shall provide the reader a sketch of this subject by a simple physical illu-
stration. More or less at the same time, Kolmogorov analyzed another highly
nontrivial limit, in which the dynamics becomes unpredictable, irregular or,
as we say nowadays, chaotic [3]. This was a conceptual breakthrough, which
showed how unexpectedly complicated the solution of simple deterministic
equations can be. The origin of chaotic dynamics is actually hidden in the
initial conditions. Indeed, according to Kolmogorov and Martin-Löf [3,4], al-
most all numbers in the interval [0, 1] are uncomputable. This means that
the length of the best possible numerical code aiming at computing n digits
of such a number increases proportionally to n, so that the number of code
lines becomes infinite in the limit of arbitrary precision. For a given n, we can
define the number of lines l of the program that is able to generate the bit
string. If the limit of the ratio l/n as n → ∞ is positive, then the bit string
has positive Kolmogorov complexity. In fact, in real (computer) life we work
only with computable numbers, which have zero Kolmogorov complexity and
zero–measure on the [0,1] interval. On the other hand, Kolmogorov numbers
contain infinite information and their digits have been shown to satisfy all
tests on randomness. However, if the motion is stable and regular, then this
randomness remains confined in the tails of less significant digits and it has
no practical effect on the dynamics. Conversely, there are systems where the
dynamics is unstable, so that close trajectories separate exponentially fast in
time. In this case the randomness contained in the far digits of the initial
conditions becomes relevant, since it extends to the more significant digits,
thus determining a chaotic and unpredictable dynamics. Such chaotic mo-
tion is robust with respect to generic smooth perturbations [5]. A well known
example of such a chaotic dynamics is given by the Arnold “cat” map

xt+1 = xt + yt mod 1
yt+1 = xt + 2yt mod 1 , (1)

where x and y are real numbers in the [0, 1] interval, and the subscript t =
0, 1, . . . indicates discrete time. The transformation of the cat’s image after
six iterations is shown in Fig. 1. It clearly shows that the cat is chopped
in small pieces, that become more and more homogeneously distributed on
the unit square. Rigorous mathematical results for this map ensure that the
dynamics is ergodic and mixing [6,7]. Moreover, it belongs to the class of K-
systems, which exhibit the K-property, i.e. they have positive Kolmogorov-
Sinai entropy [8–10]. The origin of chaotic behavior in this map is related
to the exponential instability of the motion, due to which the distance δr(t)
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Fig. 1. Arnold “cat” map: six iterations of map (1) from left to right and from top
to bottom

between two initially close trajectories grows exponentially with the number
of iterations t as

δr(t) ∼ exp(ht) δr(0). (2)

Here, h is the Kolmogorov-Sinai (KS) entropy (the extension of these con-
cepts to dynamical systems with many degrees of freedom will be discussed
in Sect. 5). For map (1) one proves that h = ln[(3+

√
5)/2] ≈ 0.96 so that for

δr(0) ∼ O(10−16), approximately at t = 40, δr(40) ∼ O(1). Hence, an orbit
iterated on a Pentium IV computer in double precision will be completely dif-
ferent from the ideal orbit generated by an infinite string of digits defining the
initial conditions with infinite precision. This implies that different computers
will simulate different chaotic trajectories even if the initial conditions are the
same. The notion of sensitive dependence on initial conditions, expressed in
(2), is due to Poincaré [11] and was first emphasized in numerical experi-
ments in the seminal papers by Lorenz [12], Zaslavsky and Chirikov [13] and
Henon-Heiles [14]. However, the statistical, i.e. average, properties associated
with such a dynamics are robust with respect to small perturbations [5]. It is
worth stressing that this rigorous result does not apply to non–analytic per-
turbations in computer simulations due to round–off errors. Nonetheless, all
experiences in numerical simulations of dynamical chaos confirm the stability
of statistical properties in this case as well, even if no mathematical rigorous
proof exists. Physically, the appearance of statistical properties is related to
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Fig. 2. Sinai billiard: the disc is an elastic scatterer for a point mass particle which
freely moves between collisions with the disc. The dashed contour lines indicate
periodic boundary conditions: a particle that crosses them on the right (top) reap-
pears with the same velocity on the left (bottom) (the motion develops topologically
into a torus)

the decay in time of correlation functions of the dynamical variables, which
for map (1) is exponential.

These results are the cornerstones of the origin of statistical behavior in
deterministic motion, even for low–dimensional dynamical systems. However,
a K-system (like Arnold cat map (1)) is not generic. Significant progress to-
wards the description of generic physical systems was made by Sinai [15], who
proved the K-property for the billiard shown in Fig. 2. It was also proved by
Bunimovich [16] that the K-property persists also for “focusing” billiards, like
the stadium (see Fig. 3). However, physics happens to be much richer than
basic mathematical models. As we will discuss in the following sections, the
phase space of generic dynamical systems (including those with many degrees
of freedom) contains intricately interlaced chaotic and regular components.
The lack of rigorous mathematical results in this regime left a broad possi-
bility for physical approaches, involving analytical estimates and numerical
simulations.

2 Two Degrees of Freedom: Chirikov’s Standard Map

A generic example of such a chaotic Hamiltonian system with divided phase-
space is given by the Chirikov standard map [17,18]:

It+1 = It +K sin(θt) ; θt+1 = θt + It+1 (mod 2π) . (3)

In this area-preserving map the conjugated variables (I, θ) represent the ac-
tion I and the phase θ. The subscript t indicates time and takes non-negative
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Fig. 3. Bunimovich or “stadium” billiard: the boundary acts as an elastic wall for
colliding point mass particles, which otherwise move freely

integer values t = 0, 1, 2, . . . . This mapping can be derived from the motion
of a mechanical system made of a planar rotor of inertia M and length l that
is periodically kicked (with period τ) with an instantaneous force of strength
K/l. Angular momentum I will then vary only at the kick, the variation
being given by ∆I = (K/l)l sin θ, where θ is the in-plane angle formed by
the rotor with a fixed direction when the kick is given. Solving the equations
of motion, one obtains map (3) by relating the motion after the kick to the
one before (having put τ/M = 1). Since this is a forced system, its energy
could increase with time, but this typically happens only if the perturba-
tion parameter K is big enough. Map (3) displays all the standard behaviors
of the motion of both one-degree-of-freedom Hamiltonians perturbed by an
explicit time-dependence (so-called 1.5 degree of freedom systems) and two-
degree-of-freedom Hamiltonians. The extended phase-space has dimension
three in the former case and four in the latter. The phase-space of map (3)
is topologically the surface of a cylinder, whose axial direction is along I
and extends to infinity, and whose orthogonal direction, running along cir-
cumferences of unit radius, displays the angle θ. For K = 0 the motion is
integrable, meaning that all trajectories are explicitly calculable and given
by It = I0, θt = θ0 + tI0(mod 2π). If I0/2π is the rational p/q (with p and
q integers), every initial point closes onto itself at the q-th iteration of the
map, i.e. it generates a periodic orbit of period q. A special case is I0 = 0,
which is a line made of an infinity of fixed points, a very degenerate situa-
tion indeed. All irrationals I0/(2π), which densely fill the I axis, generate
quasi-periodic orbits: As the map is iterated, the points progressively fill the
line I = const. Hence, at K = 0 the motion is periodic or quasi-periodic.
What happens if a small perturbation is switched on, i.e. K �= 0, but small?
This is described by two important results: the Poincaré-Birkhoff fixed point
theorem (see Chap. 3.2b of [19]) and the Kolmogorov-Arnold-Moser (KAM)
theorem [2](see also the contribution by A. Celletti et al. in this volume).

The Poincaré-Birkhoff theorem states that the infinity of periodic orbits
issuing from rational I0/(2π) values collapse onto two orbits of period q, one
stable (elliptic) and the other unstable (hyperbolic). Around the stable orbits,
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Fig. 4. Phase-space of the Chirikov standard map (3) in the square (2π × 2π) for
K = 0.5

“islands” of stability form, where the motion is quasi-periodic. The biggest
of such islands is clearly visible in Fig. 4 and has at the center the elliptic
fixed point (I = 0, θ = π) which originates from the degenerate line of fixed
points I = 0 as soon as K �= 0.

The KAM theorem states that most of the irrational I0/2π initial values
generate, at small K, slightly deformed quasi-periodic orbits called KAM-
tori. Traces of the integrability of the motion survive the finite perturbations.
Since irrationals are dense on a line, this is the most generic situation when
K is small. This result has been transformed into a sort of paradigm: slight
perturbations of an integrable generic Hamiltonian do not destroy the main
features of integrability, which are represented by periodic or quasi-periodic
motion. This is also why the KAM result was useful to Chirikov and coworkers
to interpret the outcome of the numerical experiment by Fermi, Pasta and
Ulam, as we discuss in Sects. 3 and 4.

There is still the complement to the periodic and quasi-periodic KAM
motion to be considered! Even at very small K, a tiny but non vanishing
fraction of initial conditions performs neither a periodic nor a quasi-periodic
motion. This is the motion that has been called “chaotic”, because, although
deterministic, it has the feature of being sensible to the smallest perturbations
of the initial condition [11–14,18].

Let us summarize all of these features by discussing the phase-space struc-
ture of map (3), as shown for three different values of K: K = 0.5 (Fig. 4),
K = Kg = 0.971635 . . . (Fig. 5) and K = 2.0 (Fig. 6).

For K = 0.5, successive iterates of an initial point θ0, I0 trace lines on
the plane. The invariant curves I = const, that fill the phase-space when
K = 0, are only slightly deformed, in agreement with the KAM theorem.
A region foliated by quasi-periodic orbits rotating around the fixed point
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Fig. 5. Same as Fig. 4 for K = Kg = 0.971635...

Fig. 6. Same as Fig. 4 for K = 2

(I = 0, θ = π) appears; it is called “resonance”. Resonances of higher order
appear around periodic orbits of longer periods. Their size in phase-space is
smaller, but increases with K. Chaos is bounded in very tiny layers. Due to
the presence of so many invariant curves, the dynamics in I remains bounded.
Physically, it means that although work is done on the rotor, its energy does
not increase. A distinctive quantity characterizing a KAM torus is its rotation
number, defined as

r = lim
t→∞

θt − θ0
2πt

. (4)
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One can readily see that it equals the time averaged action < It/(2π) >t

of the orbit, and its number theoretic properties, namely its “irrationality”,
are central to the dynamical behavior of the orbit. Numerical simulations
indicate that for model (3) the most robust KAM torus corresponds to the
“golden mean” irrational rotation number r = rg = (

√
5 − 1)/2. Let us recall

some number theoretic properties. Let ai be positive integers and denote by

1

a1 +
1

a2 + · · ·
≡ [a1, a2, . . . ] (5)

the continued fraction representation of any real number smaller than one.
It turns out that rg contains the minimal positive integers in the continued
fraction, rg = [1, 1, 1, . . . ]. Indeed, this continued fraction can be resummed
by solving the algebraic equation r−1

g = 1 + rg, which clearly has two so-
lutions that correspond to two maximally robust KAM tori. The “golden
mean” rotation number rg corresponds to the “most irrational” number; in
some nontrivial sense, it is located as far as possible from rationals. Rational
winding numbers correspond to “resonances”, and are the major source of
perturbation of KAM curves. It is possible to study numerically the stabi-
lity of periodic orbits with the Fibonacci approximation to the golden mean
value rn = pn/qn → rg with qn = 1, 2, 3, 5, 8, 13 . . . and pn = qn−1. This
approach has been used by Greene and MacKay and it has allowed them to
determine the critical value of the perturbation parameter Kg = 0.971635...
at which the last invariant golden curve is destroyed [20,21]. The phase-space
of map (3) at K = Kg is shown in Fig. 5. It is characterized by a hierar-
chical structure of islands of regular quasi-periodic motion centered around
periodic orbits with Fibonacci winding number surrounded by a chaotic sea.
Such a hierarchy has been fully characterized by MacKay [21] for the Chi-
rikov standard map using renormalization group ideas. A similar study had
been conducted by Escande and Doveil [22] for a “paradigm” 1.5-degrees
of freedom Hamiltonian describing the motion of a charged particle in two
longitudinal waves. Recently, these results have been made rigorous[23], by
implementing methods very close to the Wilson renormalization group [24].

For K > Kg the last KAM curve is destroyed and unbounded diffusion
in I takes place. With the increase of K, the size of stable islands decreases
(see Fig. 6) and for K � 1, the measure of integrable components becomes
very small. In this regime of strong chaos the values of the phases between
different map iterations become uncorrelated and the distribution function
f(I) of trajectories in I can be approximately described by a Fokker-Planck
equation

∂f

∂t
=
D

2
∂2f

∂I2 , (6)

where D =< (It+1 − It)2 >t is the diffusion constant. For K � 1, D ≈ K2/2
(so-called quasi-linear theory). Thus, due to chaos, deterministic motion can
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be described by a statistical diffusive process. As a result, the average square
action grows linearly with the number of iterations < I2

t >= I2
0 + Dt for

large t.
From the analytical viewpoint the onset of chaos described above has been

first obtained by Chirikov on the basis of the resonance-overlap criterion [25].
Let us come back to the representation of the Chirikov standard map in terms
of the equations of motion of the Hamiltonian of the kicked rotor

H(I, θ, t) = I2/2 +K cos θ
∑

m

δ(t−m) = I2/2 +K
∑

m

cos(θ − 2πmt) ,

(7)

where δ(t) is the Dirac δ-function and the sum represents the action of the
periodic kicks. The expansion of the periodic δ-function in Fourier series
leads to the second expression for the Hamiltonian (7), where the sum runs
over all positive/negative integers m. This second form of the Hamiltonian
clearly shows the importance of resonances, where the derivative of the phase
θ is equal to the external driving frequency θ̇ = Im = 2πm. Assuming that
the perturbation is weak (K 	 1), we obtain that, in the vicinity of the
resonant value of the action, the dynamics is approximately described by the
Hamiltonian of a pendulum Hp = (I−Im)2/2+K cosφ where φ = θ−2πmt is
the resonant phase (with respect to the usual pendulum, this one has gravity
pointing upward). Indeed, in the first approximation, all non-resonant terms
can be averaged out so that the slow motion in the vicinity of Im becomes
similar to the dynamics of a pendulum, given by the term with m = 0. The
pendulum has two qualitatively different types of motion: phase rotations
for an energy Hp > K and phase oscillations for an energy Hp < K. In the
phase-space (I, θ) these two motions are separated from each other by the
separatrix curve I − Im = ±2

√
K sin(φ/2) which at Hp = K starts from

the unstable equilibrium point at φ = 0. Thus, the size of the separatrix is,
∆ωr = ∆I = 4

√
K, while the distance between the resonances φ̇ = Ωm =

2πm is Ωd = Ωm+1 −Ωm = 2π. Two close unperturbed nonlinear resonances
overlap when the size of the resonance becomes larger than the distance
between them, ∆ωr > Ωd. Above this resonance-overlap border, a trajectory
can move from one resonance to another and the motion becomes chaotic
on large scale (as we have commented above, chaos is present even for the
smaller K values, but it is restricted to thin layers). In the case of the map
(3) this simple criterion gives the critical parameter Kc = π2/4 ≈ 2.5,larger
than the real value Kg = 0.971635... determined by the Greene method. In
fact, this simple criterion does not take into account the effects of secondary
order resonances and of the finite size of chaotic layers appearing around
the separatrix. Considering both effects reduces the border approximately
by a factor 2.5 [18]. Thus, in the final form, the Chirikov resonance-overlap
criterion can be written as

Kc ≈ 2.5(∆ωr/Ωd)2 > 1 . (8)
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Invented by Chirikov in 1959, this physical criterion remains the main ana-
lytical tool for determining the chaos border in deterministic Hamiltonian
systems. When Chirikov presented his criterion to Kolmogorov, the latter
said: “one should be a very brave young man to claim such things!”. Indeed,
a mathematical proof of the criterion is still lacking and there are even known
counterexamples of nonlinear systems with a hidden symmetry, such as the
Toda lattice (see Chap. 1.3c of [19]), where the dynamics remains integra-
ble for K � Kc. However, such systems with a hidden symmetry are quite
rare and specific, while for generic Hamiltonian systems the criterion works
nicely and determines very well the border for the onset of chaos. An exten-
sion and a deep understanding of Chirikov criterion in the renormalization
group approach has allowed an improvement and its extensive application
to systems with many degrees of freedom [26]. Chirikov resonance overlap
criterion finds also applications in such diverse physical systems as particles
in magnetic traps [25,18,27], accelerator physics [28], highly excited hydrogen
atoms in a microwave field [29], mesoscopic resonance tunneling diodes in a
tilted magnetic field [30].

In fact, the Chirikov standard map gives a local description of interacting
resonances, assuming that resonance amplitudes slowly change with action
I. This is the main reason why this map finds such diverse applications. For
example, a modest modification of the kick function f(θ) = sin θ and the
dispersion relation θt+1 = θt + It

−3/2 in (3) is sufficient to give a description
of the dynamics of the Halley’s comet in the solar system [31].

For small perturbations, chaos initially appears in a chaotic layer around
the separatrix of a nonlinear resonance. Some basic questions about the effects
of nonlinear perturbations in the vicinity of the separatrix were first addressed
by Poincaré [1], who estimated the angle of separatrix splitting. The width
of the chaotic layer was determined by Chirikov on the basis of the overlap
criterion (8) in [17,18]. In fact, for small perturbations, e.g. K in map(3), the
external frequency ω is much larger than the resonance oscillation frequency
ω0. In such a case, the relative energy w of a trajectory randomly fluctuates
inside the chaotic separatrix layer whose width is exponentially small, e.g. for
the map (3) |w| < ws ≈ 8πλ3 exp(−πλ/2), where λ = ω/ω0 = 2π/

√
K � 1.

Even for K = 0.5 the width of the layer is very small and it is hardly visible
in Fig. 4 (ws ≈ 0.015). It is interesting to note that the dynamics inside the
chaotic layer is described by a simple separatrix map, which is similar to the
map (3): yt+1 = yt + sinxt, xt+1 = xt − λ ln |yt+1| where y = λw/ws and x
is the phase of the rotation [18]. The width of the separatrix layer increases
with K as well as the size of primary and secondary resonances. At some
critical value Kc the last invariant curve becomes critical. For map (3) Kc =
Kg = 0.971635.... For K > Kg the golden invariant curve is destroyed and it
is replaced by an invariant Cantor set (”cantorus”) which allows trajectories
to propagate diffusively in action I. Rigorous mathematical results prove the
existence of the cantori [32–34]. However, in spite of fundamental advances
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in ergodic theory [6,7], a rigorous proof of the existence of a finite measure
set of chaotic orbits for map (3) is still missing, even for specific values of K.

The absence of diffusion for small perturbations is typical of 1.5 and 2
degrees of freedom systems. For three or more degrees of freedom, resonances
are no longer separated by invariant KAM curves and form a connected web
that is dense in action space. Hence, chaotic motion along resonances can
carry the orbit arbitrarily close to any region of the phase space compatible
with energy conservation. This mechanism is called Arnold diffusion, since
Arnold [35] first described its existence. Arnold diffusion is present also for
negligible perturbations, but its rate becomes vanishingly small. A theoretical
calculation of this rate was first performed by Chirikov[18] and later refined
by several authors (see chapter 6 of [19] for a review). Beautiful illustrations
of the Arnold web have been obtained by Laskar through the use of frequency
analysis [36].

While the local structure of divided phase space is now well understood,
the statistical properties of the dynamics remain unclear, in spite of the sim-
plicity of these systems. Among the most important statistical characteristics
is the decay of the time correlation function C(τ) in time and the statistics
of Poincaré recurrences P (τ). The latter is defined as P (τ) = Nτ/N , where
Nτ is the number of recurrences in a given region with recurrence time t > τ
and N is the total number of recurrences. According to the Poincaré theorem
(for an easy illustration see Chap. 7.1.3 of [37]), an orbit of a Hamiltonian
system always returns sufficiently close to its initial position. However, the
statistics of these recurrences depends on the dynamics and is different for in-
tegrable and chaotic motion. In the case of strong chaos without any stability
islands (e.g. the Arnold cat map (1)), the probability P (τ) decays exponenti-
ally with τ . This case is similar to the coin flipping, where the probability to
stay head for more than τ flips decays exponentially. The situation turns out
to be different for the more general case of the dynamics inside the chaotic
component of an area-preserving map with divided phase space. Studies of
P (τ) for such a case showed that, at a large times, recurrences decay with
a power law P (τ) ∝ 1/τp with an exponent p ≈ 1.5 (see [38] and Fig. 7).
Investigations of different maps also indicated approximately the same value
of p, even if it was remarked that p can vary from map to map, and that the
decay of P (τ) can even oscillate with ln τ . This result is of general impor-
tance. It can also be shown that it determines the correlation function decay
C(τ) via the relation C(τ) ∝ τP (τ). The statistics of P (τ) is also well suited
for numerical simulations, due to the natural property P (τ) > 0 and to its
statistical stability. Such a slow decay of Poincaré recurrences is related to
the sticking of a trajectory near a critical KAM curve, which restricts the
chaotic motion in phase space [38]. Indeed, when approaching the critical
curve with the border rotation number rg , the local diffusion rate Dn goes
to zero as Dn ∼ |rg − rn|α/2 ∼ 1/qα

n with α = 5, where rn = pn/qn are the
rational convergents for rg as determined by the continued fraction expan-
sion. The theoretical value α = 5 follows from a resonant theory of critical
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Fig. 7. Poincaré recurrences P (τ) in the Chirikov standard map (3) at K = Kg

(dashed curve) and in the separatrix map (see text) with the critical golden bound-
ary curve at λ = 3.1819316 (full curve). The return line is I = y = 0. The dotted
straight line shows the power-law decay P (τ) ∝ 1/τp with p = 1.5. [From [38]]

invariant curves [21,38] and is confirmed by numerical measurements of the
local diffusion rate in the vicinity of the critical golden curve in the Chiri-
kov standard map [39]. Such a decrease of the diffusion rate near the chaos
border would give the exponent p = 3, if everything was determined by the
local properties of principal resonances pn/qn. However, the value p = 3 is
significantly different from the numerically found value p ≈ 1.5 (see [38,40]
and Fig. 7). At the same time, the similarity of the decay of P (τ) in two very
different maps with critical golden curves is in favor of the universal decay
of Poincaré recurrences; it is possible that the expected value p = 3 will be
reached at very large τ .

3 Many Degrees of Freedom: The Numerical
Experiment of Fermi, Pasta, and Ulam

At the beginning of the 50’s one of the first digital computers, MANIAC 1,
was available at Los Alamos National Laboratories in the US. It had been
designed by the mathematician J. von Neumann for supporting investigations
in several research fields, where difficult mathematical problems could not be
tackled by rigorous proofs1. Very soon, Enrico Fermi realized the great po-
tential of this revolutionary computational tool for approaching some basic
physical questions, that had remained open for decades. In particular, MA-
NIAC 1 appeared to be suitable for analyzing the many aspects of nonlinear
problems, that could not be accessible to standard perturbative methods.
Thanks to his deep physical intuition, Fermi pointed out a crucial problem,
1 It should be mentioned that MANIAC 1 was mainly designed for supporting

research in nuclear physics, which yielded the production of the first atomic
bomb.
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Fig. 8. The FPU chain of oscillators coupled by nonlinear springs

that had been raised already in 1914 by the dutch physicist P. Debye. He
had suggested that the finiteness of thermal conductivity in crystals should
be due to the nonlinearities inherent in the interaction forces acting among
the constituent atoms. Although experimental results seemed to support such
a conjecture, a convincing explanation based on a microscopic theory was still
lacking fourty years later2. In collaboration with the mathematician S. Ulam
and the physicist J. Pasta, Fermi proposed to integrate, on the MANIAC 1
the dynamical equations of the simplest mathematical model of an anharmo-
nic crystal: a chain of harmonic oscillators coupled by nonlinear forces (see
Fig. 8). In practice, this is described by a classical Hamiltonian of the form

H =
N∑

i=1

p2
i

2m
+
ω2

2
(qi+1 − qi)2 +

ν

n
(qi+1 − qi)n, (9)

where the integer space index i labels the oscillators, whose displacements
with respect to equilibrium positions and momenta are qi and pi, respectively.
The integer exponent n > 2 identifies the nonlinear potential, whose strength
is determined by the coupling parameter ν. For the sake of simplicity, Fermi,
Pasta and Ulam considered the cases n = 3, 4, with ν denoted as α and β,
respectively (from which the names “α” and “β” models).

The complex interactions among the constituent atoms or molecules of
a real solid are reduced to harmonic and nonlinear springs, acting between
nearest-neighbor equal–mass particles. Nonlinear springs apply restoring for-
ces proportional to the cubic or quartic power of the elongation of particles
from their equilibrium positions3. Despite such simplifications, the basic in-
gredients that one can reasonably conjecture to be responsible for the main
physical effect (i.e. the finiteness of thermal conductivity) had been taken
into account in the model.

In this form the problem was translated into a program containing an
integration algorithm that MANIAC 1 could efficiently compute. It should
be stressed that further basic conceptual implications of this numerical expe-
riment were known from the very beginning to Fermi and his collaborators.
2 Only recently further progress has been made in the understanding of the role

of nonlinearity and disorder, together with spatial constraints, in determining
transport properties in models of solids and fluids; for a review see [41].

3 These simplifications can be easily justified by considering that any interaction
between atoms in a crystal can be well approximated by such terms, for ampli-
tudes of atomic oscillations much smaller than the interatomic distance: this is
the typical situation for real solids at room temperature and pressure.
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In fact, they also expected to verify a common belief that had never been
amened to a rigorous mathematical proof: In an isolated mechanical system
with many degrees of freedom (i.e. made of a large number of atoms or mole-
cules), a generic nonlinear interaction among them should eventually yield
equilibrium through “thermalization” of the energy. On the basis of physical
intuition, nobody would object to this expectation if the mechanical system
starts its evolution from an initial state very close to thermodynamic equi-
librium. Nonetheless, the same should also be observed for an initial state
where the energy is supplied to a small subset of oscillatory modes of the
crystal; nonlinearities should make the energy flow towards all oscillatory
modes, until thermal equilibrium is eventually reached. Thermalization cor-
responds to energy equipartition among all the modes4. In physical terms,
this can be considered as a formulation of the “ergodic problem”. This was
introduced by the austrian physicist L. Boltzmann at the end of the 19th

century to provide a theoretical explanation of the apparently paradoxical
fact, namely that

the time–reversible microscopic dynamics of a gas of hard spheres should
naturally evolve on a macroscopic scale towards thermodynamic equilibrium,
thus yielding the “irreversible” evolution compatible with the second principle
of thermodynamics.

In this perspective, the FPU5 numerical experiment was intended to test
also if and how equilibrium is approached by a relatively large number of
nonlinearly coupled oscillators, obeying the classical laws of Newtonian me-
chanics. Furthermore, the measurement of the time interval needed for ap-
proaching the equilibrium state, i.e. the ”relaxation time” of the chain of
oscillators, would have provided an indirect determination of thermal con-
ductivity6.

In their numerical experiment FPU considered relatively short chains, up
to 64 oscillators7, with fixed boundary conditions.8 The energy was initially
stored in one of the low, i.e. long–wavelength, oscillatory modes.

4 The “statistical” quality of this statement should be stressed. The concept of
energy equipartition implies that the time average of the energy contained in
each mode is constant. In fact, fluctuations prevent the possibility that this might
exactly occur at any instant of time.

5 In the following we shall use the usual acronym for Fermi-Pasta-Ulam.
6 More precisely, according to Boltzmann’s kinetic theory, the relaxation time τr

represents an estimate of the time scale of energy exchanges inside the crystal:
Debye’s argument predicts that thermal conductivity κ is proportional to the
specific heat at constant volume of the crystal, Cv, and inversely proportional to
τr, in formulae κ ∝ Cv/τr.

7 Such sizes were already at the limit of computational performances of MANIAC
1, whose execution speed was much smaller than a modern home pc.

8 The particles at the chain boundaries are constrained to interact with infinite
mass walls, see Fig. 8.
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Fig. 9. Energy recurrence in the first 5 Fourier modes in the FPU α model. The
figure is taken from [44]

Surprisingly enough, the expected scenario did not appear. Contrary to
any intuition the energy did not flow to the higher modes, but was exchanged
only among a small number of low modes, before flowing back almost exactly
to the initial state, yielding the recurrent behavior shown in Fig. 9.

Even though nonlinearities were at work neither a tendency towards ther-
malization, nor a mixing rate of the energy could be identified. The dynamics
exhibited regular features very close to those of an integrable system.

Almost at the same time as this numerical experiment, A.N. Kolmogo-
rov outlined the first formulation of the KAM theorem (see Sect. 2). FPU
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certainly were not aware of his achievement, that indicated that all regular
features of the dynamics are kept by integrable hamiltonian systems subject
to a small enough perturbation. This could have guided the authors to rea-
lize that the nonlinear effects were too small a perturbation of the integrable
harmonic chain to prevent regular motion. A deeper understanding of the
implications of the FPU experiment on ergodicity and KAM theorem had to
wait for more than one decade, for the numerical experiment of Izrailev and
Chirikov [42] and Chirikov’s overlap criterion [43] (see also Sect. 5).

It should be mentioned that Fermi was quite disappointed by the diffi-
culties in finding a convincing explanation, thus deciding not to publish the
results. They were finally published in 1965, one decade after his death, in
a volume containing his Collected Papers [44]. The FPU report is probably
the most striking example of a crucial achievement which never appeared
as a regular paper in a scientific journal, but which, nonetheless, has been
a major source of inspiration for future developments in science. Actually,
while the understanding of the mechanisms of relaxation to equilibrium and
ergodicity mainly concerned the later efforts of european scientists, some
american researchers concentrated their attention in trying to interpret the
regular motion of the FPU chain in a different way. The first contribution
came from a seminal paper by the M.D. Kruskal, a physicist at Princeton,
and N.J. Zabusky, a mathematician at Bell Laboratories, in 1965 [45]. This
was the starting point for the large physical literature on nonlinear lattice
vibrations, that are nowadays called “solitons”. In fact, Kruskal and Zabusky
were interested in studying the continuum limit of the FPU chain. In parti-
cular, Zabusky later conjectured that the dynamical conditions investigated
by FPU in their numerical experiment could be explained by an appropriate
equation in the continuum limit [46]. This idea is quite natural, since the FPU
experiment showed that when a long–wavelength, i.e. low–frequency, mode
was initially excited, the energy did not flow towards the small–wavelength,
i.e. high–frequency, modes. Since discreteness effects are associated with the
latter modes, one can reduce the set of ordinary differential equations descri-
bing the chain to an effective partial differential equation that should provide
a confident description of long–wavelength excitations. Actually, the conti-
nuum limit of the FPU chain was found to correspond to a Korteweg-deVries
like equation9

ut + εun−2ux + µuxxx = 0 , (10)

where u is the spatial derivative of the displacement field once the right-
going wave is selected, and n is the order of the nonlinearity in 9. Exact
solutions of such equations can be explicitly found in the form of propagating
nonlinear waves. The reader should take into account that the coefficients ε
9 It should be mentioned that performing continuum limits of lattice equations

is quite a delicate mathematical problem, as discussed in [47] and also, more
recently, in [48]
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and µ depend on crucial parameters of the model: the energy of the initial
excitation, or, equivalently, the strength of the nonlinear force. For large
strength or high energy, the “dispersive” term µuxxx becomes negligible with
respect to the nonlinear term εun−2ux and (10) reduces to the first two terms
on the left hand side. This reduced partial differential equation has running
wave solutions that become unstable after a specific time scale, so-called
“shocks”. This time scale can be estimated on the basis of the parameters
appearing in the equation. Without entering into mathematical details, one
can say that the reduced equation describes excitations similar to sea waves,
which break their shape because the top of the wave propagates more rapidly
than the bottom10. This analysis provides a convincing explantion for the
FPU experiment. In fact, one can easily conclude that FPU performed their
numerical simulations in conditions where the chain was well represented by
(10), with a sufficiently large dispersion coefficient µ. Accordingly, the typical
instabilities due to discreteness effects might have become manifest only after
exceedingly long times, eventually yielding destruction of the regular motion.
Moreover, this analysis is consistent with the (almost) contemporary findings
of the numerical experiment by Izrailev and Chirikov [42], which show that
at high energies or high nonlinearities, the regular motion is rapidly lost.

4 Energy Thresholds

An alternative explanation for the localization of the energy in a small portion
of long–wavelength Fourier modes in the FPU chain can be obtained using
the resonance–overlap criterion discussed in Sect. 2. It is worth pointing out
that the same criterion provides a quantitative estimate of the value of the
energy density above which regular motion is definitely lost.

In order to illustrate this interesting issue, we have to introduce some
simple mathematical tools. Let us first recall that the Hamiltonian of the
Fermi-Pasta-Ulam model (9) can be rewritten in linear normal Fourier coor-
dinates (Qk, Pk) (phonons)

H =
1
2

∑

k

(
P 2

k + ω2
kQ

2
k

)
+ βV (Q) , (11)

where the nonlinear potential V (Q), whose strength is determined by the cou-
pling constant β11, controls the energy exchange among the normal modes
and ωk is the the k-th phonon frequency (e.g. ωk = 2 sin(πk/N) for peri-
odic boundary conditions). The harmonic energy of the k-th normal mode
is defined as Ek = (P 2

k + ω2
kQ

2
k)/2. If the energy H is small enough the

time–averaged phonon energies Ēk(T ) = T−1
∫ T

0 Ek(t)dt show an extremely
10 A clear survey on this class of partial differential equations can be found in [50],

Sects. 7 and 8. See also [49]
11 We restrict ourselves to the quartic nonlinearity n = 4 in (9), hence ν ≡ β
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slow relaxation towards the equipartition state (defined by Ek = const) as
T increases. On the contrary, at higher energies, the equipartition state is
reached in a relatively short time. The presence of these qualitatively diffe-
rent behaviors when the energy is varied was in fact predicted by Chirikov
and Izrailev [42] using the “resonance overlap” criterion. Let us give here just
a brief sketch of the application of this criterion to the FPU β model. The
corresponding Hamiltonian can be written in action-angle variables and, as
an approximation, one can consider just one Fourier mode. In fact, this is
justified at the beginning of the evolution, when most of the energy is still
kept by the initially excited mode.

H = H0 + βH1 ≈ ωkJk +
β

2N
(ωkJk)2 , (12)

where Jk = ωkQ
2
k is the action variable. In practice, only the nonlinear self-

energy of a mode is considered in this approximation. H0 and H1 are the
unperturbed (integrable) Hamiltonian and the perturbation, respectively. In-
deed ωkJk ≈ H0 ≈ E if the energy is initially put in mode k. It is then easy
to compute the nonlinear correction to the linear frequency ωk, giving the
renormalized frequency ωr

k

ωr
k =

∂H

∂Jk
= ωk +

β

N
ω2

kJk = ωk +Ωk. (13)

When N � k, then

Ωk ≈ βH0k

N2 . (14)

The ”resonance overlap” criterion consists of verifying whether the frequency
shift is on the order of the distance between two resonances:

∆ωk = ωk+1 − ωk ≈ N−1 , (15)

(the last approximation being again valid only when N � k), i.e.

Ωk ≈ ∆ωk . (16)

One obtains from this equation an estimate of εc, the ”critical” energy density
multiplied by β, above which sizeable chaotic regions develop and a fast dif-
fusion takes place in phase space while favouring relaxation to equipartition.
the form of εc is

εc =
(
βH0

N

)

c

≈ k−1 , (17)

with k = O(1) 	 N . Summarizing, primary resonances are weakly coupled
below εc and this in turn induces a slow relaxation process to equipartition.



Kolmogorov Pathways from Integrability to Chaos and Beyond 21

Conversely, above εc, fast relaxation to equipartition is present, due to “pri-
mary resonance” overlap.

The presence of an energy threshold in the FPU–model separating diffe-
rent dynamical regimes was first identified numerically by Bocchieri et al. [51].
A numerical confirmation of the predictions of the resonance overlap criterion
was obtained by Chirikov and coworkers [52]. Further confirmations came for
more refined numerical experiments [53,54], showing that, for sufficiently high
energies, regular behaviors disappear, while equipartition among the Fourier
modes sets in rapidly. Later on [55], the presence of the energy threshold was
characterized in full detail by introducing an appropriate Shannon entropy,
which counts the number of effective Fourier modes involved in the dyna-
mics (at equipartition this entropy is maximal). Around εc, the scaling with
energy of the maximal Lyapunov exponent (see Sect. 5) also changes, revea-
ling what has been called the ”strong stochasticity threshold” [56]. Below εc,
although primary resonances do not overlap, higher order resonances may,
yielding a slower evolution towards equipartition [57,58]. The time scale for
such an evolution has been found to be inversely proportional to a power of
the energy density [59].

After having illustrated the main developments along the lines suggested
by the resonance–overlap criterion, it is worth adding some further comments
about the existence of an energy threshold, which separates the regular dy-
namics observed by FPU at low energies from the highly chaotic dynamical
phase observed at higher energies.

In their pioneering contribution, Bocchieri and coworkers [51] were mainly
concerned by the implications for ergodic theory of the presence of an energy
threshold. In fact, the dynamics at low energies seems to violate ergodicity,
although the FPU system is known to be chaotic. This is quite a delicate and
widely debated issue for its statistical implications. Actually, one expects that
a chaotic dynamical system made of a large number of degrees of freedom
should naturally evolve towards equilibrium. We briefly summarize here the
state of the art on this problem. The approach to equipartition below and
above the energy threshold is just a matter of time scales, that actually
turn out to be very different from each other. An analytical estimate of the
maximum Lyapunov exponent λ (see Sect. 5) of the FPU problem [60] has
pointed out that there is a threshold value, εT , of the energy density, ε =
βH/N , at which the scaling of λ with ε changes drastically:

λ(ε) ∼
{
ε1/4 if ε > εT ;
ε2 if ε < εT .

(18)

This implies that the typical relaxation time, i.e. the inverse of λ, may be-
come exceedingly large for very small values of ε below εT . It is worth stres-
sing that this result holds in the thermodynamic limit, indicating that the
different relaxation regimes represent a statistically relevant effect. To a high
degree of confidence, it is found that εT in (18) coincides with εc in (17).
A more controversial scenario has been obtained by thoroughly investigating
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the relaxation dynamics for specific classes of initial conditions. When a few
long–wavelength modes are initially excited, regular motion may persist over
times much longer than 1/λ [57]. On the other hand, numerical simulations
and analytic estimates indicate that any threshold effect should vanish in the
thermodynamic limit [58,59,61]. An even more complex scenario is obtained
when a few short-wavelength modes are excited: solitary wave dynamics is
observed, followed by slow relaxation to equipartition [62]. It is worth men-
tioning that some regular features of the dynamics have been found to persist
even at high energies (e.g., see [63]), irrespectively of the initial conditions.
While such regularities can still play a crucial role in determining energy
transport mechanisms [41], they do not significantly affect the robustness of
the statistical properties of the FPU model in equilibrium at high energies.
In this regime, the model exhibits highly chaotic dynamics, which can be
quantified by the spectrum of characteristic Lyapunov exponents. A general
description of these chaoticity indicators and their relation with the concept
of “metric entropy”, introduced by Kolmogorov, is the subject of the following
section.

5 Lyapunov Spectra and Characterization
of Chaotic Dynamics

The possibility that unpredictable evolution may emerge from deterministic
equations of motion is a relatively recent discovery in science. In fact, a La-
placian view of the laws of mechanics had not taken into account such a pos-
sibility: the universality of these laws guaranteed that cosmic order should
extend its influence down to human scale. The metaphore of divinity as a
“clockmaker” was suggested by the regularity of planetary orbits and by the
periodic appearance of celestial phenomena, described by the elegant mathe-
matical language of analytical mechanics. Only at the end of the 19th century
did the french mathematician H. Poincaré realize that unpredictability is in
order as a manifestation of the dynamical instability typical of mechanical
systems described by a sufficiently large number of variables12. His studies on
the stability of the three–body problem with gravitational interaction led him
to introduce the concept of ”sensitivity with respect to the initial conditions”
(see also the contribution by A. Celletti et al. in this volume). He meant that
two trajectories, whose initial conditions were separated by an infinitesimal
difference, could yield completely different evolution after a suitable lapse of
time. This finding is at the basis of what we nowadays call “deterministic
chaos”, which has been identified as a generic feature of a host of dynamical
models of major interest in science and its applications. Here we do not aim
at providing the reader a full account of the fascinating history of determini-
stic chaos. Many interesting books and articles for specialists and newcomers
12 In fact, such a number is not that large: three independent dynamical variables

are enough to allow for unpredictable evolution.
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in science are available (for instance, an introductory survey to the subject
can be found in [50,37]). We rather want to focus our attention on the crucial
contribution of A.N. Kolmogorov in this field.

In order to fully appreciate Kolmogorov’s achievements it is useful to
discuss certain concepts, introduced for quantifying deterministic chaos. In
a chaotic dynamical system two infinitesimally close trajectories, say at di-
stance δ(0) at time t = 0, evolve in time by amplifying exponentially their
distance, i.e. δ(t) ∼ δ(0) expλt. The exponential rate of divergence λ > 0
measures the degree of chaoticity of the dynamics. In an isolated dynamical
system described by a finite number of variables, such an exponential in-
crease cannot last forever, due to the finiteness of the available phase space.
Nonetheless, Oseledec’s multiplicative theorem [64] guarantees that, under
quite general conditions, the following limit exists

λ = lim
t→∞ lim

δr(0)→0

1
t

ln
δr(t)
δr(0)

. (19)

Accordingly λ can be interpreted as the “average” exponential rate of diver-
gence of nearby trajectories, where the average is made over the portion of
phase space accessible to the trajectory (see also (2)). It is worth stressing
that this quantity is independent of the choice of the initial conditions, pro-
vided they belong to the same chaotic component of the phase space. More
generally, in a deterministic system described by N dynamical variables or,
as one should say, “degrees–of–freedom”, it is possible to define a spectrum
of Lyapunov exponents, λi with i = 1, · · · , N , i.e. one for each degree–of–
freedom. Conventionally, the integer i labels the exponents from the highest to
the smallest one. The stability of a generic trajectory in a multi–dimensional
space is, in principle, subject to the contribution of as many components as
there are degrees of freedom. This is quite a difficult concept that requires a
rigorous mathematical treatment, to be fully appreciated13. Intuitively, one
can say that the sum Sn =

∑n
i=1 λi measures the average exponential rates

of expansion, or contraction, of a volume of geometric dimension n in phase
space. Accordingly, S1 = λ1 ≡ λ is equivalent to the definition (19), since a
“1–dimensional volume” is a generic trajectory in phase space; S2 = λ1 + λ2
gives the divergence rate of a surface; SN =

∑N
i=1 λi is the average diver-

gence rate of the whole phase space. In dissipative dynamical systems, SN

is negative, so that the phase space volume is subject to a global contrac-
tion. Nonetheless, the presence of at least one positive Lyapunov exponent,
λ1 > 0, is enough for making the evolution chaotic: in this case, the tra-
jectory approaches a chaotic (strange) attractor. For Hamiltonian systems,
according to Liouville’s theorem, any volume in phase space is conserved and
SN = 0; moreover, for each λi > 0 there exists λN−i = −λi

14. In summary,
13 For this purpose we refer the reader to [65].
14 For each conserved quantity like energy, momentum etc., there is a pair of conju-

gated exponents that are zero. Stated differently, each conservation law amounts
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chaotic evolution implies that a small region in phase space (for instance,
the volume identifying the uncertainity region around an initial condition)
is expanded and contracted with exponential rates along different directions
in phase space. After a time on the order of 1/λ the distance between two
infinitesimally close initial conditions will take the size of the accessible phase
space: accordingly, we have no means of predicting where the image of an in-
itial point will be in phase space, by simply knowing the image of an initially
closeby point. An infinite precision in the determination of the initial condi-
tions would be required in order to cope with this task. From a mathematical
point of view, the determinism of the equations of motion remains unaffected
by a chaotic evolution; from a physical point of view, determinism is lost,
since the possibility of “predicting” is guaranteed only in the presence of a
stable deterministic evolution. In fact, in contrast with mathematics, physics
has to deal with precision and errors: in a chaotic dynamics we cannot control
the propagation of an initial, arbitrarily small uncertainty.

At this point the very meaning of physics as a predictive science can be-
come questionable, since chaotic dynamics seems to be present in the great
majority of natural phenomena. On the other hand, the impossibility of an
exact determination of the trajectories does not exclude the possibility of ha-
ving statistical knowlodge about a chaotic system. The theory of Statistical
Mechanics by Boltzmann is the first example where deterministic dynamical
rules were replaced by statistical concepts. Actually, the practical impossi-
bility of following the evolution equations of a large number of particles in
a diluted gas interacting by elastic collisions led Boltzmann to encompass
the problem by introducing an evolution equation for a distribution function
f(r,v, t). This function tells us about the probability of finding, at time t, a
particle of the gas in a given position r and with velocity v. This probably
depends on some global properties of the gas, like the temperature and the
occupied volume, rather than on the fine details of the collision dynamics.
Boltzmann showed that the evolution equation for f(r,v, t) is irreversible
and consistent with the second principle of thermodynamics: entropy tends
naturally to increase while approaching the equilibrium state, which corre-
sponds to maximal entropy. The great intuition of A.N. Kolmogorov was
that a similar, thermodynamic like, description could be adapted to chaotic
dynamics. It is important to point out also the main conceptual difference
of Kolmogorov’s approach with respect to Boltzmann. There is no need for
replacing chaotic equations with something else. The crucial observation is
that unpredictable dynamical systems can depend on some global feature, i.e.
an internal time, like 1/λ, and on the geometric structure of the phase space

to a geometrical constraint that limits the access of the trajectory to a subma-
nifold of phase space. Integrability can be a consequence of all λi’s being zero,
i.e. there can be as many conservation laws as the number of degrees of freedom.
However, it can happen that the system is not necessarily integrable and the rate
of divergence is weaker than exponential.
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(possibly including different kinds of attractors). As a substitute for ther-
modynamic entropy, Kolmogorov introduced the concept of metric entropy.
The conceptual breakthrough is that a mechanical description is replaced by
a statistical description in terms of a measure: more precisely, we study the
evolution of regions of the phase space rather than single trajectories. On this
basis, one can easily notice that the concept of “metric entropy” was taken
by Kolmogorov directly from information theory. Let us sketch his approach:
some mathematics is necessary even if we shall not enter into the technical
details15. Consider a set of n possible events, that in an experiment can be
observed with probabilities p1, p2, · · · , pn, respectively (

∑
i pi = 1). Informa-

tion theory attributes the information content − ln pj to the observation of
the j-th event. Accordingly, the average information content associated with
an experiment with n possible outcomes is H = −∑n

j=1 pj ln pj . As a first
step towards extending this definition to chaotic dynamics, Kolmogorov intro-
duced a partition of the phase space A into n disjoint subsets A1, A2, · · · , An,
with Ai ∩ Aj = 0 if i �= j: finding, at some instant of time, the trajectory in
one of these subsets is the “event” for chaotic dynamics. By identifying the
probability pj with the measure µ(Aj) of the subset Aj , one can define the
“entropy” associated with the partition A as

H(A) = −
n∑

j=1

µ(Aj) lnµ(Aj). (20)

Let us indicate with the symbol φ−t the backward in time evolution opera-
tor (or “flux”) over a time span −t, so that φ−tA represents the partition
generated by φ−t from A, by taking the intersection of all the back iterates
of each initial subset Ai. After n iterations, the application φ−t generates a
partition

A(n) = A ∩ (φ−tA) ∩ (φ−2tA) ∩ · · · ∩ (φ−ntA) , (21)

where the symbol ∩ also denotes the intersection of two partitions. One can
say that the proliferation with n of the elements of the partition (21) provides
us with a measure of how fast the dynamics divides the original partition
A, making it finer and finer. The main idea of Kolmogorov is to obtain a
quantitative measure of the degree of chaoticity, or mixing, by the average
information produced between two iterations

H(A, φ−t) = lim
n→∞[H(A(n+1)) −H(A(n))] (22)

Finally, since one aims to obtain an upper estimate of the information pro-
duced by the dynamics, the definition of metric Kolmogorov-Sinai entropy
amounts to

h(φ−t) = sup
A
H(A, φ−t). (23)

15 We refer the reader aiming at a rigorous approach to [66]
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This quantity is a dynamical indicator, which depends only on the nature of
the dynamics. The internal time of the system is then given by 1/h. Three
different situations may then appear: h = 0 for regular motion (e.g., periodic
dynamics), h = ∞ for a fully non–deterministic evolution (e.g., a dynamics
subject to the influence of external noise), and 0 < h < ∞ for a determini-
stic chaotic system. The russian mathematician Ya. B. Pesin [67] proved a
remarkable relation between Kolmogorov’s metric entropy and the positive
component of the Lyapunov spectrum

h =
m∑

j=1

λj , λm > 0 > λm+1. (24)

It is now evident that for systems with one degree of freedom, h = λ. The
russian mathematician Ya.G. Sinai was the first to propose a simple dyna-
mical model exhibiting mixing properties [15]. He considered a billiard with
convex reflecting walls (see Fig. 2) and he proved that the flux associated
with the dynamics of a bouncing ball has positive metric entopy. Later, ano-
ther russian mathematician L.A. Bunimovich showed that the same result
is obtained for the stadium billiard [16], where there is no convexity (see
Fig. 3), thus indicating that the presence of mixing requires weaker conditi-
ons. These contributions also shed some light on the possibility that metric
entropy could be at the basis of a statistical description of more physical
models, like a gas of hard spheres (the mathematical model of a diluted gas
as introduced by Boltzmann) or the FPU chain discussed in Sect. 3. No-
netheless, we should at least point out that the relation between mixing and
statistical measure necessarily has to deal with the introduction of the so-
called thermodynamic limit, i.e. the limit in which the number of degrees
of freedom goes to infinity. In general, this limit does not commute with
the limit t → ∞ in (19) and (22). In other words, the results of the mea-
surement of λ and h may depend on the order according to which these
limits are performed. Stimulated by a discussion with D. Ruelle at IHES
in Paris in 1984, two of the authors and their colleague A. Politi nume-
rically investigated this problem for the FPU chain and other similar dy-
namical models. They obtained evidence for the existence of a limit curve
for the spectrum of Lyapunov exponents in the thermodynamic limit [68]
(see Fig. 10). Further numerical indications for the existence of such a li-
mit for a variety of physical systems have been obtained afterwards, but a
rigorous mathematical proof is still lacking, although some attempts in this
direction have been made [69–71]. The existence of a Lyapunov spectrum
in the thermodynamic limit is also used as an hypothesis in the proof of
the Gallavotti-Cohen fluctuation-dissipation relation for forced reversible sy-
stems [72].
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Fig. 10. The spectrum of positive Lyapunov exponents of the FPU beta model for
different chain lengths, from 8 up to 64 oscillators

6 Quantum Computers and Quantum Chaos

In spite of the fundamental contributions by mathematicians and physicists
in the understanding of chaotic dynamics, the role on numerical simulations
of chaos can hardly be overestimated. Indeed, computer simulations made
possible the investigation of the richness of chaos in all of its details and made
the image of chaos familiar to the public. At present, the new technological
developments related to quantum information and computation open new
horizons to the simulations of chaos.

Indeed, a great deal of attention has been devoted in the last years to
the possibility of performing numerical simulations on a quantum compu-
ter. As it was already stressed long time ago by Feynman [73], the massive
parallelism allowed by quantum mechanics enables us to operate on an expo-
nential number of states using a single quantum transformation. The recent
development of quantum information processing has shown that computers
designed on the basis of the laws of quantum mechanics can perform some
tasks exponentially faster than any known classical computational algorithm
(see e.g. [74]). The best known example of such a task is the integer factoriza-
tion algorithm proposed by Shor. The quantum computer can be viewed as
a system of qubits (two-level systems), on which “one-qubit” rotations and
“two-qubit” transformations allow one to realize any unitary transformation
in the exponentially large Hilbert space [74]. At present simple algorithms
with up to seven qubits have been realized with nuclear spins in a molecule
(NMR) and cold trapped ions.

Quantum computation sheds a new light on chaotic dynamics. Indeed, due
to quantum parallelism, a quantum computer can iterate the Liouville den-
sity distribution for O(22nq ) classical trajectories in the Arnold cat map (1)
in O(nq) quantum operations (e.g. “one-qubit” rotations and control-NOT
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“two-qubit” gates), while a classical simulation requires O(22nq ) operations
[75]. For these simulations the phase-space of (1) is discretized inN2 cells with
coordinates (xi, yj), xi = i/N and yj = j/N , i, j = 0, . . . , N − 1, N = 2nq .
The quantum algorithm simulates this discretized dynamics with the help
of 3 quantum registers. The first two registers describe the position xi and
the momentum yj of N2 points in the discretized phase-space, where each
register contains nq qubits. The remaining nq − 1 qubits in the third register
are used as a work space. An initial classical Liouville distribution can then
be represented by a quantum state proportional to

∑
i,j aij |xi > |yj > |0 >

where the coefficients ai,j are 0 or 1, corresponding to the classical density.
The classical dynamics of map (1) is performed with the help of modular
additions on the basis of the quantum algorithm described in [76]. The third
register holds the curries of the addition and the result is taken modulo N
by eliminating the last curry. One map iteration is done in two additions
performed in parallel for all classical trajectories in O(nq) quantum gates.

An example of classical dynamics on a 128×128 lattice is shown in Fig. 11
(left). After t = 10 iterations the cat image becomes completely chaotic. Even
if the exact dynamics is time reversible the minimal random errors in the last
bit (round-off errors) make it effectively irreversible due to dynamical chaos
and exponential growth of errors.

Hence, the initial image is not recovered after 10 (or 200) iterations for-
ward/backward (see Fig. 11), even if these minimal errors are done only once
at the moment of time inversion. On the contrary the quantum computation
remains stable to 1% random errors in the phase of unitary rotation perfor-
med by each quantum gate: accordingly, the time reversibility of motion is
preserved (see Fig. 11 (right)). In fact the precision of quantum computation
remains sufficiently good during a time scale tf ∝ 1/(ε2nq) where ε is the
error amplitude in quantum gate rotations [75]. The physical origin of this
result is related to the fact that the imperfection at each gate rotation trans-
fers probability of the order ε2 from the exact state to all the other states.
At the same time the classical error propagates exponentially, due to chaotic
deterministic dynamics. This result demonstrates a qualitative difference in
the nature of classical and quantum errors. Indeed, quantum perturbation
theory guarantees that small quantum errors weakly perturb the evolution.
Conversely, from the viewpoint of quantum mechanics (spin flip) a classical
error is large even in the last bit and this is the reason why it propagates
exponentially in the case of simulations of chaotic dynamics. Thus, despite
the common lore that quantum computers are very vulnerable to noise, the
study of the Arnold cat map dynamics shows that classical unstable motion,
for which classical computers display exponential sensibility to errors, can
be simulated accurately with exponential efficiency by a realistic quantum
computer [75].

There are also other quantum algorithms which allow the simulations of
complex quantum dynamics in a polynomial number of gates for an expo-
nentially large Hilbert space. For example, the quantum dynamics of map
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Fig. 11. Dynamics of the Arnold cat map (obtained by interchanging x and y in
(1)) simulated on a classical computer (left) and quantum computer (right), on a
128 × 128 lattice. Upper row: initial distribution; second row: distributions after
t = 10 iterations; third row: t = 20, with time inversion made after 10 iterations;
bottom row: distributions at t = 400, with time inversion made at t = 200. Left:
the classical error of one cell size (ε = 1/128) is done only at the moment of
time inversion; right: all quantum gates operate with quantum errors of amplitude
ε = 0.01; grayness is proportional to the probability |ai,j |2, nq = 7, 20 qubits in
total. [From [75]]

(3) can be simulated in O(n3
q) gates for the vector size N = 2nq [77]. This

opens new links between quantum computation and the field of quantum
chaos, which investigates the properties of quantum systems with a chaotic
classical limit. The field of quantum chaos has become an independent area
of research, closely related to mesoscopic physics, Anderson localization in
disordered potential, random matrix theory and periodic orbit quantization
in the regime of chaos. due to space constraints, we cannot describe in any



30 R. Livi, S, Ruffo, and D. Shepelyansky

detail this novel and fertile research field. We can only address the reader to
reviews and books that can provide her/him with an exhaustive overview on
this subject [29,78–81].
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