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The Chirikov standard map [1], [2] is an area-preserving map for two canonical dynamical variables, e.g. momentum 

and coordinate . It is described by the equations:

where bars mark the new values of variables after one map iteration and  is a dimensionless parameter that influences

the degree of chaos. Due to the periodicity of  the dynamics can be considered on a cylinder (by taking ) or on

a torus (by taking both ). The map is generated by the time dependent Hamiltonian ,

where  is a periodic function with period 1 in time . The dynamics is given by a sequence of free propagations

interleaved with periodic kicks.

Examples of the Poincare sections of the standard map on a torus are shown in the following Figs. 1,2,3.

Below the critical parameter  (Fig.1) the invariant Kolmogorov-Arnold-Moser (KAM) curves restrict the variation 

of momentum  to be bounded. The golden KAM curve with the rotation number  is

destroyed at  [3], [4] (Fig.2). This Fig. shows a generic phase space structure typical for various

area-preserving maps with smooth generating functions: stability islands are embedded in a chaotic sea, similar structure

appears on smaller and smaller scales. In a vicinity of a critical invariant curve, with a golden tail in a continued fraction

expansion of , the phase space structure is universal for all smooth maps [4]. Above the critical value  (see Fig.3

showing a chaotic component and visible islands of stability) the variation of  becomes unbounded and is characterized 

by a diffusive growth  with number of map iterations . Here  is a diffusion rate with  for

 and  for  [2], [5]. There are strong arguments in favor of the equality  but rigorously it is

only proven that there are no KAM curves for  [6]. With the numerical results [3], [4] this implies 

inequality for the global chaos border: .

A simple analytical criterion proposed in 1959 and now known as the Chirikov resonance-overlap criterion [7] gives the

chaos border  [1] and after some improvements leads to  [2],[8]. This accuracy is not so impressive 

compared to modern numerical methods but still up to now this criterion remains the only simple analytical tool for

determining the chaos border in various Hamiltonian dynamical systems.

The Kolmogorov-Sinai entropy of the map is well described by relation  valid for  [1], [2].

Figure 1: K=0.5 Figure 2: K=0.971635 Figure 3: K=5

(1) 
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Universality and Applications

The map (1) describes a situation when nonlinear resonances are equidistant in phase space that corresponds to a local

description of dynamical chaos. Due to this property various dynamical systems and maps can be locally reduced to the

standard map and due to this reason the term standard map was coined in [2]. Thus, the standard map describes a

universal, generic behavior of area-preserving maps with divided phase space when integrable islands of stability are

surrounded by a chaotic component. A short list of systems reducible to the standard map is given below:

chaotic layer around separatrix of a nonlinear resonance induced by a monochromatic force (the whisker map) [2]

charged particle confinement in mirror magnetic traps [1], [2], [7], [9]

fast crossing of nonlinear resonance [1], [10]

particle dynamics in accelerators [11]

comet dynamics in solar system [12] with a rather similar map for the comet Halley [13]

microwave ionization of Rydberg atoms (linked to the Kepler map) [14] and autoionization of molecular Rydberg 

states [15]

electron magnetotransport in a resonant tunneling diode [16]

Open Problems

In spite of fundamental advances in ergodic theory [17], a rigorous proof of the existence of a set of positive measure 

of orbits with positive entropy is still missing, even for specific values of  (see e.g. [18]).

What are the fractal properties of critical chaos parameter  as a function of arithmetic properties of the rotation 

number  of KAM curve? do local maxima correspond only to a golden tail of continuous fraction expansion [3], [4]

or they may have tails with Markov numbers as it is conjectured in [19]? (see also [20])
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Due to trajectory sticking around stability islands the statistics of Poincare recurrences in Hamiltonian systems with 

divided phase space (see e.g. Fig.2 with a critical golden KAM curve) is characterized by an algebraic decay

 with  while a theory based on the universality in a vicinity of critical golden curve gives ; this 

difference persists up to 1013 map iterations; as a result correlation functions decay rather slowly 

that can lead to a divergence of diffusion rate  (see [21] and Refs. therein)

Quantum Map

The quantization of the standard map is obtained by considering variables in 

(1) as the Heisenberg operators with the commutation relation , 

where  is an effective dimensionless Planck constant. In a same way it is

possible to use the Schrodinger equation with the Hamiltonian  given

above and . Integration on one period gives the quantum map for

the wave function :

where bar marks the new value of  after one map iteration. Due to space

periodicity of the Hamiltonian the momentum can be presented in the form

, where  is an integer and  is a quasimomentum preserved by the

evolution operator  . The case with  corresponds to a periodic boundary

conditions with  and is known as the kicked rotator introduced

in [22].

Other notations with ,  are also used to mark the dependence on

the period  between kicks, then . The diffusion rate over quantum

levels  is , thus the rotator energy  grows linearly with time. Quantum interference

effects lead to a suppression of this semiclassical diffusion [22] on the diffusive time scale  so that the quantum

probability spreads effectively only on a finite number of states  (Fig.4). According to the analytical estimates

obtained in [23]:

This diffusive time scale is much larger than the Ehrenfest time scale [23], [24]  after which a minimal

coherent wave packet spreads over the whole phase space due to the exponential instability of classical dynamics. For

 a quantum wave packet follows the chaotic dynamics of a classical trajectory as it is guaranteed by the Ehrenfest

theorem [23]. For the case of Fig.4 the Kolmogorov-Sinai entropy  and the Ehrenfest time  is extremely short

comparing to the diffusive time . The quantum suppression of chaotic diffusion is similar to the Anderson

localization in disordered systems if to consider the level number as an effective site number in a disordered lattice, such

an analogy has been established in [25]. However, in contrast to a disordered potential for the case of Anderson

localization, in the quantum map (2) diffusion and chaos have a pure deterministic origin appearing as a result of

dynamical chaos in the classical limit.

Figure 4: Dependence of rescaled rotator 

energy  on time  for

; the full 

curve shows numerical data and the straight 

line gives the diffusive energy growth in the 

classical case (from [23]).

(2) 

(3) 
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Due to that this phenomenon is called the dynamical localization. The 

eigenstates of the unitary evolution operator  are exponentially localized 

over momentum states  with the localization length

 given by the relation [26], [27]

where  is the semiclassical diffusion expressed via a square number of

levels per period of perturbation. For  the chaos parameter  in the

dependence  should be replaced by its quantum value 

[27]. The quantum localization length  repeats the characteristic oscillations

of the classical diffusion as it is shown in Fig.5. The relation (4) assumes that

 is a typical irrational number while for rational values of this ratio the

phenomenon of quantum resonance takes place and the energy grows

quadratically with time for rational values of quasimomentum [28]. The

derivations of the relation (4) based on the field theory methods applied to

dynamical systems with chaotic diffusion can be find in [29], [30] (see also 

Refs. therein).

If the quantum map (2) is taken on a torus with  levels then the level

spacing statistics is described by the Poisson law for  and by the

Wigner-Dyson law of the random matrix theory for  [24],[31]. In the 

later case the quantum eigenstates are ergodic on a torus in agreement with

the Shnirelman theorem and the level spacing statistics agrees with the Bohigas-Giannoni-Schmit conjecture (see books

on quantum chaos in Recommended Reading).

The quantum map (2) was built up experimentally with cold atoms in a kicked optical lattice by the group of M.Raizen

[32]. Such a case corresponds to a particle in an infinite periodic lattice with averaging over many various . The quantum

resonances at  were also experimentally observed with the Bose-Einstein condensate (BEC) in [33]. Quantum

accelerator modes for kicked atoms falling in the gravitational field were found and analyzed in [34].

Extensions and Related Quantum Systems

Due to universal properties of the standard map its quantum version also finds applications for various systems and

various physical effects:

dynamical localization for ionization of excited hydrogen atoms in a microwave field

was theoretically predicted in [35] and was experimentally observed by the group of P.Koch [36] (see more details in 

[14],[37],[38])

quantum particle in a triangular well and monochromatic field with a quantum delocalization transition [39]

the kicked Harper model where in contrast to the relation (4) the quantum delocalization can take place due to 

quasi-periodicity of unperturbed spectrum (see [40], [41] and Refs. therein)

3D Anderson transition in kicked rotator with modulated kick strength and quantum transport in mesoscopic 

conductors (see [42] and Refs. therein)

dissipative quantum chaos [43]

fractal Weyl law for the quantum standard map with absorption (see [44] and Refs. therein)

Figure 5: Dependence of the localization 

length  on the quantum parameter of chaos 

. The circles and the curve

are, respectively, the numerical data and the 

theory for the classical diffusion  (see

[8]). The quantum data for  are shown by 

(for ) and by  (for ); 

here  (from [27]).

(4) 
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Time Reversibility and Boltzmann - Loschmidt 

Dispute

The statistical theory of gases 

developed by Boltzmann leads 

to macroscopic irreversibility

and entropy growth even if 

dynamical equations of motion

are time reversible. This

contradiction was pointed out 

by Loschmidt and is now

known as the Loschmidt 

paradox. The reply of

Boltzmann relied on the 

technical difficulty of velocity 

reversal for material particles: a

story tells that he simply said

"then go and do it" [45]. The

modern resolution of this

famous dispute, which took 

place around 1876 in Wien,

came with the development of 

the theory of dynamical chaos 

(see e.g. [8], [17]). Indeed, for chaotic dynamics the Kolmogorov-Sinai entropy is positive and small perturbations grow

exponentially with time, making the motion practically irreversible. This fact is convenient to illustrate on the example of

the standard map which dynamics is time reversible, e.g. by inverting all velocities at the middle of free propagation

between two kicks (see Fig.6). This explanation is valid for classical dynamics, while the case of quantum dynamics

requires special consideration. Indeed, in the quantum case the exponential growth takes place only during the rather short

Ehrenfest time, and the quantum evolution remains stable and reversible in presence of small perturbations [46] (see 

Fig.7). Quantum reversibility in presence of various perturbations has been actively studied in recent years and is now

described through the Loschmidt echo (see [47] and Refs. therein). A method of approximate time reversal of matter

waves for ultracold atoms in the regime of quantum chaos, like those in [32], [33], is proposed in [48]. In this method a

large fraction of the atoms returns back even if the time reversal is not perfect. This fraction of the atoms exhibits

Loschmidt cooling which can decrease their temperature by several orders of magnitude. At the same time a kicked BEC

of attractive atoms (soliton) described by the Gross-Pitaevskii equation demonstrates a truly chaotic dynamics for which

the exponential instability breaks the time reversibility [49]. However, since a number of atoms in BEC is finite and since

BEC is a really quantum object one should expect that the Ehrenfest time is still very short and hence the time

reversibility should be preserved in presence of small errors if the second quantization is taken into account.

Links to Other Physical Topics

Frenkel-Kontorova Model

The Frenkel-Kontorova model describes a one-dimensional chain of atoms/particles with harmonic couplings placed in a

periodic potential [50]. This model was introduced with the aim to study crystal dislocations but it also successfully

applies for the description of commensurate-incommensurate phase transitions, epitaxial monolayers on the crystal

surface, ionic conductors, glassy materials, charge-density waves and dry friction [51]. The Hamiltonian of the model is

, where  are momentum and position of atom . At the equilibrium the momenta  and

 so that the positions of atoms are described by the map (1) with . The density of

atoms corresponds to the rotation number  of an invariant KAM curve. For the golden density with  the chain slides

in the periodic potential for  (KAM curve regime) while for  the transition by the breaking of analyticity, or

Figure 6: Dependence of rescaled energy 

 on time in the classical map (1) at 

; time reversal is performed at ; 

numerical simulations are done on BESM-6 

with relative accuracy  (from [46]).
Figure 7: Same as in Fig.6 but for the

quantum map (2) with , the 

straight line shows the classical diffusion; 

time reversal is performed at the moment 

 marked by the vertical line, numerical 

simulations are done on the same computer 

BESM-6, in addition random quantum 

phases  are added for quantum 

amplitudes in momentum representation at 

the moment of time reversal (from [46]).
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Aubry transition, takes place, the chain becomes pinned and atoms form an invariant Cantor set called cantorus (see [52]

and Aubry-Mather theory). In this regime the phonon spectrum has a gap so that the phonon excitations are suppressed at

low temperature. The mathematical Aubry-Mather theory guarantees that the ground state of the chain exists and is

unique. However there exist exponentially many static equilibrium configurations which are exponentially close to the

energy of the ground state. The energies of these configurations form a fractal quasi-degenerate band structure and

become mixed at any physically realistic temperature. Thus, such configurations can be viewed as a dynamical spin glass.

For a case of Coulomb interactions between particles (e.g. ions or electrons) one obtains a problem of Wigner crystal in a

periodic potential which again is locally described by the Frenkel-Kontorova model since the map (1) gives the local

description of the dynamics. For the quantum Frenkel-Kontorova model the dynamics of atoms (ions) in the chain is

quantum. In this case the quantum vacuum fluctuations and instanton tunneling lead to a quantum melting of pinned

phase: above a certain effective Planck constant a quantum phase transition takes place from pinned instanton glass to

sliding phonon gas (see [53] and Refs. therein).

Quantum Computing

One iteration of maps (1) and (2) can be simulated on a quantum computer in a polynomial number of quantum gates for

an exponentially large vector representing a Liouville density distribution or a quantum state. The quantum algorithm of

such a quantum computation is described in [54], effects of quantum errors are analyzed in [55] (see also Refs. therein).

Historical Notes

The standard map (1) in a form of recursive relation for atoms in a periodic potential appears already in the works of

Kontorova and Frenkel [50]. As a dynamical map it first appeared as a description of electron dynamics in a new

relativistic accelerator proposed by V.I.Veksler (Dokl. Akad. Nauk SSSR 43: 346 (1944)). The regime of a stable regular

accelaration was studied later also by A.A.Kolomensky (Zh. Tekh. Fiz. 30: 1347 (1960)) and S.P.Kapitsa, V.N.Melekhin

("Microtron", Nauka, Moscow (1969) in Russian). Among the early researchers of model (1) was also British physicist

J.B.Taylor (unpublished reports). The description of chaos in map (1) and its main properties, including chaos border,

diffusion rate and positive entropy, was given in [1]. The term "standard map" appeared in [2], "Chirikov-Taylor map" [8]

and "Chirikov standard map" [16] are also used, the quantum standard map or kicked rotator was first considered in [22].

Appearance of other terms: Kolmogorov-Arnold-Moser theory [1], Arnold diffusion [1], Kolmogorov-Sinai entropy [2], 

Ehrenfest time [24].
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External Links

Selected publications of Boris Chirikov [1] (http://www.quantware.ups-tlse.fr/chirikov/) 
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Some web sites can be found by making Google search on "standard map"
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