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The Chirikov standard map [1], [2] is an area-preserving map for two canonical dynamical variables, i.e., momentum and
coordinate . It is described by the equations:

where the bars indicate the new values of variables after one map iteration and  is a dimensionless parameter that influences the
degree of chaos. Due to the periodicity of  the dynamics can be considered on a cylinder (by taking ) or on a torus
(by taking both ). The map is generated by the time dependent Hamiltonian , where

 is a periodic function with period 1 in time. The dynamics is given by a sequence of free propagations interleaved with
periodic kicks.

Examples of the Poincare sections of the standard map on a torus are shown in the following Figs. 1,2,3.

Below the critical parameter  (Fig.1) the invariant Kolmogorov-Arnold-Moser (KAM) curves restrict the variation of
momentum  to be bounded. The golden KAM curve with the rotation number

is destroyed at [3], [4] (Fig.2). This Fig. shows a generic phase space structure typical for various area-
preserving maps with smooth generating functions: stability islands are embedded in a chaotic sea, similar structure appears on
smaller and smaller scales. In a vicinity of a critical invariant curve, with a golden tail in a continued fraction expansion of , the
phase space structure is universal for all smooth maps [4]. Above the critical value  (see Fig.3 showing a chaotic component
and visible islands of stability) the variation of  becomes unbounded and is characterized by a diffusive growth  with
number of map iterations . Here  is a diffusion rate with  for  and  for 
[2], [5]. There are strong arguments in favor of the equality  but rigorously it is only proven that there are no KAM curves
for [6]. With the numerical results [3], [4] this implies inequality for the global chaos border,

.

A simple analytical criterion proposed in 1959 and now known as the Chirikov resonance-overlap criterion [7] gives the chaos
border [1] and after some improvements leads to [2],[8]. This accuracy is not so impressive compared to
modern numerical methods but still up to now this criterion remains the only simple analytical tool for determining the chaos
border in various Hamiltonian dynamical systems.

The Kolmogorov-Sinai entropy of the map is well described by relation  valid for [1], [2].
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Universality and Applications
The map (1) describes a situation when nonlinear resonances are equidistant in phase space that corresponds to a local description
of dynamical chaos. Due to this property various dynamical systems and maps can be locally reduced to the standard map and due
to this reason the term standard map was coined in [2]. Thus, the standard map describes a universal, generic behavior of area-
preserving maps with divided phase space when integrable islands of stability are surrounded by a chaotic component. A short list
of systems reducible to the standard map is given below:

chaotic layer around separatrix of a nonlinear resonance induced by a monochromatic force (the whisker map) [2]

charged particle confinement in mirror magnetic traps [1], [2], [7], [9]

fast crossing of nonlinear resonance [1], [10]

particle dynamics in accelerators [11]

comet dynamics in solar system [12] with a rather similar map for the comet Halley [13]

microwave ionization of Rydberg atoms (linked to the Kepler map) [14] and autoionization of molecular Rydberg states [15]

electron magnetotransport in a resonant tunneling diode [16]

Open Problems
In spite of fundamental advances in ergodic theory [17], a rigorous proof of the existence of a set of positive measure of orbits

with positive entropy is still missing, even for specific values of  (see e.g. [18]).

What are the fractal properties of critical chaos parameter  as a function of arithmetic properties of the rotation number 
of KAM curve? do local maxima correspond only to a golden tail of continuous fraction expansion [3], [4] or they may have tails
with Markov numbers as it is conjectured in [19]? (see also [20])

Due to trajectory sticking around stability islands the statistics of Poincare recurrences in Hamiltonian systems with divided

phase space (see e.g. Fig.2 with a critical golden KAM curve) is characterized by an algebraic decay  with 
while a theory based on the universality in a vicinity of critical golden curve gives  this difference persists up to 1013 map
iterations; as a result correlation functions decay rather slowly  that can lead to a divergence of diffusion
rate  (see [21] and Refs. therein)

Quantum Map

The quantization of the standard map is obtained by considering variables in (1) as the Heisenberg operators with the
commutation relation , where  is an effective dimensionless Planck constant. In a same way it is possible to use the

K
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Figure 4: Dependence of rescaled rotator energy  on time  for
; the full curve shows

numerical data and the straight line gives the diffusive energy growth
in the classical case (from [23]).

Schrödinger equation with the Hamiltonian  given
above and . Integration on one period gives the
quantum map for the wave function :

where bar marks the new value of  after one map iteration. Due to space periodicity of the Hamiltonian the momentum can be

presented in the form , where  is an integer and  is a quasimomentum preserved by the evolution operator  . The
case with  corresponds to a periodic boundary conditions with  and is known as the kicked rotator
introduced in [22].

Other notations with ,  are also used to mark the dependence on the period  between kicks, then . The
diffusion rate over quantum levels  is , thus the rotator energy  grows linearly
with time. Quantum interference effects lead to a suppression of this semiclassical diffusion [22] on the diffusive time scale  so
that the quantum probability spreads effectively only on a finite number of states  (Fig.4). According to the analytical
estimates obtained in [23]:

This diffusive time scale is much larger than the Ehrenfest time scale [23], [24]  after which a minimal coherent
wave packet spreads over the whole phase space due to the exponential instability of classical dynamics. For  a quantum
wave packet follows the chaotic dynamics of a classical trajectory as it is guaranteed by the Ehrenfest theorem [23]. For the case of
Fig.4 the Kolmogorov-Sinai entropy  and the Ehrenfest time  is extremely short comparing to the diffusive time

. The quantum suppression of chaotic diffusion is similar to the Anderson localization in disordered systems if to
consider the level number as an effective site number in a disordered lattice, such an analogy has been established in [25].
However, in contrast to a disordered potential for the case of Anderson localization, in the quantum map (2) diffusion and chaos
have a pure deterministic origin appearing as a result of dynamical chaos in the classical limit.

Due to that this phenomenon is called the dynamical localization. The eigenstates of the unitary evolution operator  are
exponentially localized over momentum states  with the localization length  given by the
relation [26], [27]

where  is the semiclassical diffusion expressed via a square number of levels per period of perturbation. For  the chaos
parameter  in the dependence  should be replaced by its quantum value [27]. The quantum
localization length  repeats the characteristic oscillations of the classical diffusion as it is shown in Fig.5. The relation (4) assumes
that  is a typical irrational number while for rational values of this ratio the phenomenon of quantum resonance takes place
and the energy grows quadratically with time for rational values of quasimomentum [28]. The derivations of the relation (4) based
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Figure 5: Dependence of the localization length  on the quantum
parameter of chaos . The circles and the curve
are, respectively, the numerical data and the theory for the classical
diffusion  (see [8]). The quantum data for  are shown by  (for

) and by  (for ); here 
(from [27]).

on the field theory methods applied to dynamical systems
with chaotic diffusion can be find in [29], [30] (see also
Refs. therein).

If the quantum map (2) is taken on a torus with  levels
then the level spacing statistics is described by the Poisson
law for  and by the Wigner-Dyson law of the random
matrix theory for [24],[31]. In the later case the
quantum eigenstates are ergodic on a torus in agreement
with the Shnirelman theorem and the level spacing
statistics agrees with the Bohigas-Giannoni-Schmit
conjecture (see books on quantum chaos in Recommended
Reading).

The quantum map (2) was built up experimentally with
cold atoms in a kicked optical lattice by the Raizen group
[32]. Such a case corresponds to a particle in an infinite
periodic lattice with averaging over many various . The
quantum resonances at  were also experimentally
observed with the Bose-Einstein condensate (BEC) in [33].
Quantum accelerator modes for kicked atoms falling in the
gravitational field were found and analyzed in [34].

Extensions and Related Quantum
Systems
Due to universal properties of the standard map its quantum version also finds applications for various systems and various
physical effects:

dynamical localization for ionization of excited hydrogen atoms in a microwave field

was theoretically predicted in [35] and was experimentally observed by the group of P.Koch [36] (see more details in
[14],[37],[38])

quantum particle in a triangular well and monochromatic field with a quantum delocalization transition [39]

the kicked Harper model where in contrast to the relation (4) the quantum delocalization can take place due to quasi-
periodicity of unperturbed spectrum (see [40], [41] and Refs. therein)

3D Anderson transition in kicked rotator with modulated kick strength and quantum transport in mesoscopic conductors (see
[42] and Refs. therein)

dissipative quantum chaos [43]

fractal Weyl law for the quantum standard map with absorption (see [44] and Refs. therein)

Time Reversibility and Boltzmann - Loschmidt Dispute

The statistical theory of gases developed by Boltzmann leads to macroscopic irreversibility and entropy growth even if dynamical
equations of motion are time reversible. This contradiction was pointed out by Loschmidt and is now known as the Loschmidt
paradox. The reply of Boltzmann relied on the technical difficulty of velocity reversal for material particles: a story tells that he
simply said "then go and do it" [45]. The modern resolution of this famous dispute, which took place around 1876 in Wien, came
with the development of the theory of dynamical chaos (see e.g. [8], [17]). Indeed, for chaotic dynamics the Kolmogorov-Sinai
entropy is positive and small perturbations grow exponentially with time, making the motion practically irreversible. This fact is
convenient to illustrate on the example of the standard map which dynamics is time reversible, e.g. by inverting all velocities at the
middle of free propagation between two kicks (see Fig.6). This explanation is valid for classical dynamics, while the case of
quantum dynamics requires special consideration. Indeed, in the quantum case the exponential growth takes place only during the
rather short Ehrenfest time, and the quantum evolution remains stable and reversible in presence of small perturbations [46] (see
Fig.7). Quantum reversibility in presence of various perturbations has been actively studied in recent years and is now described
through the Loschmidt echo (see [47] and Refs. therein). A method of approximate time reversal of matter waves for ultracold
atoms in the regime of quantum chaos, like those in [32], [33], is proposed in [48]. In this method a large fraction of the atoms
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Figure 6: Dependence of rescaled energy  on time in the
classical map (1) at ; time reversal is performed at ;
numerical simulations are done on BESM-6 with relative accuracy

 (from [46]).

Figure 7: Same as in Fig.6 but for the quantum map (2) with
, the straight line shows the classical diffusion; time

reversal is performed at the moment  marked by the vertical
line, numerical simulations are done on the same computer BESM-6,
in addition random quantum phases  are added for
quantum amplitudes in momentum representation at the moment of
time reversal (from [46]).

returns back even if the time reversal is not perfect. This
fraction of the atoms exhibits Loschmidt cooling which can
decrease their temperature by several orders of magnitude.
At the same time a kicked BEC of attractive atoms (soliton)
described by the Gross-Pitaevskii equation demonstrates a
truly chaotic dynamics for which the exponential instability
breaks the time reversibility [49]. However, since a number
of atoms in BEC is finite and since BEC is a really quantum
object one should expect that the Ehrenfest time is still very
short and hence the time reversibility should be preserved
in presence of small errors if the second quantization is
taken into account.

Links to Other Physical Topics

Frenkel-Kontorova Model
The Frenkel-Kontorova model describes a one-dimensional
chain of atoms/particles with harmonic couplings placed in
a periodic potential [50]. This model was introduced with
the aim to study crystal dislocations but it also successfully
applies for the description of commensurate-
incommensurate phase transitions, epitaxial monolayers on
the crystal surface, ionic conductors, glassy materials,
charge-density waves and dry friction [51]. The
Hamiltonian of the model is

, where  are

momentum and position of atom . At the equilibrium the
momenta  and  so that the positions of
atoms are described by the map (1) with

. The density of atoms
corresponds to the rotation number  of an invariant KAM
curve. For the golden density with  the chain slides in
the periodic potential for  (KAM curve regime)
while for  the transition by the breaking of
analyticity, or Aubry transition, takes place, the chain
becomes pinned and atoms form an invariant Cantor set
called cantorus (see [52] and Aubry-Mather theory). In this
regime the phonon spectrum has a gap so that the phonon excitations are suppressed at low temperature. The mathematical
Aubry-Mather theory guarantees that the ground state of the chain exists and is unique. However there exist exponentially many
static equilibrium configurations which are exponentially close to the energy of the ground state. The energies of these
configurations form a fractal quasi-degenerate band structure and become mixed at any physically realistic temperature. Thus,
such configurations can be viewed as a dynamical spin glass. For a case of Coulomb interactions between particles (e.g. ions or
electrons) one obtains a problem of Wigner crystal in a periodic potential which again is locally described by the Frenkel-
Kontorova model since the map (1) gives the local description of the dynamics. For the quantum Frenkel-Kontorova model the
dynamics of atoms (ions) in the chain is quantum. In this case the quantum vacuum fluctuations and instanton tunneling lead to a
quantum melting of pinned phase: above a certain effective Planck constant a quantum phase transition takes place from pinned
instanton glass to sliding phonon gas (see [53] and Refs. therein).

Quantum Computing
One iteration of maps (1) and (2) can be simulated on a quantum computer in a polynomial number of quantum gates for an
exponentially large vector representing a Liouville density distribution or a quantum state. The quantum algorithm of such a
quantum computation is described in [54], effects of quantum errors are analyzed in [55] (see also Refs. therein).
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Historical Notes

The standard map (1) in a form of recursive relation for atoms in a periodic potential appears already in the works of Kontorova
and Frenkel [50]. As a dynamical map it first appeared as a description of electron dynamics in a new relativistic accelerator
proposed by V.I.Veksler (Dokl. Akad. Nauk SSSR 43: 346 (1944)). The regime of a stable regular acceleration was studied later also
by A.A.Kolomensky (Zh. Tekh. Fiz. 30: 1347 (1960)) and S.P.Kapitsa, V.N.Melekhin ("Microtron", Nauka, Moscow (1969) in
Russian). Among the early researchers of model (1) was also British physicist J.B.Taylor (unpublished reports). The description of
chaos in map (1) and its main properties, including chaos border, diffusion rate and positive entropy, was given in [1]. The term
"standard map" appeared in [2], "Chirikov-Taylor map" [8] and "Chirikov standard map" [16] are also used, the quantum standard
map or kicked rotator was first considered in [22]. Appearance of other terms: Kolmogorov-Arnold-Moser theory [1], Arnold
diffusion [1], Kolmogorov-Sinai entropy [2], Ehrenfest time [24].
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Updates added after 2008

Here some additional features of the standard map, which appeared after 2008 or were omitted in the 2008 article edition, are
presented.

Mathematical aspects
Mathematical results are presented here for the classical (UM1-UM3) and quantum (UM4) standard map.

UM1) A rigorous proof is given in the standard map for the existence of chaotic trajectories with unbounded momenta for large
enough coupling constant , where  depends on a coding representation of a trajectory. The obtained chaotic
trajectories correspond to stationary configurations of the Frenkel-Kontorova model with a finite (non-zero) photon gap. The
concept of anti-integrability emerges from the theorems presented in [UM1].

UM2) The large basic sets, which fill in the torus as the parameter runs to infinity, are constructed. It is proven that, for a
residual set of large parameters, these basic sets accumulated by elliptic periodic islands. It is shown there exists a  and
a dense set of parameters  for which the standard map exhibits homoclinic tangencies [UM2].

UM3) It is proven that stochastic sea of the standard map has full Hausdorff dimension for sufficiently large topologically
generic parameters [UM3].

UM4) For the quantum standard map with a generic quadratic rotational spectrum the localization is proven for small kick
amplitudes [UM4].

Physical aspects and numerical results
Results for the Ulam method for the standard map are presented in (UP1), Poincare recurrences in (UP2) and the fractal Weyl law
for Perron-Frobenius operators in (UP3). Advanced numerical methods for the standard map are described in (UP4),(UP5). The
results of the field theory for the quantum standard map are discussed in (UP6).

UP1) In 1960 Ulam proposed a method, known now as the Ulam method, for construction a finite size matrix approximate for

K > K0 K0

> 0K0

≤ K < ∞K0
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Figure 8: Fig. 8U. Amplitude of the eigenstate of the Ulam
approximate of Perron-Frobenius operator of the standard map at

; the number of cells and matrix size are
 and eigenvalue is ; amplitude is

proportional to color with maximum for red and zero for blue; upper
part of phase plane is shown for the range

 .(from [UP1b])

Figure 9: Fig. 9U. The complex plane of spectrum of eigenvalues  of
UFPO  of the standard map at ; the number of cells
and matrix size are ; right panel shows zoom of the global
spectrum of left panel. (from [UP1b])

Figure 10: Fig. 10U. The left panel shows the statistics of Poincare
recurrences  averaged over 10 random realizations and obtained
by the survival Monte Carlo method proposed in [UP2a] operating
here with  surviving trajectories; magenta and red curves
show independence of results on accuracy (overlapped curves), green
curve shows data at  with larger fluctuations on large times ;
blue curve shows data from [UP2b] at shorter times; the dashed line
shows the slope . The right panel shows the results of red
curve of left panel with the results obtained with the generalized Ulam
method with the number of cells  in the upper half plane of
Fig.8U. (from [UP2a])

the Perron-Frobenius operator of a dynamical system in
a continuous phase space [UP1a]. The method allows to
construct numerically a matrix of Markov transitions
between cells in a discretized phase space with fully
chaotic dynamics. The method is known to be
converging to the continuous limit of Perron-Frobenius
operator when the phase space is fully chaotic. However,
for systems with a divided phase space an effective noise
induced by a finite cell size breaks the convergence
leading to a destruction of the invariant KAM curve.
This problem was resolved in [UP1b] by a generalized
Ulam method in which the Markov transitions between
cells are generated by one chaotic trajectory starting
inside a chaotic component. The extensive numerical
studies based on the Arnoldi method show that the
Ulam approximate of the Perron-Frobenius operator 
(UPFO) on a chaotic component converges to a
continuous limit. Typically, in this regime the spectrum
of relaxation modes is characterized by a power law
decay for small relaxation rates. The numerical results
show that the exponent of this decay is approximately
equal to the exponent of Poincare recurrences in such
systems. The eigenmodes, or eigenstates, show links
with trajectories sticking around stability islands. An
example of such an eigenstate is shown in Fig.8U. The
spectrum of UFPO  is shown in Fig.9U.

UP2) The numerical studies of the Poincare recurrences
in the standard map with the critical golden curve have
been performed in [UP2a] with a new survival Monte
Carlo method which allows to study recurrences on
times changing by ten orders of magnitude (see
Fig.10U). The comparison is done with the results of
generalized Ulam method and localization properties of
eigenstates of the Ulam matrix are analyzed. The
recurrences at long times are determined by trajectory
sticking in a vicinity of the critical golden curve and
resonance structures. On the investigated scales the
Poincare decay exponent, in  is found to be
approximately  in a satisfactory agreement
with early and more recent studies of various symplectic
2D maps [19], [20], [UP2c], [UP2d] thus indicating the
universality of the exponent. The detailed theoretical
explanation of the algebraic decay of Poincare
recurrences and the exponent value is still lucking. It is
interesting to add a few notes: A) in the standard map
with dissipation (e.g. the right hand side of upper line
Eq.(1) is multiplied by a coefficient less than unity) in
the regime of a strange attractor the decay of Poincare
recurrences is exponential [UP2c]; B) in the symplectic
case additional noise leads to a diffusive type decay  on a long time scale due to diffusion inside stability islands, when
they are present [UP2c]; C) in the quantum standard map the quantum Poincare recurrences are characterized by a decay

 due to quantum tunneling inside the stability islands [UP2e].

UP3) For the standard map with absorption or dissipation in a chaotic regime it is show that the Ulam approximate of Perron-
Frobenius operator is characterized by the fractal Weyl law with the exponent given by a half of the fractal dimension of related
chaotic repeller or strange attractor [UP3a] (see also the section Ulam networks in Google matrix). The fractal Weyl law for the
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quantum standard map with absorption is analyzed in [44]. The semiclassical properties of eigenstates in quantum dissipative
systems are analyzed in [UP3b],[UP3c].

UP4) For many important Hamiltonian maps (e.g., the standard map) it is possible to construct related mappings that (i) carry
a lattice into itself; (ii) approach the original map as the lattice spacing is decreased; (iii) can be iterated exactly using integer
arithmetic; and (iv) are Hamiltonian themselves [UP4]. These lattice maps are compared to maps that use floating-point
arithmetic to evaluate the original map. The problems associated with roundoff error are analyzed and it is argued that lattice
maps are superior to floating-point maps for the study of the long-term behaviour of Hamiltonian dynamical systems.

UP5) A powerful visualization method for measure-preserving dynamical systems, based on frequency analysis and Koopman
operator theory is applied to the standard map, and other maps, in [UP5].

UP6) The field theory methods for the quantum standard map have been developed in [UP6]. It is shown that the effective
theory describing the long wave length physics of the system is precisely the supersymmetric nonlinear sigma-model for quasi
one-dimensional metallic wires. It is shown that the localization length is given by Eq.(4). This proves that the analogy between
chaotic systems with dynamical localization and disordered metals can indeed be exact, as claimed by the authors. However,
this approach misses certain properties of quantum evolution, thus it gives the finite localization length for the quantum kicked
Harper model in the chaotic regime while the numerical results show the existence of delocalized quantum phase.

Related models and systems
Various models related to the standard map are discussed here: localization for the case of linear rotational spectrum (UR1),
Shnirelman peak for level spacing statistics (UR2), studies of quantum synchronization (UR3), kicked rotator as a deterministic
detector (UR4), effect of two interacting particles for two coupled kicked rotators (UR5), renormalization dynamical chaos for the
critical spiral mean in the frequency modulated kicked rotator (UR6), effects of nonlinearity on localization in kicked rotator
(UR7), fast Arnold diffusion, chaos measure and Poincare recurrences in coupled standard maps and many-body Hamiltonian
systems (UR8).

UR1) The properties of quantum kicked rotator with rotational phases depending linearly on level number in Eq.(2) and
generalized to any number of dimensions are considered in [UR1a],[UR1b], [UR1c]. The mathematical proof of localization of
all eigenstates is given for small [UR1b] and arbitrary kick amplitudes [UR1c]. This result is rather clear from the view point of
classical dynamics where linear dependence of Hamiltonian on actions (linear spectrum) leads to complete integrability of
motion.

UR2) In 1975 Shnirelman proved the theorem about asymptotic multiplicity of Laplace operator [UR2a] which implies that the
eigenenergies of generic integrable 2D billiards are exponentially quasidegenrate at large level numbers thus forming pairs of
quasidegenerate levels forming the Shnirelman peak in the level spacing statistics. A physical interpretation of the Shnirelman
theorem about such bulk quasidegeneracy is given in [UR2b]. Conditions for the strong impact of degeneracy on quantum level
statistics are formulated allowing to extend the applications of the Shnirelman theorem to a broad class of quantum systems. It
is shown that in some sense the degeneracy between the states connected by time-reversal symmetry is destroyed by tunneling
between the future and the past (corresponding to a double well in momentum space). The numerical tests are done with the
kicked rotator model of Eq.(2) with the modified potential  so that the space symmetry is broken.
The generic aspect of the Shnirelman peak is confirmed by the numerical results for rough billiards [UR2c].

UR3) The quantum standard map in infinite space  (kicked particle) is studied numerically [UR3a] by methods of quantum
trajectories in presence of dissipation  and applied static force . The model allows to analyze the effects of quantum
fluctuations on synchronization and establish the regimes where the synchronization is preserved in a quantum case (quantum
synchronization). Thus at small values of dimensionless Planck constant  the classical devil’s staircase remains robust with
respect to quantum fluctuations while at large values synchronization plateaus are destroyed (see Fig.11U). Quantum
synchronization in the model has close similarities with Shapiro steps in Josephson junctions [UR3b].

UR4) The properties of kicked rotator as a deterministic detector of qubit (spin or two state system) are analyzed in [UR4]. Th
Hamiltonian of the whole system is a sum of kicker rotator Hamiltonian , qubit  and coupling term

. It is shown that in the regime of quantum chaos the detector acts as a chaotic bath inducing
qubit decoherence. The dependence of dephasing and relaxation rates on parameters is established. For a strong qubit-detector
coupling the dephasing rate is given by the Lyapunov exponent of classical dynamics. For the strong coupling the detector
performs an efficient measurement of qubit (see Fig.12U). In the case of weak coupling, due to chaos, the dynamical evolution
of the detector is strongly sensitive to the state of the qubit. However, in this case it is unclear how to extract a signal from any
measurement with a coarse-graining in the phase space on a size much larger than the Planck cell.

UR5) The model of two kicked rotators with short range and finite range interactions in the momentum space is analyzed in
[UR5a], [UR5b]. It is shown that the interaction leads to a strong enhancement of localization length. The case of interaction

cos θ → cos θ − 0.5 sin 2θ

x
γ f

ℏ

Hkr = δHs σx
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Figure 11: Fig. 11U. Quantum synchronization in the
standard map with dissipation  and static
force  at ; panels show the dependence of
average momentum  on  for dimensionless Planck
constant  for top; bottom panel. Top
panel: synchronization remains stable in respect to
quantum fluctuations; bottom panel: quantum
fluctuations destroy synchronization. (from [UR3a])

Figure 12: Fig. 12U. Standard map as a detector:
Husimi function in action-angle variables

 for qubit state up (left) and
qubit state down (right) at ,

,  at time . The initial
states of kicked rotator and qubit (spin) are a
Guassian packet centered at the fixed point

 and spin state ; color
show density with blue for zero and red for
maximum. (from [UR4])

between two particles in higher effective dimensions is considered in
[42]a) for the case of frequency modulated kicked rotators with two
( ) and three ( ) modulation frequencies. It is shown that
in such models the interactions create delocalized pairs of particle in the
regime when all one-particle states are exponentially localized. While
without interactions the above models have been realized with cold
atoms in kicked optical lattices (see [32] for the kicked rotator and
[UR5c] for the case of two frequencies, described in more detail in UE4)
below, the realization of local interactions in the momentum space is
rather difficult for such systems.

UR6) The frequency modulated kicked rotator model was introduced in
[46] for the quantum case. The corresponding classical volume
preserving map has the form 

. The destruction of the spiral mean torus with the rotation
numbers , , with ,  is
analyzed in [UR6a]. The critical torus exists along a critical curve in the
plane . In a certain interval of this curve the Greene residue
dynamics with the renormalization time step is not universal indicating
an emergence of dynamical renormalization chaos. Such a behaviour is
strikingly different from the case of the critical golden curve in the
standard map where the renormalization dynamics is universal
corresponding to a fix point. Further analysis of critical tori in this map
is reported in [UR6b]. An approximate renormalization-group
transformation for Hamiltonian systems with three degrees of freedom
is constructed in [UR6c].

UR7) The effects of nonlinearity on localization in kicked rotator (2) are
analyzed in [UR7a] by adding after each kick a nonlinear phase shift of
wavefunction amplitudes  in the momentum representation

. The model was called the kicked nonlinear rotator
(KNR). It is argued that there a certain critical strength of nonlinearity

 below which the localization is essentially preserved, while for 
a subdiffusive spreading over momentum states  takes place in time
with  with the exponent . The further numerical studies
[UR7b] give a smaller value  where the error bar is
obtained from averaging over 10 realizations, taken from different
rotation phases  with ; one realization with 
has  (the case of random rotational phases instead of

 has the same exponent). In [UR7a] it was argued that KNR
describes the nonlinear spreading over momentum harmonics in the
kicked Gross-Pitaevskii equation on a ring  studied in [49]

This is confirmed in further numerical simulations [UR7c] with the numerically found exponent  for . In [UR7c] the
analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is
proposed for model (5). It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave
interactions on such a localization are analyzed. The results obtained for finite size systems show the existence of an effective chaos
border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small
scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small
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Figure 13: Fig. 13U. Dependence of chaotic
layer width  on the adiabaticity parameter

 is shown by broken solid lines
connecting various symbols with resonance
dimension  indicated by numbers. The
rate of Arnold diffusion inside chaotic layer is

. Data demonstrate nonexponential
(approximately algebraic) decay of  on 
(from [UR8b] with more details given there).

Figure 14: Fig. 14U. Root mean square of
occupied levels  in modulated quantum
pendulum versus the normalized modulation
amplitude  at , ; classical
results are shown by stars connected by
dashed lines, quantum results are shown by
full curve and the quantum localization theory
is shown by dashed curve. (from [UE1a], this
Fig. is also used in [UE1b]).

scales. Another conjecture, pushed forward in [UR7a], is that the destruction of Anderson localization in 1D disordered potential is
characterized by the same subdiffusive spreading as for the KNR. This conjecture was confirmed in extensive numerical
simulations with the discrete Anderson nonlinear Schrodinger equation (DANSE) (see [UR7c] and Refs. therein).

UR8) The model of coupled standard maps with nearest left-right neighbour
couplings  is used for investigations of classical chaos properties in many-body
(or many dimensional) systems [UR8a],[UR8b]. In [UR8b] a skillful numerical
method is used to compute the width of chaotic layers and Arnold diffusion rate
inside the layer. The method is based on the computation of unstable fix points
in high-dimensional phase space, and then determination of rotational period
inside the layer via a certain number of trajectories [UR8b]. This approach
allows to determine very small layer width  and the related fast
Arnold diffusion inside the layer  (see Fig.13U from [UR8b]).
The main result obtained in [UR8b] is approximately algebraic
(nonexponential) decay of the Arnold diffusion with a decrease of perturbation
parameter  or increase of the related adiabaticity parameter .
Certain explanations are proposed in [UR8b] but the origin of this slow decay of

 remains unclear. Further studies of this model [UR8c] show that at small
coupling the measure of chaos is found to be proportional to the coupling
strength with the typical maximal Lyapunov exponent being proportional to the
square root of coupling. This strong chaos appears as a result of triplet
resonances between nearby modes. The dynamics in such triplets remains
chaotic even for . In addition to strong chaos there is a weakly chaotic
component having much smaller Lyapunov exponent, the measure of which
drops approximately as a square of the coupling strength ( ) down to smallest couplings reached. It is argued that this weak
chaos is linked to the regime of fast Arnold diffusion discussed in [UR8b]. The investigation of Poincare recurrences in this model
shows that their statistics is characterized by the algebraic decay  with the Poincare exponent  being independent
of number of degrees of freedom [UR8d]. A conjecture is made about universal value of the Poincare exponent in systems with
many degrees of freedom [UR8d]. A certain confirmation of this conjecture is given by the numerical results of Poincare
recurrences in protein and DNA molecules where a similar value of the Poincare exponent is obtained from numerical simulations
[UR8e],[UR8f]. Finally, the case of the many standard maps with a relatively strong kick amplitude  and weak couplings between
all maps is considered in [UR8g]; the case of 4D coupled standard maps is studied in [UR8h]a) with approximate  found; a
similar model is studied in [UR8h]b) analyzing the influence of recurrence set choice.

Experimental realizations
Various experiments with systems related to the standard map are described
here including cold atom experiments with phase modulated effective pendulum
(UE1), high-order quantum resonances observed with BEC and noncondensed
cold atoms (UE2), time reversal of BEC atomic waves in quantum chaos regime
(UE3), cold atom experiments with frequency modulated kicked rotator and
observation of Anderson transition (UE4), realizations of kicked rotator with
molecules in pulsed laser field (UE5), stabilization theory of electron edge states
in magnetic and microwave fields and its experimental observation (UE6),
observation of the Aubry transition for cold ions in optical periodic lattice and
thermoelectric properties of this system (UE7).

UE1) The classical dynamics of phase modulated pendulum, described by the
rescaled dimensionless Hamiltonian  is
analyzed in [1],[10]. In the regime of fast resonance crossing 
the dynamics is approximately described by the standard map since each
crossing gives a kick to momentum of particle. The chaos region is restricted
to  since the crossing is possible only in this region. From the map the
chaos border is  with a diffusion rate . The quantum case
[UE1a] is characterized by an effective dimensionless Planck constant 
with the dynamical localization length . Thus in the classical
case the fluctuations of momentum (or average populated number of
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Figure 15: Fig. 15U. Time reversal of Bose-
Einstein condensate of Rb cold atoms in the
regime of quantum chaos for

 (see text); top panel shows
probability distribution in momentum
(expressed in recoil units) after each kick; the
reversal time is ; the bottom left panel
shows the distribution at the return moment

 (experimental data are shown by the
solid blue curve, numerical simulations by the
dashed green curve) and the right panel shows
zoom of the left panel with initial distribution
shown by dashed red curve. (from [UE3d]).

quantum states ) grow linearly with  while in the quantum case at they drops at large  as  (see Fig.14U).
It is argued that this model describes the quantum dynamics of Josephson junctions at small dissipation. In [UE1b] it is shown
that the same Hamiltonian describes cold atoms in a modulated standing light wave. This physical system happens to be more
accessible for experimental realization and the dynamical localization of quantum chaos in an effective modulated pendulum is
observed by Raizen group in [UE1c].

UE2) After the realization of kicked rotator with cold atoms by Raizen group [32] the properties of this model have been
studied by different experimental groups. Thus the high-order quantum resonances predicted in [28]a) are observed with BEC
[UE2a] and noncondensed cold atoms [UE2b]. The cold atom experiments with a kicked rotator (particle) under an applied
static field are discussed at the article Kicked cold atoms in gravity field.

UE3) The famous dispute between Boltzmann [UE3a] and Loschmidt
[UE3b] on time reversal of moving atoms (see also [45]) remained without
any experimental verification from 1876 till recently since it is rather hard to
invert time for matter waves. The method for realization of time reversal of
atomic waves and BEC has been proposed for cold atoms [48] and BEC
[UE3c] moving in kicked optical lattice in the regime of quantum chaos for
kicked rotator. This is reached by propagating the evolution described by (2)
or (5) during time  at  and then replacing the kick period

 and displacing the lattice in  by  (see (5)) that generates an
approximate time reversal of atoms with small initial momentum at time .
This theoretical proposal is realized experimentally with BEC of Rb atoms
[UE3d] with the time reversal after  kicks and return time , as
it is shown in Fig.15U. Even if the classical dynamics of this model is deeply
in the chaotic regime with  the quantum system returns close to the
initial distribution. Of course, if would be desirable to increase  by a factor
10 to 20 with a larger kick amplitude  so that after such a time the
classical trajectories simulated on a computer would not return to the origin
(see Fig.7) in contrast to the quantum evolution (see Fig.6). It is possible to
hope that this first experimental test for the Bolzmann-Loschmidt dispute
will be extended to the above parameters to understand in a better manner
the properties of time reversal for dynamics of classical and quantum chaotic
atomic motion.

UE4) The frequency modulated kicked rotator is introduced in [46]. It is
described by the Hamiltonian

, where 
and  plays the role of effective Plank constant;  is periodic
delta-function of unit period and  notes the product. Since the phases

 evolve linearly with time it is possible to go to extended phase
space with additional actions  so that the system will have the
effective dimension . The frequencies  are incommensurate
between themselves and . Thus the case with  is studied in [46]
showing that the number of excited levels is growing exponentially with

 (see Fig.9 in [46]) corresponding to Anderson localization
in two dimensions. The case of  is studied in [42]a) , [UE4a] (the
case of random phases is considered there instead of ) showing that
there is the Anderson transition from exponential localization of probability
distribution over levels to a diffusive spreading over them above a certain delocalization border for  at given . Thus the
critical values are  at  and  at [42]a). The critical exponents for the
localization length and diffusion rate in the vicinity of critical point are found to be in agreement with the renormalization
theory for Anderson transition [UE4a]. The results obtained in [42]a) , [46] attracted interest of cold atom experimental
groups. The model with  is studied experimentally by Garreau group [UR5c] with cold cesium atoms finding the
transition at  at  being in agreement with numerical simulations and the above value
found in [42]a) (the difference in the rotational phases is not very important since for quadratic rotational phases the classical
chaos border  established in [UR6a] is much below the Anderson critical point). The Garreau group experiments
[UR5c], [UE4b] succeeded to obtain experimentally the critical exponents in a vicinity of 3D Anderson transition that is
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Figure 16: Fig. 16U. Dependence of ZT figure of
merit of Wigner crystal in a periodic potential
on parameters rescaled temperature  and
periodic potential amplitude  with 
being the critical amplitude at Aubry
transition; ZT is proportional to color (red for
maximum, blue for zero; contour curves show
ZT values). (from [UE7d]).

strikingly exceptional and was never realized in the solid state experiments. The overview of the Garreau group experiments is
given in [UE4b]. The experiments for 2D case demonstrated exponential growth of the localization length confirming the early
results obtained in [46] (Fig.9 there). Since the numerical simulations of the frequency modulated kicked rotator are very
efficient (evolution takes place only in one dimension) this model and its extensions are investigated with various physical
effects including quantum Hall effect in two dimensions [UE4c], metallic phase of the quantum Hall in four dimensions with
computations of critical exponents [UE4d], topological quantum phenomena with spin-half quasiperiodic quantum kicked
rotators [UE4e]. However, an experimental realization of these models with cold atoms is challenging. The frequency
modulated kicked rotator with up to 10 frequencies is studied numerically in [UE4f], the critical exponent for the diffusion rate
in the critical point vicinity is found to be in agreement with the results of renormalization theory, however, certain deviations
are found for the exponent in the localization phase at large dimensions, even if this can be related to a restricted computation
times since large localization length requires times .

UE5) The kicked rotator model is realized with nitrogen molecules kicked by a periodic train of femtosecond laser pulses
[UE5a], [UE5b], [UE5c]. These experiments allows to realize about 15 kicks with up to 25 rotational states. These experiments
demonstrated the effects of quantum resonance and dynamical localization of quantum chaos.

UE6) For edge channels of electron transport in two-dimensional electron gas (2DEG) under perpendicular magnetic field and
microwave field it is shown that the semiclassical electron dynamics is described by the standard map [UE6a], the dynamics of
orbits touching the edge is stabilized by the map principal resonance leading to a vanishing longitudinal resistance of edge
states. The signatures of this stabilization are observed with 2DEG high mobility samples [UE6b].

UE7) It is shown in [53] that a Wigner crystal of cold ions placed in a
periodic optical lattice potential has the Aubry transition when the potential
amplitude  becomes larger than a certain critical value  (measured in
units of Coulomb interaction strength on a unit length at period ). This
system is locally described by the Frenkel-Kontorova model and
corresponding standard map with the chaos border parameter

,where  is the charge density per period. Thus for a
given density the Aubry transition takes place at  where
for the golden mean density  the numerics gives a more exact,
but close, value [53]. Below  the ion chain can easily slide
while above the transition it is pinned by the potential. This strongly affects
the friction of ion chain and in this way the transition is observed with cold
Yb ions by the Vuletic group [UE7a]. Even if the number of ions remains
small, up to 5, due to experimental restrictions in [UE7a], other groups start
to observe signatures of Aubry transition with tens of ions [UE7b]. The
properties of this system are rather nontrivial and their theoretical and
experimental investigations are important for understanding of physics of
friction on nanoscale as discussed in [UE7c]. It is striking that in the Aubry
phase the system has remarkable thermoelectric properties with large values
of Seebeck coefficient and such high figure of merit values as [UE7d] (see Fig.16U). Thus it is rather plausible that this
model will allow to understand the main physical features of thermoelectricity which foundations have been done by Ioffe in far
1957 [UE7e]. Due to important technological applications of thermoelectric materials with high figure of merit various
materials are actively investigated with first-principles calculations (see e.g, [UE7f]). However, according to [53] the quantum
properties of this system are rather nontrivial, being similar to a dynamical version of spin glass systems with a huge quasi-
degeneracy in the ground state vicinity, and hence it remains questionable if these first-principle calculations are able to
describe correctly thermoelectricity in the quantum Aubry phase.
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