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The Chirikov standard map [1], [2] is an area-preserving map for two canonical dynamical variables, i.e., momentum and coordinate . It is described by the equations:

where the bars indicate the new values of variables after one map iteration and  is a dimensionless parameter that influences the degree of chaos. Due to the periodicity of  the

dynamics can be considered on a cylinder (by taking ) or on a torus (by taking both ). The map is generated by the time dependent Hamiltonian

, where  is a periodic function with period 1 in time. The dynamics is given by a sequence of free propagations interleaved with periodic kicks.

Examples of the Poincare sections of the standard map on a torus are shown in the following Figs. 1,2,3.

Below the critical parameter  (Fig.1) the invariant Kolmogorov-Arnold-Moser (KAM) curves restrict the variation of momentum  to be bounded. The golden KAM curve with the

rotation number

is destroyed at [3], [4] (Fig.2). This Fig. shows a generic phase space structure typical for various area-preserving maps with smooth generating functions: stability

islands are embedded in a chaotic sea, similar structure appears on smaller and smaller scales. In a vicinity of a critical invariant curve, with a golden tail in a continued fraction expansion of

, the phase space structure is universal for all smooth maps [4]. Above the critical value  (see Fig.3 showing a chaotic component and visible islands of stability) the variation of 

becomes unbounded and is characterized by a diffusive growth  with number of map iterations . Here  is a diffusion rate with  for  and

 for [2], [5]. There are strong arguments in favor of the equality  but rigorously it is only proven that there are no KAM curves for

[6]. With the numerical results [3], [4] this implies inequality for the global chaos border, .

A simple analytical criterion proposed in 1959 and now known as the Chirikov resonance-overlap criterion [7] gives the chaos border [1] and after some improvements leads to

[2],[8]. This accuracy is not so impressive compared to modern numerical methods but still up to now this criterion remains the only simple analytical tool for determining the

chaos border in various Hamiltonian dynamical systems.

The Kolmogorov-Sinai entropy of the map is well described by relation  valid for [1], [2].
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Figure 4: Dependence of rescaled rotator energy  on time  for

; the full curve shows

numerical data and the straight line gives the diffusive energy growth in

the classical case (from [23]).

Universality and Applications

The map (1) describes a situation when nonlinear resonances are equidistant in phase space that corresponds to a local description of dynamical chaos. Due to this property various dynamical

systems and maps can be locally reduced to the standard map and due to this reason the term standard map was coined in [2]. Thus, the standard map describes a universal, generic behavior

of area-preserving maps with divided phase space when integrable islands of stability are surrounded by a chaotic component. A short list of systems reducible to the standard map is given

below:

chaotic layer around separatrix of a nonlinear resonance induced by a monochromatic force (the whisker map) [2]

charged particle confinement in mirror magnetic traps [1], [2], [7], [9]

fast crossing of nonlinear resonance [1], [10]

particle dynamics in accelerators [11]

comet dynamics in solar system [12] with a rather similar map for the comet Halley [13]

microwave ionization of Rydberg atoms (linked to the Kepler map) [14] and autoionization of molecular Rydberg states [15]

electron magnetotransport in a resonant tunneling diode [16]

Open Problems

In spite of fundamental advances in ergodic theory [17], a rigorous proof of the existence of a set of positive measure of orbits with positive entropy is still missing, even for specific

values of  (see e.g. [18]).

What are the fractal properties of critical chaos parameter  as a function of arithmetic properties of the rotation number  of KAM curve? do local maxima correspond only to a

golden tail of continuous fraction expansion [3], [4] or they may have tails with Markov numbers as it is conjectured in [19]? (see also [20])

Due to trajectory sticking around stability islands the statistics of Poincare recurrences in Hamiltonian systems with divided phase space (see e.g. Fig.2 with a critical golden KAM curve)

is characterized by an algebraic decay  with  while a theory based on the universality in a vicinity of critical golden curve gives  this difference persists up

to 1013 map iterations; as a result correlation functions decay rather slowly  that can lead to a divergence of diffusion rate  (see [21] and Refs.

therein)

Quantum Map

The quantization of the standard map is obtained by considering variables in (1) as the Heisenberg operators with

the commutation relation , where  is an effective dimensionless Planck constant. In a same way it is

possible to use the Schrödinger equation with the Hamiltonian  given above and .

Integration on one period gives the quantum map for the wave function :

where bar marks the new value of  after one map iteration. Due to space periodicity of the Hamiltonian the momentum can be presented in the form , where  is an integer

and  is a quasimomentum preserved by the evolution operator  . The case with  corresponds to a periodic boundary conditions with  and is known as the kicked

rotator introduced in [22].

Other notations with ,  are also used to mark the dependence on the period  between kicks, then . The diffusion rate over quantum levels  is

, thus the rotator energy  grows linearly with time. Quantum interference effects lead to a suppression of this semiclassical diffusion

[22] on the diffusive time scale  so that the quantum probability spreads effectively only on a finite number of states  (Fig.4). According to the analytical estimates obtained

in [23]:

This diffusive time scale is much larger than the Ehrenfest time scale [23], [24]  after which a minimal coherent wave packet spreads over the whole phase space due to the

exponential instability of classical dynamics. For  a quantum wave packet follows the chaotic dynamics of a classical trajectory as it is guaranteed by the Ehrenfest theorem [23]. For

the case of Fig.4 the Kolmogorov-Sinai entropy  and the Ehrenfest time  is extremely short comparing to the diffusive time . The quantum suppression of chaotic

diffusion is similar to the Anderson localization in disordered systems if to consider the level number as an effective site number in a disordered lattice, such an analogy has been established

in [25]. However, in contrast to a disordered potential for the case of Anderson localization, in the quantum map (2) diffusion and chaos have a pure deterministic origin appearing as a result

of dynamical chaos in the classical limit.

Due to that this phenomenon is called the dynamical localization. The eigenstates of the unitary evolution operator  are exponentially localized over momentum states
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Figure 5: Dependence of the localization length  on the quantum

parameter of chaos . The circles and the curve

are, respectively, the numerical data and the theory for the classical

diffusion  (see [8]). The quantum data for  are shown by  (for

) and by  (for ); here 

(from [27]).

 with the localization length  given by the relation [26], [27]

where  is the semiclassical diffusion expressed via a square number of levels per period of perturbation. For  the chaos parameter  in the dependence  should be

replaced by its quantum value [27]. The quantum localization length  repeats the characteristic oscillations of the classical diffusion as it is shown in Fig.5. The

relation (4) assumes that  is a typical irrational number while for rational values of this ratio the phenomenon of quantum resonance takes place and the energy grows quadratically with

time for rational values of quasimomentum [28]. The derivations of the relation (4) based on the field theory methods applied to dynamical systems with chaotic diffusion can be find in [29],

[30] (see also Refs. therein).

If the quantum map (2) is taken on a torus with  levels then the level spacing statistics is described by the Poisson law for  and by the Wigner-Dyson law of the random matrix

theory for [24],[31]. In the later case the quantum eigenstates are ergodic on a torus in agreement with the Shnirelman theorem and the level spacing statistics agrees with the

Bohigas-Giannoni-Schmit conjecture (see books on quantum chaos in Recommended Reading).

The quantum map (2) was built up experimentally with cold atoms in a kicked optical lattice by the Raizen group [32]. Such a case corresponds to a particle in an infinite periodic lattice with

averaging over many various . The quantum resonances at  were also experimentally observed with the Bose-Einstein condensate (BEC) in [33]. Quantum accelerator modes for

kicked atoms falling in the gravitational field were found and analyzed in [34].

Extensions and Related Quantum Systems

Due to universal properties of the standard map its quantum version also finds applications for various systems and various physical effects:

dynamical localization for ionization of excited hydrogen atoms in a microwave field

was theoretically predicted in [35] and was experimentally observed by the group of P.Koch [36] (see more details in [14],[37],[38])

quantum particle in a triangular well and monochromatic field with a quantum delocalization transition [39]

the kicked Harper model where in contrast to the relation (4) the quantum delocalization can take place due to quasi-periodicity of unperturbed spectrum (see [40], [41] and Refs. therein)

3D Anderson transition in kicked rotator with modulated kick strength and quantum transport in mesoscopic conductors (see [42] and Refs. therein)

dissipative quantum chaos [43]

fractal Weyl law for the quantum standard map with absorption (see [44] and Refs. therein)

Time Reversibility and Boltzmann - Loschmidt Dispute

The statistical theory of gases developed by Boltzmann leads to macroscopic irreversibility and entropy growth even if dynamical equations of motion are time reversible. This contradiction

was pointed out by Loschmidt and is now known as the Loschmidt paradox. The reply of Boltzmann relied on the technical difficulty of velocity reversal for material particles: a story tells

that he simply said "then go and do it" [45]. The modern resolution of this famous dispute, which took place around 1876 in Wien, came with the development of the theory of dynamical

chaos (see e.g. [8], [17]). Indeed, for chaotic dynamics the Kolmogorov-Sinai entropy is positive and small perturbations grow exponentially with time, making the motion practically

irreversible. This fact is convenient to illustrate on the example of the standard map which dynamics is time reversible, e.g. by inverting all velocities at the middle of free propagation

between two kicks (see Fig.6). This explanation is valid for classical dynamics, while the case of quantum dynamics requires special consideration. Indeed, in the quantum case the

exponential growth takes place only during the rather short Ehrenfest time, and the quantum evolution remains stable and reversible in presence of small perturbations [46] (see Fig.7).

Quantum reversibility in presence of various perturbations has been actively studied in recent years and is now described through the Loschmidt echo (see [47] and Refs. therein). A method

of approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos, like those in [32], [33], is proposed in [48]. In this method a large fraction of the atoms

returns back even if the time reversal is not perfect. This fraction of the atoms exhibits Loschmidt cooling which can decrease their temperature by several orders of magnitude. At the same

time a kicked BEC of attractive atoms (soliton) described by the Gross-Pitaevskii equation demonstrates a truly chaotic dynamics for which the exponential instability breaks the time

reversibility [49]. However, since a number of atoms in BEC is finite and since BEC is a really quantum object one should expect that the Ehrenfest time is still very short and hence the time
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Figure 6: Dependence of rescaled energy  on time in the

classical map (1) at ; time reversal is performed at ;

numerical simulations are done on BESM-6 with relative accuracy

 (from [46]).

Figure 7: Same as in Fig.6 but for the quantum map (2) with

, the straight line shows the classical diffusion; time

reversal is performed at the moment  marked by the vertical line,

numerical simulations are done on the same computer BESM-6, in

addition random quantum phases  are added for quantum

amplitudes in momentum representation at the moment of time reversal

(from [46]).

reversibility should be preserved in presence of small errors if the second quantization is taken into account.

Links to Other Physical Topics

Frenkel-Kontorova Model

The Frenkel-Kontorova model describes a one-dimensional chain of atoms/particles with harmonic couplings

placed in a periodic potential [50]. This model was introduced with the aim to study crystal dislocations but it

also successfully applies for the description of commensurate-incommensurate phase transitions, epitaxial

monolayers on the crystal surface, ionic conductors, glassy materials, charge-density waves and dry friction [51].

The Hamiltonian of the model is , where  are momentum and

position of atom . At the equilibrium the momenta  and  so that the positions of atoms are

described by the map (1) with . The density of atoms corresponds to

the rotation number  of an invariant KAM curve. For the golden density with  the chain slides in the

periodic potential for  (KAM curve regime) while for  the transition by the breaking of

analyticity, or Aubry transition, takes place, the chain becomes pinned and atoms form an invariant Cantor set

called cantorus (see [52] and Aubry-Mather theory). In this regime the phonon spectrum has a gap so that the

phonon excitations are suppressed at low temperature. The mathematical Aubry-Mather theory guarantees that

the ground state of the chain exists and is unique. However there exist exponentially many static equilibrium

configurations which are exponentially close to the energy of the ground state. The energies of these

configurations form a fractal quasi-degenerate band structure and become mixed at any physically realistic

temperature. Thus, such configurations can be viewed as a dynamical spin glass. For a case of Coulomb

interactions between particles (e.g. ions or electrons) one obtains a problem of Wigner crystal in a periodic

potential which again is locally described by the Frenkel-Kontorova model since the map (1) gives the local

description of the dynamics. For the quantum Frenkel-Kontorova model the dynamics of atoms (ions) in the chain

is quantum. In this case the quantum vacuum fluctuations and instanton tunneling lead to a quantum melting of

pinned phase: above a certain effective Planck constant a quantum phase transition takes place from pinned

instanton glass to sliding phonon gas (see [53] and Refs. therein).

Quantum Computing

One iteration of maps (1) and (2) can be simulated on a quantum computer in a polynomial number of quantum

gates for an exponentially large vector representing a Liouville density distribution or a quantum state. The

quantum algorithm of such a quantum computation is described in [54], effects of quantum errors are analyzed in

[55] (see also Refs. therein).

Historical Notes

The standard map (1) in a form of recursive relation for atoms in a periodic potential appears already in the works

of Kontorova and Frenkel [50]. As a dynamical map it first appeared as a description of electron dynamics in a new relativistic accelerator proposed by V.I.Veksler (Dokl. Akad. Nauk SSSR

43: 346 (1944)). The regime of a stable regular acceleration was studied later also by A.A.Kolomensky (Zh. Tekh. Fiz. 30: 1347 (1960)) and S.P.Kapitsa, V.N.Melekhin ("Microtron", Nauka,

Moscow (1969) in Russian). Among the early researchers of model (1) was also British physicist J.B.Taylor (unpublished reports). The description of chaos in map (1) and its main

properties, including chaos border, diffusion rate and positive entropy, was given in [1]. The term "standard map" appeared in [2], "Chirikov-Taylor map" [8] and "Chirikov standard map"

[16] are also used, the quantum standard map or kicked rotator was first considered in [22]. Appearance of other terms: Kolmogorov-Arnold-Moser theory [1], Arnold diffusion [1],

Kolmogorov-Sinai entropy [2], Ehrenfest time [24].
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Google query for "standard map" [3] (http://www.google.com/#sclient=psy&q=%22standard+map%22)
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Updates added after 2008

Here some additional features of the standard map, which appeared after 2008 or were omitted in the 2008 article edition, are presented.

Mathematical aspects

Mathematical results are presented here for the classical (UM1-UM3) and quantum (UM4) standard map.

δ
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Figure 8: Fig. 8U. Amplitude of the eigenstate of the Ulam approximate

of Perron-Frobenius operator of the standard map at ;

the number of cells and matrix size are  and eigenvalue is

; amplitude is proportional to color with maximum for

red and zero for blue; upper part of phase plane is shown for the range

 .(from [UP1b])

Figure 9: Fig. 9U. The complex plane of spectrum of eigenvalues  of

UFPO  of the standard map at ; the number of cells

and matrix size are ; right panel shows zoom of the global

spectrum of left panel. (from [UP1b])

Figure 10: Fig. 10U. The left panel shows the statistics of Poincare

recurrences  averaged over 10 random realizations and obtained by

the survival Monte Carlo method proposed in [UP2a] operating here with

 surviving trajectories; magenta and red curves show

independence of results on accuracy (overlapped curves), green curve

shows data at  with larger fluctuations on large times ; blue

curve shows data from [UP2b] at shorter times; the dashed line shows the

slope . The right panel shows the results of red curve of left

panel with the results obtained with the generalized Ulam method with

the number of cells  in the upper half plane of Fig.8U. (from

[UP2a])

UM1) A rigorous proof is given in the standard map for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant , where  depends on

a coding representation of a trajectory. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorova model with a finite (non-zero) photon gap. The

concept of anti-integrability emerges from the theorems presented in [UM1].

UM2) The large basic sets, which fill in the torus as the parameter runs to infinity, are constructed. It is proven that, for a residual set of large parameters, these basic sets accumulated by

elliptic periodic islands. It is shown there exists a  and a dense set of parameters  for which the standard map exhibits homoclinic tangencies [UM2].

UM3) It is proven that stochastic sea of the standard map has full Hausdorff dimension for sufficiently large topologically generic parameters [UM3].

UM4) For the quantum standard map with a generic quadratic rotational spectrum the localization is proven for small kick amplitudes [UM4].

Physical aspects and numerical results

Results for the Ulam method for the standard map are presented in (UP1), Poincare recurrences in (UP2) and the fractal Weyl law for Perron-Frobenius operators in (UP3). Advanced

numerical methods for the standard map are described in (UP4),(UP5). The results of the field theory for the quantum standard map are discussed in (UP6).

UP1) In 1960 Ulam proposed a method, known now as the Ulam method, for construction a finite size matrix

approximate for the Perron-Frobenius operator of a dynamical system in a continuous phase space [UP1a].

The method allows to construct numerically a matrix of Markov transitions between cells in a discretized

phase space with fully chaotic dynamics. The method is known to be converging to the continuous limit of

Perron-Frobenius operator when the phase space is fully chaotic. However, for systems with a divided phase

space an effective noise induced by a finite cell size breaks the convergence leading to a destruction of the

invariant KAM curve. This problem was resolved in [UP1b] by a generalized Ulam method in which the

Markov transitions between cells are generated by one chaotic trajectory starting inside a chaotic component.

The extensive numerical studies based on the Arnoldi method show that the Ulam approximate of the Perron-

Frobenius operator  (UPFO) on a chaotic component converges to a continuous limit. Typically, in this

regime the spectrum of relaxation modes is characterized by a power law decay for small relaxation rates. The

numerical results show that the exponent of this decay is approximately equal to the exponent of Poincare

recurrences in such systems. The eigenmodes, or eigenstates, show links with trajectories sticking around

stability islands. An example of such an eigenstate is shown in Fig.8U. The spectrum of UFPO  is shown in

Fig.9U.

UP2) The numerical studies of the Poincare recurrences in the standard map with the critical golden curve

have been performed in [UP2a] with a new survival Monte Carlo method which allows to study recurrences

on times changing by ten orders of magnitude (see Fig.10U). The comparison is done with the results of

generalized Ulam method and localization properties of eigenstates of the Ulam matrix are analyzed. The

recurrences at long times are determined by trajectory sticking in a vicinity of the critical golden curve and

resonance structures. On the investigated scales the Poincare decay exponent, in  is found to be

approximately  in a satisfactory agreement with early and more recent studies of various symplectic

2D maps [19], [20], [UP2c], [UP2d] thus indicating the universality of the exponent. The detailed theoretical

explanation of the algebraic decay of Poincare recurrences and the exponent value is still lucking. It is

interesting to add a few notes: A) in the standard map with dissipation (e.g. the right hand side of upper line

Eq.(1) is multiplied by a coefficient less than unity) in the regime of a strange attractor the decay of Poincare

recurrences is exponential [UP2c]; B) in the symplectic case additional noise leads to a diffusive type decay

 on a long time scale due to diffusion inside stability islands, when they are present [UP2c]; C) in

the quantum standard map the quantum Poincare recurrences are characterized by a decay  due to

quantum tunneling inside the stability islands [UP2e].

UP3) For the standard map with absorption or dissipation in a chaotic regime it is show that the Ulam

approximate of Perron-Frobenius operator is characterized by the fractal Weyl law with the exponent given by

a half of the fractal dimension of related chaotic repeller or strange attractor [UP3a] (see also the section

Ulam networks in Google matrix). The fractal Weyl law for the quantum standard map with absorption is

analyzed in [44]. The semiclassical properties of eigenstates in quantum dissipative systems are analyzed in

[UP3b],[UP3c].

UP4) For many important Hamiltonian maps (e.g., the standard map) it is possible to construct related

mappings that (i) carry a lattice into itself; (ii) approach the original map as the lattice spacing is decreased;

(iii) can be iterated exactly using integer arithmetic; and (iv) are Hamiltonian themselves [UP4]. These lattice

maps are compared to maps that use floating-point arithmetic to evaluate the original map. The problems

associated with roundoff error are analyzed and it is argued that lattice maps are superior to floating-point

maps for the study of the long-term behaviour of Hamiltonian dynamical systems.

UP5) A powerful visualization method for measure-preserving dynamical systems, based on frequency

analysis and Koopman operator theory is applied to the standard map, and other maps, in [UP5].

UP6) The field theory methods for the quantum standard map have been developed in [UP6]. It is shown that

the effective theory describing the long wave length physics of the system is precisely the supersymmetric

nonlinear sigma-model for quasi one-dimensional metallic wires. It is shown that the localization length is

given by Eq.(4). This proves that the analogy between chaotic systems with dynamical localization and

disordered metals can indeed be exact, as claimed by the authors. However, this approach misses certain properties of quantum evolution, thus it gives the finite localization length for the

quantum kicked Harper model in the chaotic regime while the numerical results show the existence of delocalized quantum phase.

Related models and systems

Various models related to the standard map are discussed here: localization for the case of linear rotational spectrum (UR1), Shnirelman peak for level spacing statistics (UR2), studies of

quantum synchronization (UR3), kicked rotator as a deterministic detector (UR4), effect of two interacting particles for two coupled kicked rotators (UR5), renormalization dynamical chaos

for the critical spiral mean in the frequency modulated kicked rotator (UR6), effects of nonlinearity on localization in kicked rotator (UR7), fast Arnold diffusion, chaos measure and Poincare
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Figure 11: Fig. 11U. Quantum synchronization in the

standard map with dissipation  and static

force  at ; panels show the dependence of

average momentum  on  for dimensionless Planck

constant  for top; bottom panel. Top

panel: synchronization remains stable in respect to

quantum fluctuations; bottom panel: quantum

fluctuations destroy synchronization. (from [UR3a])

Figure 12: Fig. 12U. Standard map as a detector:

Husimi function in action-angle variables

 for qubit state up (left) and

qubit state down (right) at , ,

 at time . The initial states of kicked

rotator and qubit (spin) are a Guassian packet centered

at the fixed point  and spin state

; color show density with blue for

zero and red for maximum. (from [UR4])

recurrences in coupled standard maps and many-body Hamiltonian systems (UR8).

UR1) The properties of quantum kicked rotator with rotational phases depending linearly on level number in Eq.(2) and generalized to any number of dimensions are considered in

[UR1a],[UR1b], [UR1c]. The mathematical proof of localization of all eigenstates is given for small [UR1b] and arbitrary kick amplitudes [UR1c]. This result is rather clear from the

view point of classical dynamics where linear dependence of Hamiltonian on actions (linear spectrum) leads to complete integrability of motion.

UR2) In 1975 Shnirelman proved the theorem about asymptotic multiplicity of Laplace operator [UR2a] which implies that the eigenenergies of generic integrable 2D billiards are

exponentially quasidegenrate at large level numbers thus forming pairs of quasidegenerate levels forming the Shnirelman peak in the level spacing statistics. A physical interpretation of

the Shnirelman theorem about such bulk quasidegeneracy is given in [UR2b]. Conditions for the strong impact of degeneracy on quantum level statistics are formulated allowing to extend

the applications of the Shnirelman theorem to a broad class of quantum systems. It is shown that in some sense the degeneracy between the states connected by time-reversal symmetry is

destroyed by tunneling between the future and the past (corresponding to a double well in momentum space). The numerical tests are done with the kicked rotator model of Eq.(2) with

the modified potential  so that the space symmetry is broken. The generic aspect of the Shnirelman peak is confirmed by the numerical results for rough

billiards [UR2c].

UR3) The quantum standard map in infinite space  (kicked particle) is studied numerically [UR3a] by methods of quantum

trajectories in presence of dissipation  and applied static force . The model allows to analyze the effects of quantum

fluctuations on synchronization and establish the regimes where the synchronization is preserved in a quantum case (quantum

synchronization). Thus at small values of dimensionless Planck constant  the classical devil’s staircase remains robust with

respect to quantum fluctuations while at large values synchronization plateaus are destroyed (see Fig.11U). Quantum

synchronization in the model has close similarities with Shapiro steps in Josephson junctions [UR3b].

A dissipative quantum chaos is studied with the quantum trajectories approach applied to the quantum standard map with

dissipation in [UR3c]. For strong dissipation the quantum wave function in the phase space collapses onto a compact packet which

follows classical chaotic dynamics and whose area is proportional to the Planck constant. At weak dissipation the exponential

instability of quantum dynamics on the Ehrenfest time scale dominates and leads to wave packet explosion. The transition from

collapse to explosion takes place when the dissipation time scale exceeds the Ehrenfest time. For integrable nonlinear dynamics

the explosion practically disappears leaving place to collapse.

UR4) The properties of kicked rotator as a deterministic detector of qubit (spin or two state system) are analyzed in [UR4]. Th

Hamiltonian of the whole system is a sum of kicker rotator Hamiltonian , qubit  and coupling term

. It is shown that in the regime of quantum chaos the detector acts as a chaotic bath inducing

qubit decoherence. The dependence of dephasing and relaxation rates on parameters is established. For a strong qubit-detector

coupling the dephasing rate is given by the Lyapunov exponent of classical dynamics. For the strong coupling the detector

performs an efficient measurement of qubit (see Fig.12U). In the case of weak coupling, due to chaos, the dynamical evolution

of the detector is strongly sensitive to the state of the qubit. However, in this case it is unclear how to extract a signal from any

measurement with a coarse-graining in the phase space on a size much larger than the Planck cell.

UR5) The model of two kicked rotators with short range and finite range interactions in the momentum space is analyzed in

[UR5a], [UR5b]. It is shown that the interaction leads to a strong enhancement of localization length. The case of interaction

between two particles in higher effective dimensions is considered in [42]a) for the case of frequency modulated kicked

rotators with two ( ) and three ( ) modulation frequencies. It is shown that in such models the interactions

create delocalized pairs of particle in the regime when all one-particle states are exponentially localized. While without

interactions the above models have been realized with cold atoms in kicked optical lattices (see [32] for the kicked rotator and

[UR5c] for the case of two frequencies, described in more detail in UE4) below, the realization of local interactions in the

momentum space is rather difficult for such systems.

UR6) The frequency modulated kicked rotator model was introduced in [46] for the quantum case. The corresponding classical

volume preserving map has the form . The destruction of the spiral

mean torus with the rotation numbers , , with ,  is analyzed in [UR6a].

The critical torus exists along a critical curve in the plane . In a certain interval of this curve the Greene residue dynamics

with the renormalization time step is not universal indicating an emergence of dynamical renormalization chaos. Such a

behaviour is strikingly different from the case of the critical golden curve in the standard map where the renormalization

dynamics is universal corresponding to a fix point. Further analysis of critical tori in this map is reported in [UR6b]. An

approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom is constructed in

[UR6c].

UR7) The effects of nonlinearity on localization in kicked rotator (2) are analyzed in [UR7a] by adding after each kick a

nonlinear phase shift of wavefunction amplitudes  in the momentum representation . The model was

called the kicked nonlinear rotator (KNR). It is argued that there a certain critical strength of nonlinearity  below which the

localization is essentially preserved, while for  a subdiffusive spreading over momentum states  takes place in time

with  with the exponent . The further numerical studies [UR7b] give a smaller value  where

the error bar is obtained from averaging over 10 realizations, taken from different rotation phases  with ;

one realization with  has  (the case of random rotational phases instead of  has the same exponent). In [UR7a] it was argued that KNR describes the

nonlinear spreading over momentum harmonics in the kicked Gross-Pitaevskii equation on a ring  studied in [49]

This is confirmed in further numerical simulations [UR7c] with the numerically found exponent  for . In [UR7c] the analogy between Kolmogorov energy flow from large to

small spacial scales and conductivity in disordered solid state systems is proposed for model (5). It is argued that the Anderson localization can stop such an energy flow. The effects of

nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size systems show the existence of an effective chaos border between the Kolmogorov-

Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent

energy flow from large to small scales. Another conjecture, pushed forward in [UR7a], is that the destruction of Anderson localization in 1D disordered potential is characterized by the same

subdiffusive spreading as for the KNR. This conjecture was confirmed in extensive numerical simulations with the discrete Anderson nonlinear Schrodinger equation (DANSE) (see [UR7c]
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Figure 13: Fig. 13U. Dependence of chaotic layer

width  on the adiabaticity parameter

 is shown by broken solid lines

connecting various symbols with resonance

dimension  indicated by numbers. The

rate of Arnold diffusion inside chaotic layer is

. Data demonstrate nonexponential

(approximately algebraic) decay of  on 

(from [UR8b] with more details given there).

Figure 14: Fig. 14U. Root mean square of

occupied levels  in modulated quantum

pendulum versus the normalized modulation

amplitude  at , ; classical

results are shown by stars connected by dashed

lines, quantum results are shown by full curve

and the quantum localization theory is shown by

dashed curve. (from [UE1a], this Fig. is also

used in [UE1b]).

and Refs. therein).

UR8) The model of coupled standard maps with nearest left-right neighbour couplings  is used for investigations of classical chaos

properties in many-body (or many dimensional) systems [UR8a],[UR8b]. In [UR8b] a skillful numerical method is used to compute the

width of chaotic layers and Arnold diffusion rate inside the layer. The method is based on the computation of unstable fix points in

high-dimensional phase space, and then determination of rotational period inside the layer via a certain number of trajectories [UR8b].

This approach allows to determine very small layer width  and the related fast Arnold diffusion inside the layer

 (see Fig.13U from [UR8b]). The main result obtained in [UR8b] is approximately algebraic (nonexponential) decay

of the Arnold diffusion with a decrease of perturbation parameter  or increase of the related adiabaticity parameter .

Certain explanations are proposed in [UR8b] but the origin of this slow decay of  remains unclear. Further studies of this model

[UR8c] show that at small coupling the measure of chaos is found to be proportional to the coupling strength with the typical maximal

Lyapunov exponent being proportional to the square root of coupling. This strong chaos appears as a result of triplet resonances

between nearby modes. The dynamics in such triplets remains chaotic even for . In addition to strong chaos there is a weakly

chaotic component having much smaller Lyapunov exponent, the measure of which drops approximately as a square of the coupling

strength ( ) down to smallest couplings reached. It is argued that this weak chaos is linked to the regime of fast Arnold diffusion

discussed in [UR8b]. The investigation of Poincare recurrences in this model shows that their statistics is characterized by the algebraic

decay  with the Poincare exponent  being independent of number of degrees of freedom [UR8d]. A conjecture is

made about universal value of the Poincare exponent in systems with many degrees of freedom [UR8d]. A certain confirmation of this

conjecture is given by the numerical results of Poincare recurrences in protein and DNA molecules where a similar value of the

Poincare exponent is obtained from numerical simulations [UR8e],[UR8f]. Finally, the case of the many standard maps with a relatively

strong kick amplitude  and weak couplings between all maps is considered in [UR8g]; the case of 4D coupled standard maps is

studied in [UR8h]a) with approximate  found; a similar model is studied in [UR8h]b) analyzing the influence of recurrence set

choice.

Experimental realizations

Various experiments with systems related to the standard map are described here including cold atom experiments with phase modulated

effective pendulum (UE1), high-order quantum resonances observed with BEC and noncondensed cold atoms (UE2), time reversal of

BEC atomic waves in quantum chaos regime (UE3), cold atom experiments with frequency modulated kicked rotator and observation of

Anderson transition (UE4), realizations of kicked rotator with molecules in pulsed laser field (UE5), stabilization theory of electron edge

states in magnetic and microwave fields and its experimental observation (UE6), observation of the Aubry transition for cold ions in

optical periodic lattice and thermoelectric properties of this system (UE7).

UE1) The classical dynamics of phase modulated pendulum, described by the rescaled dimensionless Hamiltonian

 is analyzed in [1],[10]. In the regime of fast resonance crossing  the dynamics is

approximately described by the standard map since each crossing gives a kick to momentum of particle. The chaos region is

restricted to  since the crossing is possible only in this region. From the map the chaos border is  with a

diffusion rate . The quantum case [UE1a] is characterized by an effective dimensionless Planck constant  with the

dynamical localization length . Thus in the classical case the fluctuations of momentum (or average populated

number of quantum states ) grow linearly with  while in the quantum case at they drops at large  as  (see

Fig.14U). It is argued that this model describes the quantum dynamics of Josephson junctions at small dissipation. In [UE1b] it is

shown that the same Hamiltonian describes cold atoms in a modulated standing light wave. This physical system happens to be more

accessible for experimental realization and the dynamical localization of quantum chaos in an effective modulated pendulum is

observed by Raizen group in [UE1c].

UE2) After the realization of kicked rotator with cold atoms by Raizen group [32] the properties of this model have been studied by

different experimental groups. Thus the high-order quantum resonances predicted in [28]a) are observed with BEC [UE2a] and

noncondensed cold atoms [UE2b]. The cold atom experiments with a kicked rotator (particle) under an applied static field are

discussed at the article Kicked cold atoms in gravity field.

UE3) The famous dispute between Boltzmann [UE3a] and Loschmidt [UE3b] on time reversal of moving atoms (see also [45]) remained without any experimental verification from 1876

till recently since it is rather hard to invert time for matter waves. The method for realization of time reversal of atomic waves and BEC has been proposed for cold atoms [48] and BEC

[UE3c] moving in kicked optical lattice in the regime of quantum chaos for kicked rotator. This is reached by propagating the evolution described by (2) or (5) during time  at

 and then replacing the kick period  and displacing the lattice in  by  (see (5)) that generates an approximate time reversal of atoms with small initial

momentum at time . This theoretical proposal is realized experimentally with BEC of Rb atoms [UE3d] with the time reversal after  kicks and return time , as it is

shown in Fig.15U. Even if the classical dynamics of this model is deeply in the chaotic regime with  the quantum system returns close to the initial distribution. Of course, if

would be desirable to increase  by a factor 10 to 20 with a larger kick amplitude  so that after such a time the classical trajectories simulated on a computer would not return to

the origin (see Fig.7) in contrast to the quantum evolution (see Fig.6). It is possible to hope that this first experimental test for the Bolzmann-Loschmidt dispute will be extended to the

above parameters to understand in a better manner the properties of time reversal for dynamics of classical and quantum chaotic atomic motion.

UE4) The frequency modulated kicked rotator is introduced in [46]. It is described by the Hamiltonian , where 

and  plays the role of effective Plank constant;  is periodic delta-function of unit period and  notes the product. Since the phases  evolve linearly with time it is

possible to go to extended phase space with additional actions  so that the system will have the effective dimension . The frequencies  are

incommensurate between themselves and . Thus the case with  is studied in [46] showing that the number of excited levels is growing exponentially with

 (see Fig.9 in [46]) corresponding to Anderson localization in two dimensions. The case of  is studied in [42]a) , [UE4a] (the case of random phases is

considered there instead of ) showing that there is the Anderson transition from exponential localization of probability distribution over levels to a diffusive spreading over them

above a certain delocalization border for  at given . Thus the critical values are  at  and  at [42]a). The critical exponents

for the localization length and diffusion rate in the vicinity of critical point are found to be in agreement with the renormalization theory for Anderson transition [UE4a]. The results

obtained in [42]a) , [46] attracted interest of cold atom experimental groups. The model with  is studied experimentally by Garreau group [UR5c] with cold cesium atoms finding

the transition at  at  being in agreement with numerical simulations and the above value found in [42]a) (the difference in the rotational phases

is not very important since for quadratic rotational phases the classical chaos border  established in [UR6a] is much below the Anderson critical point). The Garreau group

experiments [UR5c], [UE4b] succeeded to obtain experimentally the critical exponents in a vicinity of 3D Anderson transition that is strikingly exceptional and was never realized in the
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Figure 15: Fig. 15U. Time reversal of

Bose-Einstein condensate of Rb cold atoms in the

regime of quantum chaos for

 (see text); top panel shows

probability distribution in momentum (expressed

in recoil units) after each kick; the reversal time

is ; the bottom left panel shows the

distribution at the return moment 

(experimental data are shown by the solid blue

curve, numerical simulations by the dashed green

curve) and the right panel shows zoom of the left

panel with initial distribution shown by dashed

red curve. (from [UE3d]).

Figure 16: Fig. 16U. Dependence of ZT figure of

merit of Wigner crystal in a periodic potential on

parameters rescaled temperature  and

periodic potential amplitude  with 

being the critical amplitude at Aubry transition;

ZT is proportional to color (red for maximum,

blue for zero; contour curves show ZT values).

(from [UE7d]).

solid state experiments. The overview of the Garreau group experiments is given in [UE4b]. The experiments for 2D case

demonstrated exponential growth of the localization length confirming the early results obtained in [46] (Fig.9 there). Since the

numerical simulations of the frequency modulated kicked rotator are very efficient (evolution takes place only in one dimension)

this model and its extensions are investigated with various physical effects including quantum Hall effect in two dimensions

[UE4c], metallic phase of the quantum Hall in four dimensions with computations of critical exponents [UE4d], topological

quantum phenomena with spin-half quasiperiodic quantum kicked rotators [UE4e]. However, an experimental realization of these

models with cold atoms is challenging. The frequency modulated kicked rotator with up to 10 frequencies is studied numerically in

[UE4f], the critical exponent for the diffusion rate in the critical point vicinity is found to be in agreement with the results of

renormalization theory, however, certain deviations are found for the exponent in the localization phase at large dimensions, even if

this can be related to a restricted computation times since large localization length requires times .

UE5) The kicked rotator model is realized with nitrogen molecules kicked by a periodic train of femtosecond laser pulses [UE5a],

[UE5b], [UE5c]. These experiments allows to realize about 15 kicks with up to 25 rotational states. These experiments

demonstrated the effects of quantum resonance and dynamical localization of quantum chaos.

UE6) For edge channels of electron transport in two-dimensional electron gas (2DEG) under perpendicular magnetic field and

microwave field it is shown that the semiclassical electron dynamics is described by the standard map [UE6a], the dynamics of

orbits touching the edge is stabilized by the map principal resonance leading to a vanishing longitudinal resistance of edge states.

The signatures of this stabilization are observed with 2DEG high mobility samples [UE6b].

UE7) It is shown in [53] that a Wigner crystal of cold ions placed in a periodic optical lattice potential has the Aubry transition

when the potential amplitude  becomes larger than a certain critical value  (measured in units of Coulomb interaction strength

on a unit length at period ). This system is locally described by the Frenkel-Kontorova model and corresponding standard map

with the chaos border parameter ,where  is the charge density per period. Thus for a given density the

Aubry transition takes place at  where for the golden mean density  the numerics gives a more

exact, but close, value [53]. Below  the ion chain can easily slide while above the transition it is pinned by the

potential. This strongly affects the friction of ion chain and in this way the transition is observed with cold Yb ions by the Vuletic

group [UE7a]. Even if the number of ions remains small, up to 5, due to experimental restrictions in [UE7a], other groups start to

observe signatures of Aubry transition with tens of ions [UE7b]. The properties of this system are rather nontrivial and their

theoretical and experimental investigations are important for understanding of physics of friction on nanoscale as discussed in

[UE7c]. It is striking that in the Aubry phase the system has remarkable thermoelectric properties with large values of Seebeck

coefficient and such high figure of merit values as [UE7d] (see Fig.16U). Thus it is rather plausible that this model will

allow to understand the main physical features of thermoelectricity which foundations have been done by Ioffe in far 1957 [UE7e].

Due to important technological applications of thermoelectric materials with high figure of merit various materials are actively

investigated with first-principles calculations (see e.g, [UE7f]). However, according to [53] the quantum properties of this system

are rather nontrivial, being similar to a dynamical version of spin glass systems with a huge quasi-degeneracy in the ground state

vicinity, and hence it remains questionable if these first-principle calculations are able to describe correctly thermoelectricity in the

quantum Aubry phase.
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