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Figure 1: Original Shnirelman theorem from the related article in Russian (from Shnirelman, 1974).
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Shnirelman theorem refers to the asymptotic properties of eigenfunctions of the Schroedinger operator in case of a

classically chaotic system. It says that for almost all eigenvalues the probability of finding the system in a vicinity

of a given classical state is uniformly distributed along the surface of constant energy in the phase space.
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Theorem formulation

Shnirelman theorem: Assume that the geodesic flow  on volume  is ergodic with measure . Let  be an

orthonomal basis of eigenfunctions of Laplace operator  on . Then there exists some sub-sequence  of unit

density that for any continuous function  we have  for  (from

Shnirelman, 1974, see also Fig.1).

Gt M dx ukj
Δ M ukj

a(x) a(x)| (x) dx → a(x)dx/ dx∫M ukj |2 ∫M ∫M j → ∞
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The details of theorem proof are available at Shnirelman, 1993. This theorem generated several quantum ergodicity

theorems. The arguments are made more precise in Colin de Verdiere, 1985,Zeldich, 1987. They are then extended

to the class of manifolds with boundary by Gerard and Leichtnam, 1993, to the semi-classical regime by Zeldich

and Zworski, 1996 and to the case of discontinuous metrics by Jakobson et al., 2015.

Various mathematical extentions, applications and links with other theorems (e.g the Egorov theorem Egorov, 2015)

are analyzed and discussed by Colin de Verdiere et al., 2018, Anantharaman, 2019,Toulouse lecture notes, 2015.

Physical interpretation

From a physical view point, in the limit of small effective values of Planck constant , the Bohr correspondence

principle (Bohr, 1920) and the Ehrenfest theorem (Ehrenfest, 1927) implies that a quantum narrow wave packet will

follow a chaotic classical trajectory, or better to say a Liouville packet corresponding to initial quantum packet,

during a long time scale. Thus it can be expected that the quantum evolution, and thus quantum eigenstates, will be

ergodic, in agreement with the Shnirelman theorem, as pointed by Chirikov et al., 1981. However, due to

exponential instability of chaotic dynamics the quantum packet follows the classical one only during a relatively

short Ehrenfest time  where  is the Lyapunov exponent of chaotic classical motion (see Chirikov et

al., 1981,Chirikov et al., 1988 and discussion of the Ehrenfest time scale at Chirikov and Shepelyansky, 2008). It

should be pointed that the problem of semiclassical quantization of nonintegrable systems had been rosen by

Einstein (Einstein, 1917) in view of the Poincare theorem (Poincare, 1890) showing that generic classical

Hamiltonian systems are not integrable.

From the Shnirelman theorem it follows that the eigenstates of chaotic billiards are ergodic and it is possible to

expect that in such quantum billiard the level spacing statistics is described by the Random Matrix Theory (RMT).

This is confirmed by the Bohigas-Giannoni-Schmit conjecture which demonstrated the validity of RMT for generic

chaotic billiards with detailed numerical simulations of a quantum Sinai billiard (see Bohigas et al., 1984 and

Ullmo, 2016).

Below we consider an example of rough billiards for which we establish the quantum chaos (or ergodicity) border

from which the Shnirelman theorem becomes valid. Other physical properties of eigenstates are also analysed.

Physical example of rough billiards

We discuss here an example of quantum rough billiard introduced and analysed by Frahm and Shepelyansky,

1997a,Frahm and Shepelyansky, 1997b. The rough billiard is obtained by a deformation of an elastic circle of radius

. The deformed boundary is  with . Here  are random

complex coefficients,  is large but finite,  is circle angle. Then the surface roughness is given by

. The analysis is done for the case of weak roughness with  with . The domain

of strong chaos with the classical diffusion and quantum localization in orbital momentum space is determined by

the average roughness . In this regime the ray dynamics is approximately described

by the symplectic rough map , . Here the first equation

gives the change of orbital momentum from  to  due to collision with boundary and the second one gives the angle

ℏ

∼ | ln ℏ|/ΛtE Λ

R0 R(θ) = + ΔR(θ)R0 ΔR(θ)/ = ReR0 ∑M
m=2 γm eimθ γm

M θ
κ(θ) = (dR/dθ)/R0 κ ≪ 1 ∼ 1/mγm

= ⟨ (θ) ∼ M(ΔR/κ~2 κ2 ⟩θ R0)2

= l + 2 κ(θ)l̄ −l2max l2r
‾ ‾‾‾‾‾‾‾√ = θ + π − 2 arcsin( / )θ̄ l̄ lmax
l l̄
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Figure 2: Global diagram showing the eigenstate

properties for different values of level number  and

roughness  for high diffusion case ( ). The two

full lines give the ergodic ( ) and perturbative ( )

borders, the dashed line is the classical chaos border

 for ; arrows show cases tested

numerically (from Frahm and Shepelyansky, 1997a).

change between collisions (also mass and Planck

constant are ). The map describes the

dynamics in a vicinity of a resonant value  defined by

the condition  with integer  and  is

the maximal momenum at a given particle velocity (or

energy). The global chaos on the energy surface sets in

above some critical value roughness . Below 

the Kolmogorov-Arnold-Moser theory (KAM) is valid

and the phase space is divided by isolated invariant

curves. The chaos border can be estimated on the basis

of Chirikov criterion of overlapping resonances

(Chirikov, 1979) which gives  (the

numerical coefficient is extracted from the data for

). This border drops strongly with  and

therefore the analysis is done for the regime of strong

chaos without visible islands of stability. In this regime

the spreading in angular momentum space is diffusive

with the diffusion constant

 where time is

measured in number of collisions. The physical time of

diffusive spreading over the whole energy surface is  with  where the particle velocity 

at energy . According to the Weyl law the level number at energy  is

.

Dynamical localization of eigenstates

The effects of quantum interference can lead to localization of the diffusive spreading over the energy surface. This

phenomenon is similar to the Anderson localization of diffusion in disordered solid state systems (see Anderson,

1958, the review of this phenomenon at Akkermans and Montambaux, 2007 and Anderson localization and

quantum chaos maps, Chirikov standard map). For the rough billiards this phenomenon leads to the exponensial

localization of eigenstates with the exponential decay of orbital harmonics  on the energy surface with

 where  is the localization length and  certain value of orbital momentum.

According to the results obtained by Chirikov et al., 1981,Shepelyansky, 1987,Chirikov et al., 1988,Frahm and

Shepelyansky, 1997a the localization length is  corresponding to the case of local

unitary symmetry at . The quantum ergodicity is established for . Thus the

Shnirelman theorem and quantum ergodicity of eigenstates take place for quantum level numbers with

. This border is much higher than the perturbative border  where the

diffusion mixes less than one state ( ). The phase diagram of eigenstate properties is shown in Fig.2.

The properties of eigenstates can be extracted from their expansion coefficients  in the basis of eigenstates of a

N
κ~ D ≫ M

Ne Np

≈ 0.002κc M = 20

m = ℏ = 1
lr

= θ + 2πrθ̄ r lmax

>κ~ κc κc

∼ 4κc M−5/2

M = 20 M

D = /Δt = 4 ( − )(Δl)2 lmax2 lr 2 κ~2

≈ /DτD τc l2max ∼ /vτc R0 v
E = /2 = /2v2 l2max E

N ≈ m E/2 = /4R2
0 ℏ2 lmax2

al
| | ∝ exp(−|l − |/ℓ)al l0 ℓ l0

ℓ = D = 4 ( − )l2max l2r κ~2

D > M, 1 < D ≪ lmax ℓ > lmax

N > ≈Ne 1
64 κ~4 N < ≈ 1/(16 )Np κ~2

D ≈ 1

C (α)
nl
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Figure 3: Transition from localization to Shnirelman

ergodicity on energy surface for level number ,

 and ; shown are the absolute

amplitudes  of one eigenstate: (a) localization for

; (b) Wigner ergodicity for ; (c)

Shnirelman ergodicity for  (from Frahm and

Shepelyansky, 1997b).

circular billiard with orbital and radial quantum

numbers . The typical structure of eigenstates is

shown in Fig.3 for the localized regime 

(a), the Wigner ergodicity regime (b) and the quantum

ergodicity of Shnirelman theorem  (c). The

eigenstates are mainly located on the energy surface

being close to those of a circle and determined from

the the Bohr-Sommerfeld quantization

. The energy surface  is

shown in Fig.4. For the localized regime eigenstates are exponentially localized on the energy surface. For the case

of Shnirelman ergodicity they are distributed over the whole energy surface with fluctuations. In this regime the

level spacing statisitics corresponds to the RMT case (see below). The interesting intermediate regime of Wigner

ergodicity has amplitudes speading over the whole energy surface but having very peaked structure. It appears due

to a finite Breit-Wigner width  which allows to populate only those

integer quantum numbers  which are sufficiently close to the energy surface curve (see Fig.4). Here

 appears from the effective kick potential of the ray map. In the regime of Wigner

ergodicity the Breit-Wigner width is small and only specific integers , which are especially close to the energy

surface, contribute to the eigenstate leading to delocalized but peaked structure of eigenstates. Of course at larger

values of  eigenstates are homogeneously (but with fluctuations) distributed over the whole energy surface

N ≈ 2250
≈ 95lmax M = 20

| |C(α)
nl

D( = 0) = 20lr D = 80
D = 1000 >

l, n
< N <Np Ne

N > Ne

(E) = − l arctan( ) + π/4μl −l2max l2‾ ‾‾‾‾‾‾‾√ l−1 −l2max l2‾ ‾‾‾‾‾‾‾√ = π(n + 1) H(n, l) = Eα

= 2π < (V(θ)/2 >≈ 3D/(2 )Γμ ρμ )2 M2

n, l
V(θ) = 2 ΔR(θ)/−l2max l2r

‾ ‾‾‾‾‾‾‾√ R0

n, l

Γμ

Shnirelman theorem - Scholarpedia http://www.scholarpedia.org/article/Shnirelman_...

4 of 9 5/15/20, 11:30 AM



Figure 4: (a) Main peaks of eigenstate in Fig. 2b (squares

for ) shown on the energy surface

; (b) rescaled part of (a): diamonds show the

integer -lattice, the error-bar size is  (from

Frahm and Shepelyansky, 1997b).

corresponding to the Shnirelman ergodicity. More

details are given in Frahm and Shepelyansky, 1997b.

Shnirelman peak in level spacing
statistics

The energy level statistics is one of the most important

and well studied characteristics of quantum systems.

Particularly, it is commonly assumed (Bleher et al.,

1993) that in the limit of classically completely

integrable systems the distribution of nearest-neighbor

level spacings is Poissonian as for independent levels

(Berry and Tabor, 1977). In the opposite limit of

classically chaotic systems this distribution is

characterized by level repulsion and the RMT law

(Bohigas et al., 1984,Haake, 2010).

However, this picture is in a sharp contradiction with

the Shnirelman theorem of 1975 for integrable flows

(Shnirelman, 1975). This theorem states that for a

classically nearly integrable system at least each

second level spacing in the corresponding quantum

system becomes exponentially small in the

quasiclassical domain. This would imply a big narrow

peak in the distribution of nearest-neighbor level

spacings (level clustering). This result is especially surprising as no special symmetry was assumed in a particular

model considered by Shnirelman. However, the time reversal symmetry holds in such a model. Formaly the theorem

states that the spectrum  is asymptotically multiple, i.e. for each  there exists  such that

. In the first formulation the theorem had been proved for a geodesic flow

on a two-dimensional torus (some nearly integrable billiards) while in the second formulation its applicability had

been extended to a broader class of two-dimensional nearly integrable systems with at least 4 invariant tori (see

Shnirelman, 1975 with details in Shnirelman, 1993). The physical interpretation of this theorem was given by

Chirikov and Shepelyansky, 1995. It is based on the conception of quasiclassical degeneracy destroyed by

tunneling. Similar phenomena in presence of spatial symmetry were studied in many papers (see e.g. Bohigas et al.,

1993 and Refs. therein) but the effect of time reversibility on level statistics in absence of spatial symmetry was not

considered. In some sense the degeneracy between the states connected by time reversal symmetry is destroyed by

tunneling between the future and the past. Such situation corresponds to a double well in the momentum space.

An example of the Shnirelman peak was illustrated for the kicked rotator model with asymmetric kick potential

 (Chirikov and Shepelyansky, 1995). The peak in  statistics exists in the KAM

phase of the corresponding classical map. However, even in the classically chaotic regime the peak still exists if the

quantum eigenstates are localized (so that the localization length is small compared to the system size

| | ≥ 0.1C(α)
nl

H(n, l) = Eα
(n, l) 2| |C(α)

nl

λk L > 0 > 0CL
min( − , − ) <λk λk−1 λk+1 λk CLλk−M

V(θ) = k(cos θ − 0.5 sin 2θ) p(s)
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Figure 5: Level spacing distribution  for a rough

billiard with ,  and average

roughness: a)  (the case of Shnirelman

ergodicity with ) and b)  (the case

of Shnirelman peak appearing due to quantum

localization with ). The total statistics is 2000

levels ) from 10 different realizations

of the rough boundary. Also shown are the Wigner-Dyson

and rescaled Poisson distributions with effective measure

peak spacings (from Frahm and Shepelyansky,

1997a).

, see above). Thus more general

conditions for the appearance of the Shnirelman peak

have been proposed by Chirikov and Shepelyansky,

1995: first, the quantum system must have a discrete

symmetry, e.g. time reversibility, and second, the states

with opposite symmetry must be separated in the phase

space either classically (as for the KAM case) or

quantum mechanically (as for the case of quantum

localization).

Here we show in Fig.5 the level spacing statistics 

for rough billiard. In the case of Shnirelman ergodicity

(a) the statistics corresponds to the RMT or Wigner-

Dyson distribution while for the case of quantum

localization of eigenstates at  the time

reversal symmetry leads to the Shnirelman peak due to

quasi-degeneracy of eigenstates with opposite values

of orbital momentum. The measure of spacings in peak

is  and the fraction of the nondegenerate

levels is  due to states localized near

 (Frahm and Shepelyansky, 1997a).

Related experiments

The transition from dynamical localization to the Shnirelman ergodicity was observed in experiments with rough

billiards. These billiards were realized with rough microwave cavities by Sirko et al., 2000 and with chaotic

microlares of microdisk resonator with rough boundary by Podolskiy et al., 2004, Fang et al., 2005. For microlasers

it was shown that localized modes lead to a good lasing action. A direct experimental detection of the Shnirelman

peak represents an experimental challange due to quasi-degeneracy of eigenstates inside the peak.
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