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The Ehrenfest time  gives the scale of time on which the Bohr correspondence principle (Bohr, 1920) remains

valid for a quantum evolution of an initial state at high characteristic quantum numbers  (or small effective Planck

constant ) closely following the corresponding classical distribution. For a narrow initial wave packet the

Ehrenfest theorem (Ehrenfest, 1927) guaranties that the average values of quantum operators are close to the

corresponding classical averages. For systems with integrable classical dynamics the Ehrenfest time is rather long

being generally inversely proportional to the Planck constant  (or another power of it). The new

nontrivial situation appears for classically chaotic dynamics when nearby trajectories diverge exponentially with

time due to exponential instability of motion characterized by the positive Kolmogorov-Sinai entropy . Thus

in such semiclassical systems the Ehrenfest time is logarithmically short . The properties

of the Ehrenfest time of quantum dynamics of such chaotic systems, with related examples, are discussed below.
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Bohr correspondence principle and chaos

The Bohr correspondence principle (Bohr, 1920) states that the quantum evolution reproduces the classical behavior

τE
q

ℏ ∼ 1/q

∝ q ∼ 1/ℏτE

h > 0
∼ (ln q)/h ∼ | ln ℏ|/hτE
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of corresponding classical system in the limit of small Planck constant , expressed in some dimensional units (e.g.

an inverse quantum level number). Thus the important question is till what time scales holds such a correspondence.

The Ehrenfest theorem (Ehrenfest, 1927) shows that this correspondence remains valid until the quantum wave

packet remains narrow and compact in a system phase space. In a first approximation the spreading of a packet

follows a spreading of classical trajectories in the phase space as it is described by the Liouville equation. For an

integrable classical dynamics the separation of classical trajectories grows polynomially with time (e.g. linearly

with time for a free motion with ). Thus, for an integrable dynamics, the Ehrenfest time  is growing

polynomially with a decrease of Planck constant, e.g.  for a free type propagation and an initial coherent

wave packet width .

The situation is quantitatively different for a case of chaotic dynamical systems. For them there is an exponential

separation of classical trajectories with time characterized by the Kolmogorov-Sinai entropy , given by a sum of

positive Lyapunov exponents of motion (Lichtenberg and Lieberman, 1992). As a result the separation of

trajectories of initial coherent wave packet grows as  and the Ehrenfest time becomes

logarithmically short for the case of chaotic dynamics with  (due to the logarithmic dependence on

Planck constant a numerical coefficient is not important in this estimate, even if we keep it for chaotic maps

discussed below). Thus for chaotic systems the Ehrenfest theorem guaranties the validity of the correspondence

principle only on rather short time scale. Hence, the important questions remain open: are there still certain

variables which quantum averages remain close to their classical values beyond the Ehrenfest time  ?,

are there those which become very different from their classical values at this short time scale ?, what does happen

for initial broad wave packets for which the classical evolution is described by the Liouville equation?

The answers on these questions had been proposed by Chirikov et al., 1981,Chirikov et al., 1988 on the basis of a

concept of two time scales. The first one is the logarithmically short time scale given by the Ehrenfest time

, after which the wave packet spreads on almost all phase space (or its significant part, e.g over

phase). After this time the Ehrenfest theorem looses its validity. The second time scale is a much longer time

determined by a discreteness of levels and inverse level spacing between effectively coupled states 

(now this time scale is usually called the Heisenberg time scale). It was also shown (Shepelyanskii,

1981b,Shepelyansky, 1983) that the quantum correlators become drastically different from their classical values

(decreasing exponentially with time) after the short Ehrenfest time. However, their values are rather small, being

proportional to a certain power of small Planck constant, and thus their influence on energy growth and diffusion

appears only on much larger Heisenberg times . The physical origin, due to which an exponential decay of

classical correlations is replaced by constant fluctuations or slow polynomial decay in time for the quantum case, is

related to the Heisenberg uncertainty principle with . Indeed, for a classical chaotic dynamics a

mixing in the phase space goes exponentially fast on smaller and smaller space scales  that would

require exponentially large values of momentum  that is usually not possible due to system

phase space restrictions. This argument is valid not only for a coherent initial state but also for a broad initial

distribution which classical evolution is described by the Liouville equation (an example of a broad initial

distribution is a line in a phase space with a fixed action and homogeneous distribution in phase). At the same time

the semiclassical expansion of the wavefunction over the classical orbits (see Maslov, 1961,Maslov and Fedoriuk,

1981) remains valid much beyond the Ehrenfest time scale, up to the Heisenberg time scale , when an

exponential number of orbits contribute to the expansion (Shepelyanskii, 1981a).

ℏ

Δx(t) ∝ Δpt τE
∝ 1/τE ℏ‾‾√

Δx ∼ Δp ∼ ℏ‾‾√

h

Δ ∼ exp(ht) ∼ 1xt ℏ‾‾√
∼ | ln ℏ|/hτE

∼ | ln ℏ|/hτE

∼ | ln ℏ|/hτE

∝ 1/τH ℏ2

≫τH τE

ΔxΔp ≥ ℏ/2
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Δp ∼ 1/Δx ∼ exp(ht)

τH

Ehrenfest time and chaos - Scholarpedia http://www.scholarpedia.org/article/Ehrenfest_ti...

2 of 13 9/2/20, 8:50 AM



Below the above aspects of quantum properties of classically chaotic systems are presented and discussed on

examples of symplectic dynamical maps.

System examples

We consider examples of different systems illustrating for them the Ehrenfest time dependence on parameters.

Chirikov standard map

The classical dynamics of this system, also known as kicked rotator, is described by a simple symplectic map

 for canonical conjugated momentum and coordinate variables  taken

at time moments . The corresponding quantum evolution is described by the quantum map for the wave

function  with the commutator of momentum and coordinate

operators being . Here the new variables  are determined after one map iteration composed

by kick and rotation on a circle of period  (or free propagation in space for the case of cold atoms in kicked

optical lattice). The time interval between kicks, mass are unity and  are dimensionless. The detailed system

description is given in (Chirikov, 1979,Lichtenberg and Lieberman, 1992) for classical dynamics and (Chirikov et

al., 1981,Chirikov et al., 1988) for quantum evolution; see also Chirikov standard map at Scholarpedia. The

quantum system was experimentally realized with cold atoms in kicked optical lattice by the Raizen group (Moore

et al., 1995, see also Cold atom experiments in quantum chaos).

Integrable dynamics
For  the main part of the classical phase space is covered by the Kolmogorov-Arnold-Moser (KAM) curves

and the dynamics is intergable (except exponentially narrow chaotic layers near separatrix of resonances). Then an

initial coherent wavepacket with a width  at a position with  spreads on a space

width  after the Ehrenfest time  since trajectories with momentum difference  diverge in

space linearly with time (measured in number of map iterations). Thus in such an integrable case the Ehrenfest time

is polynomially large at small values of Planck constant.

Chaotic dynamics
At  the phase space is mainly chaotic and the measure of stability island is very small (e.g. about 2 percent

for at ). In this regime the Kolmogorov-Sinai entropy is  (Chirikov, 1979) and the distance

between two trajectories grows exponentially with time . It is natural to consider that the initial

quantum wavepacket is spread completely when it has . Thus for the initial coherent wavepacket

with  the Ehrenfest time is

as obtained by Chirikov et al., 1981. Thus for the case of chaotic dynamics this time scale is logarithmically short

= + K sin , = +pt+1 pt xt xt+1 xt pt+1 (p, x)
t, t + 1

= exp(−i /2ℏ) exp(−iK/ℏ(cos ))ψt+1 p̂
2

x̂ ψt
[ , ] = −iℏpt xt ,pt+1 xt+1

2π
K, ℏ

K ≪ 1

Δp ≈ Δx ∼ ℏ‾‾√ ∼ ∼ 1p0 x0
Δx ∼ 2π ∼ 1/τE ℏ‾‾√ Δp

K ≫ 1
K = 5 h ≈ ln(K/2)
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∼ | ln ℏ|/2h ,τE

Ehrenfest time and chaos - Scholarpedia http://www.scholarpedia.org/article/Ehrenfest_ti...

3 of 13 9/2/20, 8:50 AM



being relatively small even for very small values of the Planck constant (or related very high quantum numbers).

According to the Ehrenfest theorem during this Ehrenfest time the quantum wavepacket follows closely a chaotic

classical trajectory, or a corresponding classical Liouville packet in the phase space with a probability distribution

being close to the initial quantum one, and thus the quantum evolution is chaotic on this time scale .

For typical parameter values used in (Chirikov et al., 1981)  (see Fig.5 in this Ref.) we have 

and the Ehrenfest time is about one map iteration . However, the quantum diffusion in momentum follows

the classical one on a significantly longer times  corresponding to an effective discreteness of the spectrum

of motion. This time scale  (or ) is also often called the Heisenberg time to mark the fact that after this time the

uncertainty relation between energy level spacing and time allows to resolve the discreetness of the spectrum. After

this time the quantum interference effects lead to a suppression of quantum diffusion and its dynamical localization

being similar to the Anderson localization in disordered solid state systems (see Chirikov et al., 1981,Fishman et al.,

1982,Chirikov et al., 1988 and Anderson localization and quantum chaos maps). It is shown by Chirikov et al.,

1981,Shepelyansky, 1986,Chirikov and Shepelyanskii, 1986,Chirikov et al., 1988 that the localization time scale 

and the localization length  are

Thus there is a question if there are quantum averages which are different from classical ones at a short Ehrenfest

time scale. We discuss this point below.

Chirikov typical map

For the Chirikov standard map the Kolmogorov-Sinai entropy is rather large being of the order of one map iteration.

Due to that the wavepacket spreading is very fast and very small values of Planck constant are required to obtain

high values to the Ehrenfest time to be able to follow the spreading. Thus it is useful to consider another map

proposed by Chirikov, 1969 for which the quantum evolution was analyzed by Frahm and Shepelyansky, 2009. In

this case  and thus  at moderate  values.

The typical map is obtained from the standard map by a finite-number  of random phase-shift angles at each map

iteration. The map has the form

where independent random phase shifts  are uniformly distributed and are repeated periodically after  map

iterations. The detailed study of classical and quantum map dynamics are reported in Frahm and Shepelyansky,

2009 (see also Refs. therein for properties of classical dynamics). The global chaos with unbounded diffusion

appears for  with  at . Thus the typical map describes a quasi-continuous

chaotic flow. The Lyapunov exponent and Kolmogorov-Sinai entropy are  (for two-dimensional

maps there is only one positive Lyapunov exponent and hence ). The diffusion rate in the regime of global

chaos at  is . In the quantum case this diffusion is localized due to quantum

interference effects (similar to the Anderson localization in disordered solid-state systems) with the localization

length . The Ehrenfest time scale in this system is . The exponentially fast

∼ | ln ℏ|/2hτE
K = 5, ℏ = 1/4 h ≈ 1

∼ 1τE
≈ 40td

td tH

tH
ℓ

∼ ℓ ∼ / ≫ .tH K2 ℏ2 τE

h ≪ 1 ≫ 1τE ℏ

T

= + k sin( + ) , = x + ,pt+1 pt xt αt xt+1 pt+1

αt T

k > = /(4 )kc π 2 T 3/2 << 1kc T >> 1
λ = h ≈ 0.29k2/3

h = λ
k > kc D = ⟨ ⟩/t = /2 ∼p2 k2 λ3
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Figure 1: Quantum evolution of the Chirikov typical map at

 in the semiclassical limit with  and with

the Hilbert space dimension  (left; right column) and at

times  (first, second, third, fourth, fifth row).

Shown are Husimi functions (smoothed Wigner functions) with

maximum values at red, intermediate values at green and minimum

values at blue at the lower half of one elementary cell

. The initial condition is a coherent Gaussian

state centered at  with a momentum

variance being . The resolution corresponds to 

(64 or 256) squares in one line. At the considered value  the

global classical dynamic is diffusive but requires iteration times of

 to fill one elementary cell (Figure is taken from Frahm

and Shepelyansky, 2009).

spearing of initial wavepacket of coherent

state is illustrated Fig.1. For the figure

parameters, e.g.  this gives

 that is in agreement with the

numerical data showing that the spearing in

phase reaches  approximately at 100

iterations.

Quantum correlators at
Ehrenfest time

The properties of quantum correlators on

Ehrenfest time and beyond are analyzed by

Shepelyanskii, 1981b. The consideration is

done for the quantum standard map of the

Heisenberg operators

with the standard commutator

 at time moments .

It is shown that the average of quantum

correlator

, performed over an initial sate, decays with time

not faster than  (here an initial state has a momentum  being homogeneous in coordinate

;  is an integer). This bound for  appears due to the fact that in the quantum case the momentum

cannot grow faster than linearly with time. Thus, due to the Heisenberg uncertainty relation, the mixing scale in

coordinate space cannot decrease faster than linearly with time. In contrast, due to the exponential instability of

classical dynamics the mixing scale decreases exponentially with time. Hence, for the classical dynamics such a

correlator decays usually exponentially with time at high values of chaos parameter  with an expected decay

. Thus at the Ehrenfest time  the quantum correlator becomes much larger than its

k = 0.1, T = 10 ℏ = 2π/N
N = ;212 216

t = 0, 20, 60, 100, 150

x ∈ [0, 2π[; p ∈ [0, π[
= 0.8 ⋅ 2π; = 0.25 ⋅ 2πx0 p0

Δp = 2π/ 12N‾ ‾‾‾√ N‾‾√
k = 0.1

t ∼ 10000

ℏ = 2π/216
≈ 103τE

2π

= + K sin , = +p̂t+1 p̂t x̂t x̂t+1 x̂t p̂t+1

[ , ] = −iℏp̂t x̂t t

R(t) = ⟨n|(exp(−im ) exp(i ) + exp(i ) exp(−im ))/2|n⟩x̂0 x̂t x̂t x̂0
|R(t)| > 1/ Kt/ℏ‾ ‾‾‾‾√ n

0 ≤ x ≤ 2π m |R(t)|

K ≫ 1
|R(t)| ∼ exp(−ht) ∼ | ln ℏ|/hτE
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Figure 2: Quantum correlator  (see text) for the

Chirikov standard map at  and initial

state with zero momentum (Figure is taken from

Shepelyansky, 1983(a)).

Figure 3: Same as Fig.2 at  (Figure is

taken from Shepelyansky, 1983(b)).

classical values. However, the averages of quantum energy, or square of momentum, remain close to their classical

values on much longer time scale  since the small values of quantum correlator are accumulated with

time (like sum of correlators) leading to deviations between quantum and classical energy values only on time scale

of the order of .

Examples of the time dependence of quantum correlator

 are

shown in Fig.2,Fig.3 (here the initial state has zero

momentum and averaging is done over all times  at fixed

). The results clearly show a stationary level of correlator

fluctuations starting from the Ehrenfest time of 1 to 3 map

iterations. The direct computation of the ratio of quantum

correlator to its classical value shows that this ratio

becomes more than 100 percent different from its classical

value at ;

;

 (see Table 1 in

(Shepelyansky, 1983)). These time values are in agreement

with the above estimate for the Ehrenfest time.

The dependence of Heisenberg operators at a given time

 on the initial operators  at zero time,

presented in the ordered form, was obtained by

Shepelyanskii, 1981b. In this way it was shown that at

times up to short Ehrenfest times  the sensitivity of

operators  to initial operators  is growing with

time exponentially as in the classical case while at large

times  the sensitivity cannot grow faster than

linearly with time since the number of momentum

harmonics grows not faster than linearly with time. Thus

there is no exponential sensitivity of Heisenberg operators

to their initial values and thus the quantum Kolmogorov-

Sinai entropy is zero (Shepelyanskii, 1981a).

Recently there is a growing interest to so called out-of-time-ordered correlators (OTOC) (see e.g. Hamazaki et al.,

2018,,Jalabert et al., 2018,) which illustrate on short times an exponential growth and saturation on large times (e.g.

) in agreement with the results obtained by Shepelyanskii, 1981a.

The computation of quantum correlations for  allows to determine the quantum diffusion coefficient  in this

regime showing that in the classical dependence  the replacement  should be

done for the quantum case Shepelyansky, 1987. This leads to characteristic oscillations of the diffusion coefficient

and localization length of quantum eigenstates  with  (see also Fig.5 at

∝ 1/tH ℏ2

tH

R(τ)
K = 5, ℏ = 1

K = 5, ℏ = 1/8

R(τ) = ⟨0| cos cos + cos cos |0⟩x̂t x̂t+τ x̂t+τ x̂t

t
τ

τ = 2(K = 5, ℏ = 1, ℏ = K/40)
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τ = 3(K = 5 + 2π, ℏ = K/100)

,p̂t x̂t ,p̂0 x̂0

t < tE
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t ≫ tE
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Chirikov standard map).

Time reversibility

Even if the equation of motion describing classical dynamics can be reversible in time (e.g. Chirikov standard map,

chaotic Dynamical billiards) the exponential instability of chaos leads to a practical irreversibility of motion due to

exponential growth of errors with time. However, the corresponding quantum evolution of such systems has no

exponential instability (see above) and thus the quantum evolution shows the time reversibility even at a rather high

level of quantum errors. The demonstration of this difference for classical and quantum dynamics of the Chirikov

standard map was given by Shepelyansky, 1983 (see also Figs.6,7 at Chirikov standard map). The effect of time

reversibility is also discussed at the Scholarpedia article Loschmidt echo by Gusev et al., 2012. The absence of

instability of quantum evolution beyond the Ehrenfest time, as discussed above, is at the origin of stability of time

reversibility of quantum motion in a drastic difference from the classical chaotic dynamics with its exponentially

growing errors during the whole time reversibility interval. The stability of quantum evolution becomes especially

evident for a case of a quantum computer simulating classical chaotic dynamics of the Arnold cat map as discussed

by Georgeot and Shepelyansky, 2001, Georgeot and Shepelyansky, 2002.

Semiclassical expansion beyond Ehrenfest time

For quantum evolution of systems with classical chaotic dynamics it was shown by Shepelyanskii, 1981a that even

beyond the Ehrenfest time the semiclassical expression for the wavefunction still can be presented as a sum over

classical trajectories (see Maslov, 1961,Maslov and Fedoriuk, 1981). The expansion has the form

where the -summation runs over all classical trajectories which arrive at the point  at time  and satisfy the initial

conditions , ,  where  is the action along the

classical trajectory which connects  and , and  is the Morse index. At initial time  we have

. The sum over  is essentially an expansion in powers of . Since the classical

dynamics is chaotic the Jacobian  and the number  in the sum increases exponentially with time, so that

, . Indeed, there are exponentially many classical trajectories from initial distribution at

zero time arriving to a giving coordinate at time  (see Fig.4). Fig.4 directly shows that there are exponentially many

trajectories, from initial distribution, arriving at time  to a given point  with different momentum values.

Nonetheless, the semiclassical expansion remains valid if  that is satisfied on long times

 which greatly exceed the Ehrenfest time on which a coherent wave packet spreads over

almost a whole phase space. During these times  the quantum diffusion coefficient is close to its

classical values as shown by Shepelyanskii, 1981a.

A similar type of semiclassical wavefunction expressed by a sum over periodic orbits is used in the Gutzwiller trace

formula for the semiclassical quantization of systems being chaotic in the classical limit (see Gutzwiller, 1990). This

ψ(x, t) = | exp(i (x, t)/ℏ − iπ /2) × [ [ ( )] ] + O( )∑
k=1

N
Jk |−1/2 Sk μk ∑

m=0

∞
L̂k

m
φ0 x0 | = (x,k)x0 x0k ℏ∞

k x t
(x, t) =x0 x0k ( ) = ∂S/∂p0 x0 x0 | =x0 x0k = ∂x( , t)/∂Jk x0 x0 | =x0 x0k (x, t)Sk

x0k x μk t = 0
ψ(x, 0) = ( ) exp(i ( ))φ0 x0 S0 x0 m ℏ

Jk N
∝ exp(ht)Jk N ∝ exp(ht)

t
t x

≪L̂kφ0 φ0
t ∼ ∝ O(1/ℏ) ≫tq τE

∝ O(1/ℏ) ≫tq τE
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Figure 4: Classical distribution of initial line  at

the Chirikov standard map at  after 4 map

iterations showing that exponentially many orbits

contribute to the semiclassical expansion of

wavefunction, here  (Figure is taken from

Shepelyanskii, 1981a(preprint)).

gave the answer on the problem of semiclassical

quantization of nonintegrable systems pointed by Einstein,

1917 in view of the existence of nonintegrable dynamics

proved by Poincare, 1890.

Quantum evolution beyond
Ehrenfest time

The distributions of quantum states at large times,

obtained from an initial narrow wave packet, are

illustrated for the quantum Chirikov standard map (4

vertical panels of Fig.5) and typical map (Fig.6).

The top 3 panels of 4 vertical panels of Fig.5 show the

quantum Poincare sections represented by the Husimi

function (the smoothed Wigner function) for the quantum

Chirikov standard map at  and  with

 quantum states inside the phase space

cell . Here the initial state is a minimal

coherent state of one quantum cell taken in the chaotic

component at ; the section is shown

after  map iterations (red is for maximum density, blue is for minimum). The fourth bottom panel

shows the classical Poincare section for the same parameters, initially  classical orbits are homogeneously

distributed inside the classical area corresponding to the effective Planck constant  (density is averaged

over 1000 last iterations).

The similar quantum evolution for the Chirikov typical map is shown in Fig.6 on large times (corresponding to the

short time evolution in Fig.1).

In both examples at moderate values of Planck constant the wave packet spreading over the whole space is

suppressed by quantum interference effects leading to a quantum localization of slow diffusion through a weakly

destroyed KAM curves. With the further decrease of Planck constant the spreading goes over the whole phase space

domain occupied by the connected chaotic component. The comparison with the classical distribution shows that

the quantum wavefunction becomes ergodic, over the phase space of classical chaotic component, in the limit of

large times and small Planck constant. This corresponds to the Bohr correspondence principle which implies that at

small values of Planck constant the quantum distribution follows the classical one at least on some time scale. Since

the classical distribution for the standard map is ergodic on a chaotic component (see bottom panel of Fig.5) we can

expect that the quasi-energy eigenstates of quantum standard map will be ergodic on the chaotic component

(surrounding stability islands). This corresponds to the regime of Shnirelman ergodicity of quantum eigenstates of

chaotic billiard as discussed at Shnirelman theorem. For chaotic billiards with energy conservation the quantum

ergodicity of eigenstates takes place on the energy surface while for the quantum standard map the ergodicity of

quasi-energy eigenstates takes place on the chaotic component of the map.

p = 0
K = 5

θ = x

K = 1.1 ℏ = 2π/N
N = , ,28 212 216

(x, p) = 2π × 2π

x = p = 0.1 × 2π
t = 2 × ,104

N = 216
ℏ = 2π/216
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Figure 5: Quantum Poincare

section of the standard map

represented by the Husimi

function at  (see

text for details and

Category:Quantum_Chaos).

Ehrenfest explosion and collapse

The method of quantum trajectories is applied for the investigation of quantum

dynamics of the Chirikov standard map with dissipation by Carlo et al., 2005.

The classical map has the form 

where  describes dissipation (at  we have the standard map). At

large chaos parameter and moderate dissipation the classical dynamics has a

strange attractor. The quantum dissipative evolution is described by a master

equation in the Lindblad form (see e.g. Weiss, 1999). The numerical simulations

are performed with the method of quantum trajectories (Brun et al., 1996). They

clearly show a transition from the wave packet collapse to explostion as shown in

Fig.7. The detailed studies show that the dissipation leads to collapse or

localization of the wave packet on a time scale . On the other side the

classical chaos instability leads to the spreading of the wave packet on the

Ehrenfest time . Hence the wave packet

collapse takes place at  and the Ehrenfest explosion takes place at weak

dissipation with . For the regime of integrable dynamics the Ehrenfest

time is rather large at small values of Planck constant and thus the explosion

practically disappears leaving place to collapse.

Other aspects of Ehrenfest time

Other aspects and applications of Ehrenfest time concept to mesoscopic transport

and Loschmidt echo are described at Scholarpedia articles Mesoscopic transport

and quantum chaos by Jalabert, 2016 and Loschmidt echo by Gusev et al., 2012 .

An interested reader can also find additional discussions of this topic by

Silvestrov and Beenakker, 2032, Faure, 2007, Schubert et al., 2012 .

Historical notes

It should be noted that the first attempt to compare the quantum and classical

averages for systems with chaotic dynamics was done by Berman and Zaslavsky,

1978. The expansion of average of a quantum operator in powers of Planck

constant was used there for initial coherent state. The comparison was done

between a quantum average and a classical value given by the classical trajectory started from the center of coherent

packet. It was shown that the quantum corrections of the order of Planck constant have coefficients growing

exponentially with time (roughly with the rate given by Lyapunov exponent of classical dynamics). On this basis it

was concluded that for classically chaotic system the quantum corrections grow exponentially fast. However, in fact

the comparison of quantum averages should be done not with the classical variable value of one central trajectory

K = 1.1

= (1 − γ)p + K sin , = +pt+1 xt xt+1 xt pt+1
0 < γ < 1 γ = 0

∼ 1/γtγ

τ ∼ | ln ℏ|/2h ≈ | ln ℏ|/2 ln(K/2)
1/γ < τE

1/γ > τE

Ehrenfest time and chaos - Scholarpedia http://www.scholarpedia.org/article/Ehrenfest_ti...

9 of 13 9/2/20, 8:50 AM



Figure 6: Quantum evolution of the Chirikov typical map as

in Fig.1 with the same coherent Gaussian state as initial

condition, same values ,  but at

the iteration time  and at different values of

 (first row),  (second row),

 and classical simulation (third row). For the

classical map 20000 trajectories have been iterated up to the

same time  with random initials conditions very

close to the initial position at  and

 (colors are as in Fig.1).(Figure is

taken from Frahm and Shepelyansky, 2009).

but with the average obtained from a classical

Liouville distribution modeling the probability

distribution of initial quantum state. Indeed, it is

clear that, even only for classical evolution, there are

exponentially growing differences between the

values of one trajectory and those obtained from the

Liouville distribution due to exponential divergence

in time of classical trajectories of chaotic dynamics.

Such a comparison was not done by Berman and

Zaslavsky, 1978 and thus their results are not

conclusive. Also no links with the Ehrenfest theorem

were given by Berman and Zaslavsky, 1978.

The links with the Ehrenfest theorem and estimates

of the Ehrenfest time for systems with chaotic

dynamics were first done by Chirikov et al., 1981

and the term Ehrenfest time was coined by Chirikov

et al., 1988. The strong difference between classical

and quantum correlators was shown to appear on the

Ehrenfest time by Shepelyanskii, 1981b with

numerical confirmations given in Shepelyansky,

1983. The validity of the semiclassical wavefunction

expansion beyond the Ehrenfest time was shown by

Shepelyanskii, 1981a.
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