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There is no paradox

Dear Friends,

Since Dima's idea of holding a small workshop did not materialize, let me at least try to reply to his note1 of May
5, 2019.

I consider a scalar �eld ψl on a lattice of N sites (l = 1, 2, ...N). The �eld is CLASSICAL, so ψl are just complex
numbers. The dynamics is given by

i
dψl
dt

= −
∑
j

Jljψj + χ |ψl|2 ψl, l = 1, · · · , N (1)

where the coe�cients Jlj = J∗jl (for l 6= j) represent couplings between di�erent sites and Jll ≡ ωl is the frequency

corresponding to site l. The last term in Eq. (1) describes the nonlinearity. Both Jlj and ωl can contain some
randomness, so we are dealing here with what Dima calls a "generic system".
The energy corresponding to a con�guration {ψl} of the �eld (the Hamiltonian) is

H{ψl} = −
∑
l,j

Jljψ
∗
l ψj +

1

2
χ
∑
l

|ψl|4 . (2)

The dynamics in (1) conserves the total energy H{ψl(t)} = E and the total norm N{ψl(t)} =
∑
l |ψl(t)|

2
= A.

It has been known, since the work of Rasmussen et al2, that a system de�ned by Eqs. (1), (2) will thermalize if
initially prepared with appropriate values of E and A. That is, after su�ciently long time, the system reaches the
state of thermal equilibrium and its properties are determined by the grand partition function

Z =

� (
N∏
l=1

dψ∗l dψl

)
e−βH+βµN (3)

where the inverse temperature β = 1/T and the chemical potential µ are related to E and A by the standard
thermodynamic relations.

I assume, as Dima does, weak nonlinearity whose contribution to the total energy and norm is negligible (the
nonlinearity is of course crucial for the thermalization process). One can introduce the set of eigenmodes fα(l)
(i.e. stationary solutions of (1) in the absence of nonlinearity) , with eigenfrequencies εα, and expand ψl(t) =∑
α Cα(t)fα(l). The set {Cα(t)} provides the description of the system in the mode representation. The total energy

and norm (with the nonlinear contribution being discarded) in the mode representation are

E =

N∑
α=1

εα|Cα|2, A =

N∑
α=1

|Cα|2. (4)

and the partition function is given by the product of independent modes contributions

Z =

N∏
α=1

[�
dC∗αdCαe

−β(εα−µ)|Cα|2
]
=

N∏
α=1

[
π

β (εα − µ)

]
, (5)

It immediately follows from Eq. (5) that the average of the norm in mode α obeys the Rayleigh-Jeans distribution

〈
|Cα|2

〉
=

T

εα − µ
. (6)

This result was obtained by many authors, see the list of references in our resent work3. (I stress again that we are
dealing here with a �eld and not with discrete particles.)
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Thus, I consider Eq. (6) a well established result, whose derivation involves nothing more than the use of standard
statistical mechanics (plus, of course, the assumption that the system had reached thermal equilibrium). There is
nothing paradoxical in this result: a classical �eld, in thermal equilibrium, obeys a classical Rayleigh-Jeans distribu-
tion. A somewhat unusual feature in Eq. (6) is the appearance of a chemical potential. This is due to the fact that
in our problem we have a second conserved quantity (norm), in addition to energy. That's why the distribution (6)
does not obey equipartition and, under appropriate conditions, can exhibit a phenomenon of condensation (see3 and
references therein). Dima doesn't appreciate the importance of this second conserved quantity and he keeps saying
that a classical system, like considered here, is expected to obey equipartition.

Instead of Eq. (6) Dima advocates a Bose-Einstein distribution1,4 and then announces his "DTC paradox". But, as
I already said, everything is classical in this problem- the Hamiltonian, the equations of motion and the distribution
of the norm over the modes, Eq. (6). True, the spectrum of the modes is discrete but there is nothing quantum in
this fact- just classical waves in a cavity. I am adding this caveat because in1 Dima implies that discreteness of the
frequency spectrum means something "quantum": he writes "QUANTUM system (linear modes)").

However, having said all this, I must admit that I am never completely sure what Dima really has in mind. I am
not even clear about his interpretation of the basic quantity ψl. At the beginning it seems that Dima interprets ψl
as a classical �eld. Indeed, Ref. 4 contains "CLASSICAL nonlinear lattices" even in it's title! But then, in the same
context, he talks about the single particle problem of Anderson localization, wave packet spreading, etc. For instance,
in Ref. 4, below Eq (10) he writes "As usually for any QUANTUM system with energy levels εm we have...". A
"quantum system" is also mentioned in Ref. 1. When I asked Dima to con�rm if his ψl is a classical �eld, his answer
was:
formally yes, psi is a classical �eld, BUT nonlinearity is weak/moderate and we are close to the quantum system

with quantum eigenlevels (we may say that this underlined Quantum system can be called hidden quantum system or
HQ system not to mix you; we main call the whole system classical �eld CF-system)
Well, this sounds a bit ambiguous, to say the least, and the repeated use of the misnomer "quantum Gibbs" doesn't

help to clarify the matter. Even normalizing
∑
l |ψl(t)|

2
to unity and interpreting |Cα|2 as occupation probabilities,

as Dima does, is not appropriate for the problem at hand. Such normalization is appropriate for the problem of
spreading of an initially localized wave packet but not for the thermalization problem we've been dealing with. The
latter pertains to a MACROSCOPIC system with extensive E and A, proportional to the system volume N . The
distinction between the two problems was particularly emphasized in Ref. 5,6.

In conclusion, I stated my position as clearly and explicitly as I could. As for Dima's note1 I �nd it barely
comprehensible and, in any case, "orthogonal" to the work on thermalization, as presented in Refs. 2,3,5,6 and
references therein. I realize that this is my subjective judgment but it is the only judgment I can o�er(-:

With best wishes for a happy year 2020: Good health, good research and no paradoxes(-:

Boris
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