
Optical Phase Transitions in Photonic Networks: A Spin System Formulation

Alba Ramos, Tsampikos Kottos∗
Wave Transport in Complex Systems Lab, Department of Physics,

Wesleyan University, Middletown, CT-06459, USA

Boris Shapiro
Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

(Dated: December 24, 2019)

We investigate the collective dynamics of nonlinearly interacting modes in multimode photonic
settings with long-range couplings. To this end, we have established a connection with the theory
of spin networks. The emerging “photonic spins” are complex, soft (their size is not fixed) and their
dynamics has two constants of motion. Our analysis shed light on the nature of the thermal equilib-
rium states and reveals the existence of optical phase-transitions which resemble a paramagnetic to
a ferromagnetic and to a spin-glass phase transitions occurring in spin networks. We show that, for
fixed average optical power, these transitions are driven by the type (constant or random couplings)
of the network connectivity and by the total energy of the optical signal.

PACS numbers:

I. INTRODUCTION

In physics one often encounters problems involving
a great number of nonlinear interacting modes. Such
problems naturally arise in statistical mechanics1–3,
hydrodynamics4,5, matter-waves6–8, and more. An
emerging framework is in photonics, where light prop-
agation in non-linear multimode optical structures have
recently attracted a lot of attention9–19. On the fun-
damental side there are many unanswered questions as-
sociated with the energy exchange between the modes
and the role of the underlying spatio-temporal complex-
ity, originating from the disorder, the network topol-
ogy and the complex intermodal interactions. Brute-
force computational attempts to answer these questions
are either impossible (due to the large number of de-
grees of freedom involved) or unsatisfactory as far as
the understanding of the underlying physics that dic-
tates the energy redistribution. At the same time, there
is a pressing need from modern technologies to develop
theoretical tools that will allow us to tailor the inter-
modal energy exchange and harvest it to our advantage.
If this endeavor is successful, it will give rise to a next
generation of high power light sources17, high-resolution
imaging schemes20–22, and high-speed telecommunica-
tion systems23–25.

In this regard, a number of recent papers have pro-
moted well established equilibrium9,11,19,26–28 and non-
equilibrium15,29–32 thermodynamics techniques as a vi-
able theoretical toolkit which can be used to address
some of the above challenges. A decisive step along
these lines has been achieved recently by the authors of
Ref.19,26 which, assuming thermal equilibrium conditions
and weak non-linearity, have established a comprehensive
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Figure 1: (Color online) A variety of photonic nonlin-
ear multimode networks, with long-range modal couplings,
whose field dynamics is modeled by an effective coupled
mode theory of the type given by Eqs. (1,2). (a) A net-
work of coupled micro-resonators40; (b) A photonic network
of single-mode fibers coupled together via couplers (opti-
cal splitters)41,42; (c) A multicore fiber25; (d) A multimode
fiber25,43,44; (e) Deformed multimode (micro-) resonator with
underlying chaotic dynamics45–47; (f) A network of coupled
“soft” (size-modulated) spins. The corresponding Hamilto-
nian has similarities but also crucial differences with the
Hamiltonian that describes a photonic multimode network.

optical thermodynamics formalism allowing us to design
potentially novel classes of high-power multimode optical
structures or efficient cooling schemes. For weak nonlin-
earity, the specific nature of the nonlinear mode inter-
action (e.g. Kerr or saturable or thermal nonlinearities)
is irrelevant. Its role is important for the thermaliza-
tion process but not for the properties of the equilibrium
state.

The implementation of statistical thermodynamics
methods in modern photonics opens up a new arena
where ideas and concepts from statistical mechanics can
be transfered to optics and utilized for light control.

ar
X

iv
:1

91
2.

10
56

9v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  2

3 
D

ec
 2

01
9



2

A prominent example is the notion of phase-transitions
characterized by changes in the properties of a system
as an external parameter varies2. Maybe, the most
celebrated area of physics where such phenomena have
been extensively studied is the theory of spin network
models33–35. These studies indicated that the phase tran-
sition can be understood as a competition between the
interactions among spins, which facilitates order, and the
thermal fluctuations (the entropy) causing random dis-
turbances. In many occasions, these phase transitions
are associated with symmetry breaking phenomena. To
understand them, one has to analyze the nature of the
thermal equilibrium state of the interacting system. In
this paper, we will show that there are certain analogies
between the statistical thermodynamics of spin models
and multimode photonic networks. Inspired by these
analogies we will ask questions like: are the phases of
the electromagnetic field correlated or are they entirely
random? Is the optical power distributed more or less
evenly between all modes of the entire system, or some
finite fraction of the total optical power can reside in a
single mode? How the topology of the inter-mode con-
nectivity and the randomness in the coupling affect the
nature of the thermal state?

It turns out that these questions can be related. In
previous works, for example, it was shown that macro-
scopic occupation of a single photonic mode does occur
and, moreover, it can happen even in linear systems (we
stress again that weak non-linearity can be neglected only
in the equilibrium state, while it is crucial in the thermal-
ization process)27,29,36. It is quite remarkable, thus, that
a purely classical system exhibits a phenomenon alike
BEC transition in a quantum Bose gas. Actually, it has
been a number of experiments demonstrating that, in
the course of propagation along the fiber, optical power
“flows” towards the lower modes18,37–39.

In this paper, we demonstrate that the connectivity of
an optical structure is an important factor in its thermal-
ization process: it affects the type of the optical phase
transitions and the nature of the thermal equilibrium
state. The question is not only of fundamental impor-
tance; it pertains also to recent photonic developments
where networks with complex connectivities, can be re-
alized, see Figs. 1a-e. Specifically, we show that in the
case of long-range couplings, the nonlinearity is instru-
mental for achieving optical phase transitions. In fact,
by identifying an order parameter that is equivalent to
the magnetization in spin-network models, we are able to
show both theoretically and numerically the existence of
a ferromagnetic-to-paramagnetic phase transition, anal-
ogous to the one occurring in spin systems. When dis-
order is introduced into the couplings, the system might
undergo another type of a transition, namely to a spin-
glass phase; much as in the case of frustrated coupled
spins. Although these analogies between photonics mul-
timode networks (Figs. 1 a-e) and spin-networks (Fig.
1f) is useful, one needs to keep in mind that the two
problems have important differences. Specifically our

“photonic spins” are complex dynamical variables (am-
plitudes of the electric field). Moreover, they fluctuate
not only in their direction but also in their size. We ex-
pect that the analogies drawn from our study will bring
together two seemingly different areas: statistical me-
chanics of spin networks and light transport in nonlinear
multimode settings. This cross-fertilization will, hope-
fully, allow the development of better design strategies
for the control of light transport in multimode photonic
networks.

The structure of this paper is as follows. In the next
section II we discuss the general statistical thermody-
namics formalism associated with the analysis of optical
thermal equilibrium states. Special attention is given to
the case of weak nonlinearities where we derive the oc-
cupation number statistics. In the next section III we
analyze a class of complex multimode photonic networks
with long-range connectivity. Two cases are discussed
in detail: the case of constant couplings and the oppo-
site case of random couplings. We show that under spe-
cific conditions these systems demonstrate optical phase
transitions from ferromagnetic to paramagnetic and spin-
glass phases. Finally, our conclusions are discussed at the
last section IV.

II. GENERAL FORMALISM

The dynamics of nonlinear multimode photonic net-
works in Fig. 1 can be modeled using the framework
of time dependent coupled mode theory. The associated
equations are

i
dψl
dt

= −
∑
j

Jljψj + χ |ψl|2 ψl, l = 1, · · · , N (1)

where ψl is the degree of freedom (the complex ampli-
tude) at node l of the “network”, and Jlj = J∗jl is the
connectivity matrix that dictates the couplings among
the nodes. We will typically assume zero self-coupling
terms Jll = 0. Finally, the last term in Eq. (1) describes
the nonlinearity due, for instance, to Kerr effect.

On a formal and general level ψl = 〈l|ψ〉 are compo-
nents of the electric field (with some fixed polarization)
in some basis of orthonormal modes {|l〉} (the “basic
modes”). The choice of the set of these modes depends on
the problem at hand. For instance, for the case of coupled
single-mode microresonators40 (Fig.1a) the index l labels
the resonators and the “basic mode” |l〉 is the eigenmode
of the l-th resonator, decoupled from the rest of the net-
work (we treat the resonators as structureless point ob-
jects). In this framework, the coefficients Jlj = J∗jl (for
l 6= j) represent evanescent couplings between different
resonators and Jll = ωl is the eigenfrequency of resonator
l (with nonlinearity neglected), which in case of identical
resonators can be set to be zero i.e. ωl = 0(l = 1, · · · , N).
The same interpretation applies to a fiber network41,42
Fig. 1b and to a multicore fiber25, Fig. 1c, where now l
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labels the single mode fibers. In Fig. 1c the propagation
direction z plays the role of time.

It is important to clearly distinguish between the “ba-
sic modes”, like an eigenmode of an isolated resonator in
Fig.1a, and the eigenmodes of the entire structure, i.e.
the stationary solutions of the entire system of coupled
equations (1) (with the nonlinearity neglected). The lat-
ter are often referred to as “supermodes”. For instance,
when we are talking about condensation of the optical
power in a single mode, we mean of course the supermode
(with the lowest energy) and not an eigenmode of a single
resonator. Sometimes, where no confusion can arise, we
will use the term “mode” instead of “supermode”. The
“supermodes” fα(l) form a complete basis, so the field
ψl(t) can be expanded as ψl(t) =

∑
α Cα(t)fα(l), reduc-

ing Eq. (1) to

i
dCα
dt

= εαCα(t) + χ
∑
βγδ

ΓαβγδC
∗
β(t)Cγ(t)Cδ(t), (2)

with

Γαβγδ =
∑
l

f∗α(l)f∗β(l)fγ(l)fδ(l). (3)

As we will see below, this mode representation of the
evolution Eq. (1) is particularly useful when the non-
linearity is weak.

Equations (1) and (2) also describe multimode opti-
cal fibers25,43,44 or multimode resonators45–47, Figs. 1d,e
respectively. In this case the “basic modes” |l〉 are the
eigenmodes of an ideal, undeformed fiber (or resonator)
while Jlj are the couplings among these modes, due to
various perturbations (deformations of the ideal system,
possible impurities, etc). Note that unlike the previous
case , when the basic modes were localized in space (on a
single resonator), now they extend over the entire struc-
ture.

The equation of motion (1) is derivable from the energy
functional (the Hamiltonian)

H{ψl(t)} = −
∑
l,j

Jl,jψ
∗
l ψj +

1

2
χ
∑
l

|ψl|4 ≡ E. (4)

In the course of time the total energy E and the total
optical power

N{ψl(t)} =
∑
l

|ψl(t)|2 ≡ A, (5)

are conserved. Finally, we always assume that both the
total power A, and the energy E, are extensive quantities,
proportional to the number of modes N , as appropriate
for thermodynamics.

A. The Problem of Thermalization

An important question is whether an isolated system
of interacting modes eventually thermalizes, i.e. reaches

an equilibrium state which can be described by just two
parameters -the inverse temperature β and the chemical
potential µ, which in turn are determined by the energy
E and the total power A of the initial preparation. If
such equilibrium state is reached, then the system can be
analyzed using the well established methods of statistical
mechanics and thermodynamics.

For example, a statistical mechanics description of the
system of Eqs. (1) is achieved by calculating the classical
grand -canonical partition function Z

Z =

ˆ ( N∏
l=1

dψ∗l dψl

)
e−βH+βµN (6)

where the Lagrange multipliers β = 1/T and µ have been
introduced (in analogy with the inverse temperature and
the chemical potential) to ensure conservation (on aver-
age) of E and A respectively (see Eqs. (4,5)). Specifically
the relation between the microcanonical quantities

a ≡ A

N
, h ≡ E

N
(7)

which describe the average optical power a and averaged
energy density h per mode and the grant canonical quan-
tities µ, β is given by

a =
1

βN

∂ln(Z)

∂µ
; h = − 1

N

∂ln(Z)

∂β
+

µ

Nβ

∂ln(Z)

∂µ
. (8)

Using the partition function as a starting point we can
next calculate the thermodynamic potential

Ω = −T ln (Z) (9)

and from there, the entire “optical thermodynamics” can
be derived. For instance, the entropy is S = −

(
∂Ω
∂T

)
µ
.

Finally we note that the problem of thermalization
in non-linear lattices, under time evolution defined in
Eq. (1) (primary in one spatial dimension and with Jlj
restricted to nearest neighbors only) has been also ad-
dressed in the framework of statistical mechanics48–51. In
this studies, it has been pointed out that thermalization
occurs only in a certain region of the (E,A)-plane. These
studies indicated that for fixed total norm A, the system
thermalizes only if its energy is not too large48. Other-
wise, the equilibrium Gibbs distribution, Eq. (6), can-
not be reached- the system is said to belong to the non-
Gibbsian, or negative temperature region. The maximum
value h = hmax for a given average norm a per site cor-
responds to β −→ 0 (high temperature) and µ −→ −∞,
and it is

hmax = χa2, (10)

It turns out that for sufficiently large E the norm can-
not spread uniformly over the entire system and high-
amplitude peaks of ψl (breathers52) emerge. Below, we
will confine our analysis to the domain where the tem-
perature is positive and thermalization can be achieved.
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B. Thermal Equilibrium in the Case of Weak
Non-linearities

In many optics applications the non-linearity is consid-
ered weak. It is of course essential in the mode-mixing
process (see Eq. (2)), needed for reaching equilibrium.
The total energy and power, however, are dominated by
the linear term in the Hamiltonian, i.e. to a good ap-
proximation

E =

N∑
α=1

εα|Cα|2, A =

N∑
α=1

|Cα|2. (11)

Here |Cα|2 is the (normalized) optical power in mode α.
Using these expressions Christodoulides et al.19,26 were
able to develop a kind of “optical thermodynamics”, iden-
tifying the optical analogy of entropy, equation of states
and other quantities. Below we briefly summarize this
theory, using the grand-canonical formulation Eq. (6)
discussed above.

Assuming that the system has thermalized, its grand
partition function, non-linearity being neglected, is given
by the product of independent modes contributions

Z =

N∏
α=1

[ˆ
dC∗αdCαe

−β(εα−µ)|Cα|2
]

=

N∏
α=1

[
π

β (εα − µ)

]
,

(12)
where β = 1/T and µ can be found from the constraints
in Eq. (11). It immediately follows from Eq. (12)
that the average of optical power in mode α obeys the
Rayleigh-Jeans distribution19,26,27,29–31 (see also Ref.53)〈

|Cα|2
〉

=
T

εα − µ
≡ n̄α. (13)

From Eq. (13) we can calculate the thermodynamic po-
tential Eq. (9) which takes the form

Ω = −T
N∑
α=1

ln

(
πT

εα − µ

)
. (14)

All other thermodynamic variables follow from Eq. (14).
For example, the entropy (up to an irrelevant constant) is
S =

∑N
α=1 ln (n̄α) which, in equilibrium, coincides with

the expression derived in Ref.19 by counting the number
of ways in which a large number of “packets of power”
can be distributed over the N modes. The expression for
S served in19 as the starting point for the development of
“optical thermodynamics”. For instance, one can derive
the following equation of state19 E − µA = NT which
connects three extensive quantities (E,A,N) to the two
intensive variables (µ, T ).

C. Fluctuations in the Case of Weak
Non-linearities

Next, we briefly discuss the fluctuations of the optical
power nα in the mode α. If the nonlinearity, i.e. the

intermode interaction, in the thermal equilibrium state
is negligibly small19,26,27,29–31, then within the grand
canonical treatment the probability density for nα is
P(nα) = 1

Zα
exp [−β (εα − µ)nα], where Zα is the nor-

malization factor. This yields Eq. (13) for the average
value n̄α and ∆n2

α = (n̄α)
2 for the variance. The same

results can be obtained, in even simpler way, if one uses
the expression Ωα = −T ln πT

εα−µ for the contribution of
mode α to the grand potential Ω (see Eq. (14)) and the
standard formulas54 n̄α = −∂Ωα/∂µ, ∆n2

α = T∂n̄α/∂µ.

Thus, the standard deviation
(

∆n2
α

)1/2

≡ σα comes
out to be equal to the average optical power n̄α. For
a mode with macroscopic occupation (nα � 1) this re-
sult looks paradoxical. The “paradox”, however, is well
known in the theory of Bose-Einstein condensation and it
is resolved by observing that we have here one of the rare
cases when the canonical and the grand canonical ensem-
bles yield different results54. Indeed, in the experiment,
as well as in our numerical simulations, the total optical
power

∑
α nα = A is strictly conserved while in the grand

canonical treatment it is conserved only on the average.
This is perfectly fine for calculating various average quan-
tities but not for the fluctuations. When the conservation
law

∑
α nα = A is strictly enforced (canonical ensemble),

the large unphysical fluctuations in a macroscopically oc-
cupied mode disappear (for instance, at T = 0, when the
entire power A is located on a single mode, there are no
fluctuations at all).

Note, however, that at high temperatures, when there
are many modes populated with n̄α . 1, the result
σα = n̄α does hold for such modes. This is because the
constraint

∑
α nα = A ∼ N on the total power does

not significantly affect fluctuations in a single mode with
n̄α . 1 (the other modes serve as an “environment" for
the mode α). One should be aware of these large fluc-
tuations when interpreting the numerical or the experi-
mental data.

III. MULTIMODE OPTICAL SYSTEMS WITH
LONG RANGE COUPLING

We consider the connectivity matrix Jlj (see Eq. (1))
of the following form:

Jlj =

(
J0

N
+

σ√
N
Blj

)
(1− δlj), (15)

where the first term describes a fully connected network,
with equal couplings, while the second term introduces
some randomness into the couplings. In the case of
chaotic or disordered networks55 the couplings Blj = Bjl
are given by a Gaussian distribution with zero mean and
a unit standard deviation. We point out that, unless
stated otherwise, in all simulations below the random
matrix elements Bi,j remain the same (fixed) for a spe-
cific set of parameters N, J0, χ dictating the Hamiltonian
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of the photonic network. For H in Eq. (4) to remain ex-
tensive, in the large N limit, one has to scale the coupling
strengths with N , as written in Eq. (15).

The coupling matrix Eq. (15) gives rise to two dis-
tinct terms in the Hamiltonian Eq. (4). The first term
resembles the Curie-Weiss (CW) model56, where N Ising
spins are coupled to each other by constant distance-
independent interactions. The second term resembles the
Sherrington-Kirkpatrick (SK) model for a spin glass57,58,
where the couplings are completely random. We write
“resembles” because our model differs from the well stud-
ied CW and SK models in three important respects:
First, our dynamical variables ψl are complex, as ap-
propriate for the complex amplitudes of electric field,
and they can be treated as real two-component “spins”.
Second, since |ψl|2 is not restricted to some fixed value,
our spins fluctuate not only in their direction but also in
their size (note though, that the non-linearity does not
allow for too wild fluctuations in size). And, third, the
dynamics of our “photonic spins” conserve not only the
energy (as in standard spin systems) but also the opti-
cal power, see Eq. (5). This second conservation law
introduces novel features into the characteristics of the
thermal equilibrium state; for instance a condensation of
optical power in a single mode.

Below we will distinguish between the two limiting
cases corresponding to a photonic network with equal
couplings (σ = 0) and to its “random” coupling analogue
(J0 = 0). We will also briefly discuss the case where
the connectivity matrix Eq. (15) contains both terms.
We will show that our photonic network exhibits various
phases depending on the disorder strength of the cou-
pling constants, the energy and optical power (h, a) of
the initial preparation and the strength of the nonlinear-
ity parameter χ.

A. Numerical Method

The thermalization process of an initial state {ψn}(n =
1, · · · , N) has been investigated numerically using a high
order three part split symplectic integrator scheme59–61
for the integration of Eq. (1). The method conserved,
up to errors O(10−8), the total energy Eq. (4) and the
optical power Eq. (5) of the system. These quantities
have been monitored during the simulations in order to
ensure the accuracy of our results.

We have focused our interest on the electric field ampli-
tudes ψn(t) and the supermode amplitudes Cα(t) which
can be evaluated from the projection of ψn(t) on the
supermode basis, see Eq. (2). Knowledge of Cα(t)
(or ψn(t)) allows us to calculate various thermodynamic
quantities 〈Q〉 by making a time-average and invoking
ergodicity.

In practice, the approach to a thermal equilibrium
state involves a long time propagation of an initial prepa-
ration {ψn}(n = 1, · · · , N). Typical integration times
were as long as 4×108 coupling constants. After an initial

0

1

2

3

103 104 105 106 10710-2

10-1

100

<a
n> t

<|
C

α|2 > t

time (t)

(a)

(b)

Figure 2: (Color online) An example (a) of a time-averaged
nodal power < an >t=

1
(t−tmin)

´ t
tmin
|ψn(t)|2dt and (b) of a

supermode power < |Cα|2 >t=
1

(t−tmin)

´ t
tmin
|Cα(t)|2dt. In

these simulations the photonic network consists of N = 8
nodes, J0 = 1.2 and σ = 0. The initial preparation has av-
eraged energy density h ≈ −0.61 and optical power a = 1.
The nonlinearity parameter is χ = 0.01. The initial time is
tmin = 1000 in both cases.

transient time tmin, we have calculated a time-averaged
value of the thermodynamic quantity of interest i.e.

〈Q〉t =
1

t− tmin

ˆ t

tmin

Q(t)dt (16)

and confirmed its convergence to a steady state value. An
example of such simulations for the nodal powers an(t) ≡
|ψn(t)|2 and the supermode power |Cα|2 are shown in Fig.
2a,b respectively. Failure to reach a steady state value
indicated that the system did not reached the thermal
equilibrium state.

In the case of weak non-linearity the numerical results
for

〈
|Cα|2

〉
have been compared against the theoretical

predictions Eq. (13). A good agreement between them
serves as a confirmation that the system reached a ther-
mal equilibrium state. A disagreement between the nu-
merics and the theoretical predictions of Eq. (13), indi-
cates that the thermal equilibrium has not been reached.
Instead, the system might have reached a metastable
state as happens in the case of a spin-glass behavior62,63.
Given enough time (large relaxation times), of course,
the system will reach the global free energy minimum.

In all cases, the initial conditions were generated by
considering the field amplitudes {|ψn|}, and the phases
φn being random numbers in the intervals [1− δ, 1 + δ]
and [−π, π] respectively. Out of a large number of {ψn}
configurations we have chosen only the ones that satisfy
the energy and normalization constraints that define the
specific state, see Eqs. (4,5) respectively. Finally, in all
our simulations below we have used the normalization
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condition A =
∑
n |ψn|2 = N (i.e. a = 1, see Eq. (7))

associated with the total power.

B. Equal Coupling Networks

We start our analysis with the equal-coupling photonic
network. In this case each node is coupled to all other
nodes by a hopping amplitude of equal strength. The
Hamiltonian that describes this system is Eq. (4) with a
connectivity matrix given by Eq. (15) with σ = 0. We
have

H{ψl} = −J0

N

∑
l 6=j

ψ∗l ψj +
1

2
χ
∑
l

|ψl|4, (17)

where l and j run over all N sites with the only constraint
that l 6= j.

In the absence of non-linearity the statistical mechan-
ics of the system in Eq. (17) is trivial. The connectiv-
ity matrix (Eq. (15) with σ = 0) can be easily diag-
onalized. In this case the Hamiltonian Eq. (17) (with
χ = 0) has one non-degenerate eigenvector (supermode)
with eigenfrequency ε1 = −(N−1)J0/N and (N−1)-fold
degenerate eigenvectors with frequency εα = J0/N(α =
2, · · · , N). Therefore, in the large-N limit, only the low-
est non-degenerate mode contributes to the total energy
E and, since the latter quantity is required to be exten-
sive, it is clear that a final fraction of the total optical
power A must reside in that mode. A simple calculation,
based on relations Eq. (11) and the expression Eq. (13)
yields the following result: Since the total optical power
is A = aN and the total energy is E = hN , then, in the
large-N limit, the resulting chemical potential and the
temperature are

µ = −J0, T = J0a+ h. (18)

Since, obviously, J0a ≥ |h| must hold, the linear model
does not allow for either negative temperatures or for a
transition: a finite fraction (|h|/J0a) of the total power
A is condensed into the lowest mode64.

A refined analysis, where the finite size effects are taken
into consideration, leads to the following exact expres-
sions for the chemical potential

µ = −J0

[
1−

(
a
J0

h
+ 2

)
1

N
+

(
a
J0

h

)
1

N2

]
(19)

and the temperature

T = J0

[(
a+

h

J0

)
− 2

( a
N

)
−
(
N − 1

N

)
J0

h

( a
N

)2
]
(20)

which, in the limit of N � 1, are nicely matching the
results in Eq. (18). In Fig. 3 we have compared these
theoretical predictions with the values of (µ, T ) that we
have extracted from our numerical simulations with the
Hamiltonian of Eq. (17), using two multimode photonic

Figure 3: (Color online) The numerical values of chemical
potential −µ (red squares) and inverse temperature β = 1/T
(black circles) versus the theoretical predictions Eqs. (19)
(red dashed line) and (20) (black lines) respectively. Filled
symbols correspond to N = 8, while open symbols correspond
to N = 64. (Inset) The numerically extracted optical powers
(symbols) scaled as n̂1 and n̂α vs. the averaged energy density
h. The rescaled n̂1 reaches the value zero at h = hmax. The
solid lines are the theoretical predictions of Eq. (13) while
the two type of symbols correspond to N = 8 (filled symbols)
and N = 64 (open symbols). In all cases we considered an
initial optical power a = 1, coupling constant J0 = 1.2 while
the nonlinearity is weak χ = 0.01.

networks with N = 8 and 64 modes. The nice agree-
ment indicates that these systems have reached a ther-
mal equilibrium state. At the inset of the same figure we
also report 〈|Cα|2〉t (see Eq. (16)) by making use of the
scaled variables n̂α

n̂1 ≡
(
〈|C1|2〉t − a

)
/N = −h/J0 (21)

n̂α ≡
(
〈|Cα|2〉t − a

)
× (N − 1)/N = h/J0

where in the second equation above α = 2, · · · , N . The
right hand side of Eqs. (21) has been evaluated using
Eq. (13) together with Eqs. (11). It is important to
point out that thermalization has been achieved even for
the system with relatively small number of nodes N = 8.

The presence of non-linearity changes the picture com-
pletely and provides us with an example of a (mean field)
optical phase transition from an ordered to a disordered
phase. In the former phase the amplitudes ψl on different
nodes are correlated while in the latter phase the nodes
become essentially decoupled from each other. The or-
dered (disordered) phase corresponds to low (high) tem-
perature, i.e. to small (large) internal energy E.

The ground state of the Hamiltonian (17) cor-
responds to a uniform field configuration {ψl} =√
A/N(1, 1, . . . , 1), where the normalization is such that

the total optical power is
∑
l |ψl|2 = A. All the “spins”

in this state point in the same direction. Note that the
ground state is highly degenerated: one can rotate all the
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spins by an angle θ, i.e. multiply the field by an overall
phase factor exp(iθ). The ground state energy is

Emin = −J0A+
1

2
χA2/N =

(
−J0a+

1

2
χa2

)
N (22)

corresponding to T = 0. In the opposite limit, T → ∞,
the kinetic energy (hopping) can be neglected and the
system reduces to a set of uncoupled nonlinear oscillators.
The probability density to find a node with optical power
|ψ|2 ≡ I is p(I) ∼ exp(βµI − 1

2βχI
2) and a simple calcu-

lation yields an average thermal energy equal to χa2, in
the T →∞ limit. Thus, the maximal energy of the sys-
tem (see Eq. (10)) is Emax = χa2N indicating that for
fixed a the thermalization occurs for Emin < E < Emax.
One can, of course, endow the system with an energy
larger than Emax, for instance, by putting all the norm
A on a single site (in which case the energy E would be-
come “super-extensive”, proportional to N2). We do not
consider, however, initial preparation with E > Emax

since we do not address the “non-Gibbsian” region in the
(E,A)-plane (see previous discussion and also Refs.48,49).

Next, we proceed with the calculation of the partition
function Eq. (6) which is performed using the saddle-
point method. It is convenient to write the complex am-
plitudes ψl = ql + i pl where (ql, pl) is a pair of real vari-
ables. The Hamiltonian

H{ql, pl} = −J0

N

∑
l,j

(qlqj + plpj) +
χ

2

∑
l

(
q2
l + p2

l

)2
(23)

can be interpreted in terms of interacting two-component
spins. We write

∑
l,j qlqj = (

∑
l ql)

2 and use the identity

exp

βJ0

N

(∑
l

ql

)2
 = (24)

√
NβJ0

π

ˆ ∞
−∞

dx exp

[
βJ0

(
−Nx2 + 2χ

∑
l

ql

)]

and similarly for
∑
l,j plpj . The integrals over ql, pl in

the partition function now factorize into a product of in-
tegrals, each involving only variables for one node. Fur-
thermore, in the large N -limit, the grand-canonical par-
tition function Z is dominated by a saddle-point, which
can be interpreted as the order parameter, i.e. the aver-
age field ψ̄ (the magnetization in the statistical mechan-
ics language). Actually, there is a whole family of sad-
dle points, distinguished from each other by an overall
phase. Choosing one saddle point of the family amounts
to breaking the rotational symmetry in the spin space,
obtaining a non-zero value for the order parameter. We
chose ψ̄ ≡ m to be real. Skipping all calculation details,
we only give the final equation for m

m =
1

2βJ0F (m)

dF (m)

dm
≡ Q(m) (25)

where the function F (m) is given by the integral F (m) =
2π
´∞

0
rdrI0(2βJ0mr) exp

(
βµr2 − 1

2χβr
4
)
and I0(x) is

the modified Bessel function of order zero.
For small m, Q(m) is a linear function of m, Q(m) =

s ·m, and the slope s determines whether Eq. (25) has a
nontrivial solutionm 6= 0. Such solution exists only if s >
1. The slope can be calculated using the small argument
expansion I0(x) = 1 + 1

4x
2, and it can be written as

s = βJ0K3/K1 where an integral Kn is defined as Kn =´∞
0
drrn exp(βµr2 − 1

2χβr
4).

Let us, as an example, fix µ at the value zero and
study s as a function of the temperature T = 1/β. For
µ = 0 a simple expression for the slope s is obtained,
namely s = J0(2/πTχ)1/2. The value s = 1 yields the
critical temperature Tc = 2J2

0/πχ. For temperature T
slightly below Tc one finds, by keeping the term of order
m3 in the expansion of Q(m), the standard mean field
result m ∼ (Tc−T )1/2. When the temperature decreases
further, towards T = 0, the magnetization increases and
approaches the maximal value, corresponding to the fully
ordered ground state. Taking again µ = 0 as an example,
one obtains from Eq. (25) that, in the β →∞ limit,m→√
J0/χ. This result becomes transparent when written

in terms of the optical power A. Indeed, at T = 0 the
total power resides in the (fully correlated) ground state
so that the magnetization per site is m =

√
A/N ≡

√
a.

To connect a to µ we have to use the expression Eq. (22)
for the ground state energy which yields µ = 1

N ∂E/∂a =

−J0 + χa. For µ = 0, one obtains m =
√
a =

√
J0/χ.

Thus, Eq. (25) is well suited for studying m, as a func-
tion of β, for a fixed value of µ. In experiment, however,
one usually controls the optical power A, rather than the
conjugate variable µ. Calculating analytically m as a
function of β for fixed A is more involved than the above
calculation for fixed µ, and we do not attempt it in the
present paper. Instead, in Fig. 4 we present some nu-
merical results, serving a double purpose: first to verify
that the system, with the appropriate initial preparation,
indeed thermalizes and then to study its properties in the
thermal equilibrium state as a function of the averaged
energy density h. To this end, we evaluate numerically
the time-averaged magnetization 〈|m|〉t (see Fig. 4a) de-
fined as

〈|m|〉t = 〈

∣∣∣∣∣ 1

N

∑
n

ψn(t)

∣∣∣∣∣〉t. (26)

In our numerics, we consider moderate values of the non-
linear parameter χ = 1 and coupling constant J0 = 1.2.
At the ground state h = hmin all “spins” have the same
orientation. As a result, the magnetization acquires its
maximum value 〈|m|〉t = 1 indicating a ferromagnetic be-
havior. For higher h-values the magnetization decreases
and at h → hc ≈ 0.75, which is smaller than hmax = 1,
it acquires a constant value 〈|mmin|〉t = O(1/

√
N) (see

inset of Fig. 4a), associated with finite size effects. Fur-
ther numerical analysis indicates that in the thermody-
namic limit of N → ∞ the magnetization, as a function
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of h, approaches zero following a square-root behavior
〈|m|〉t ≈ 0.85

√
hc − h (see bold black line in Fig. 4a).

Such behavior is characteristic of a second-order phase
transition, from a “ferromagnetic” to a “paramagnetic”
(optical) phase.

In Fig. 4b we show the numerical results for the time-
averaged optical power in the ground state supermode
〈|C1|2〉t versus the averaged energy density of the ini-
tial beam. In the simulations, we have considered the
same photonic networks as above with χ = 1, J0 = 1.2,
and different numbers of nodes N . The numerical find-
ings are reported using the scaled variable n̂1, see Eq.
(21). We find that for low averaged energy densities h,
the optical power of the ground state is 〈|C1|2〉t ≈ N
indicating a condensate. As h increases the condensate
depletes and eventually at h = hc, corresponding to the
ferro-paramagnetic transition, it is completely destroyed
i.e. n̂1 = 0. At the same figure we also report for com-
parison the theoretical value of n̂1 = −h/J0 (black solid
line), applicable for the case of weak non-linearities, see
Eq. (13). We stress once more that the condensation
transition analyzed above is due solely to the nonlinear-
ity unlike the previous studied cases where the transition
occurred already in the linear system29,32.

C. Random Coupling

Next, we analyze the effect of disorder in the coupling
constants of the photonic network i.e. σ 6= 0 in Eq.
(15). First, we consider the case of extreme disorder
where J0 = 0. In this case the coupling constants are
entirely random, with equal probabilities to be positive
or negative, i.e. the system is completely “frustrated".
Despite the vast literature on spin-networks, this model
with complex, “soft spins” has not been studied up to
now. Of course, certain analogies with the Sherrington-
Kirkpatrick model can still be instructive. In the latter
case, there is a transition from a paramagnetic phase to
a spin-glass phase when the temperature (the energy E
of the system) decreases. One characteristic distinction
between the two phases is that for the spin- glass the
thermalization time is much longer than for the param-
agnet. Moreover, for large N a spin-glass does not reach
a full thermal equilibrium in any reasonable time, and the
system gets stuck in one of the many metastable states.

Our simulations for the random coupling multimode
photonic network are presented in Fig. 5. For a weak
nonlinearity χ = 0.01, the equilibrium optical powers
n̄α of the supermodes (of the linear problem) are given
by Eq. (13). In the simulation we evaluated the set
{|Cα(t)|2} as a function of time, extracted their time-
average Eq. (16), and use their comparison to Eq. (13)
as a criterion for thermalization. We find that for energy
h ≈ −0.685, see Fig. 5a, the system gets eventually close
to thermal equilibrium at times t ≈ 5 × 107 (in units
of standard deviation of the coupling elements). After
this time the occupation numbers change only slightly.

Figure 4: (Color online) (a) The time-averaged magnetiza-
tion versus the averaged energy density h. We have simu-
lated various mulimode photonic networks described by Eq.
(17) with N = 8, 16, 32, 64, 128, 256. The bold solid line is
the best asymptotic (N → ∞) fit indicating a square root
singularity of the magnetization i.e. 〈|m|〉t ≈ 0.85

√
0.75− h.

Inset: The asymptotic value 〈|mmin|〉t of time-averaged mag-
netization (circles), versus the number of nodes N . The solid
line is the best fit to the numerical data and demonstrates a
convergence to zero as 〈|mmin|〉t ≈ 0.75/

√
N . (b) The time-

averaged optical power of the ground state supermode for
networks of different number of nodes N . We have used the
same scaling variable n̂1 as in Fig. 3. The condensation tran-
sition, corresponding to n̂1 = 0, occurs for the same value of
h = hc ≈ 0.75 as the one that signifies the transition from a
ferromagnetic to a paramagnetic behavior in (a). In all cases
we have considered an initial averaged optical power a = 1,
coupling constant J0 = 1.2 while the nonlinearity is χ = 1.
In this case, the maximum energy density is hmax = 1.

For higher energies (not shown) the thermalization time
becomes shorter (for example for h ≈ −0.15 the thermal-
ization time for a network of N = 16 nodes was ∝ 104).
On the other hand, for energy h = −1 (see Fig. 5b), the
optical powers {〈|Cα|2〉t} are far away from {n̄α} even
after a fairly long time t = 5 × 107 and, moreover, they
do not show any significant change with respect to the
results extracted for shorter times t = 105 (filled black
circles in Fig. 5b). We have confirmed that the lack of
thermalization (for any reasonable large time) is typical
for other initial preparations (with the same h). This is
a typical behavior of a spin-glass.

Indeed, the most important signature of a spin-glass,
from which the term itself was derived, is that at low
temperatures the directions of spins at various sites get
frozen in some random configuration (metastable state).
For our “optical spin glass” such behavior implies that
the average values of the complex amplitudes {ψl}, and
in particular the phases {θl}, form a random set. The
“average” here refers to the thermal statistical average,
for a fixed realization of the disorder. One could expect
that in a numerical simulation averaging over a statistical
ensemble can be replaced by the time average. However,
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Figure 5: (Color online) Comparison between the time-
averaged supermode optical powers for a multimode photonic
network whose dynamics is described by the Hamiltonian Eq.
(4) with random connectivity matrix Eq. (15) with J0 = 0
and σ = 1, and the theoretical results (red squares) of Eq.
(13) for weak disorder. Black circles correspond to moderate
time evolutions with t = 105 while green diamonds correspond
to larger time evolutions with t = 5×107. The initial state has
(a) high averaged energy density per mode h = −0.685 (cor-
responding to high temperatures) or (b) low averaged energy
density per mode h = −1 (corresponding to moderate/low
temperatures). In both cases the average optical power is
a = 1. In these simulations, the number of modes is N = 16
and the nonlinear parameter is χ = 0.01.

due to a dynamic overall phase in the time evolution
defined in Eq. (1), the time-average of the phase, θl,
at any site l, amounts to zero. Therefore, in order to
distinguish a spin glass from a paramagnet, we use the
following criterion: Let us denote by superscripts α, β
two initial preparations, with the same total energy E
and optical power A. Their time evolution is given by
{ψαl (t)} and {ψβl (t)} respectively. The quantity ζ(t) =
1
N

∑
l (ψ

α
l (t))

∗
ψβl (t) is a measure of the overlap between

the two evolutions, at time t. In the paramagnetic phase
ζ(t) decreases with time, approaching zero, because (in
the large N -limit) the two evolutions become completely
uncorrelated.

It is appropriate to consider many initial preparations,
i.e. many (α, β)-pairs, and treat the real and the imag-
inary parts of ζ(t) as statistical quantities with proba-
bility distribution P (Re(ζ)) and P (Im(ζ)). In the long
time limit, and for large but finite N , these distribu-
tions are expected to have a manifestly different form
in the two phases: For a paramagnet P (Re(ζ)) and
P (Im(ζ)) should be narrow distributions (with a width
approaching zero when N →∞), centered around ζ = 0.
These expectations are confirmed by our numerical data
which are reported in Figs. 6a,b for photonic multimode
networks with initial preparations having high values of
averaged energy density h = −0.155. An increase of
the number of modes N leads to narrower distributions

-1 -0.5 0 0.5 1
ℜe(ζ)

0

2

4

6

P(
ℜ

e(
ζ)

) N=16;  h=-1.4
N=16;  h=-0.155
N=32;  h=-0.155
N=64;  h=-0.155
N=128; h=-0.155

-1 -0.5 0 0.5 1
ℑm(ζ)

0

2

4

6

P(
ℑ

m
(ζ

))

(a)

(b)

Figure 6: (Color online) Distribution of the (a) real and
the (b) imaginary part of the correlation function ζ(t). The
“empty” histograms correspond to initial preparations with
averaged energy density which is h = −0.155 (high en-
ergy regime). The brown “filled” histogram corresponds to
a network with N = 16 and initial preparations with aver-
aged energy density which is h = −1.4 (low energy regime;
hmin ≈ ε1 ≈ −1.7). The number of modes are indicated by the
color of the histogram in the inset of the figure. The average
optical power was kept constant a = 1 while χ = 0.01. In all
these simulations the integration time was as long as t = 105

and we have generated more than 32× 104 correlations ζ for
the statistical processing.

around ζ = 0. When, on the other hand, we consider the
same distributions for a set of initial preparations with
low value of h = −1.4, we observed an entirely different
behavior for P (Re(ζ)) and P (Im(ζ)) (see brown high-
lighted histogram in Figs. 6a,b). Namely, they become
broad and almost flat, covering the whole allowed interval
i.e. −1 < Re(ζ), Im(ζ) < 1. We stress that the above
simulations were performed for a given realization of dis-
order and for the same energy h = −1.4. Only the initial
preparations have been randomly chosen. We interpret
the “flatness” of P (Re(ζ)) ,P (Im(ζ)) as a signature of
many metastable states, typical of a spin-glass62,63.

It is natural to ask what happens to the network at
low averaged energy densities h when both terms in the
connectivity matrix Eq. (15) coexist, i.e. J0 6= 0 and
σ 6= 0. In Fig. 7 we report the dependence of the mag-
netization 〈|m|〉t versus the control parameter x = J0/σ
and for h ≈ 0.88ε1. In the simulations we keep σ = 1
and change the magnitude of J0. Following the same
scheme as in section III B, we break the rotational sym-
metry of the spin space by preparing the system at a
real-valued configuration {ψn}. When x = 0 the con-
nectivity matrix has only random coupling elements (i.e
J0 = 0) “forcing” the network into the spin-glass phase.
In this regime, the system evolves towards a metastable
state with the “spins” pointing towards random direc-
tions. As a result, the magnetization is approaching zero
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Figure 7: (Color online) The time-averaged magnetization
versus the control-parameter x = J0/σ. The transition at
x ≈ 1 becomes more abrupt as N increases. In these sim-
ulations, the initial preparation was taken to have averaged
energy density h ≈ 0.88ε1 (low energy regime) while the non-
linearity is χ = 0.01.

as 〈|m|〉t ∝ O(1/N) in the limit of large N -values, see
Fig. 7. In the other limiting case of x → ∞ the ran-
domness in the coupling elements are suppressed and the
connectivity matrix is dominated by (essentially) con-
stant couplings J0. In this case, the network is in the
ferromagnetic phase and the magnetization acquires a
non-zero magnitude 〈|m|〉t 6= 0 which is dictated by the
value of h (e.g. for h = hmin ≈ −J0 the magnetization
is 〈|m|〉t = 1). Our analysis (see Fig. 7) indicates that
the transition from a spin-glass to a ferromagnetic phase
occurs at x ∼ 1. The transition becomes more abrupt, as
expected from statistical mechanics, in the limit of large
N -values.

IV. CONCLUSIONS

We unveiled a connection between nonlinear photonic
networks, consisting of many coupled single modes, and

spin-networks. As opposed to standard spin models, our
“photonic spins” are complex, soft (i.e. their size fluctu-
ates), and their dynamics has two constants of motion:
the total energy and the total optical power. This sec-
ond conservation law is responsible for the appearance
of novel optical phase transitions and the emergence of
new forms of thermal photonic states. We have found
that these transitions are controlled by the nature of the
connectivity of the network (disorder or constant), and
the amount of the averaged energy density of the initial
optical preparation. Another important parameter is the
strength of the non-linearity that controls the thermal-
ization process. For strong non-linearities and constant
couplings, we have discovered a ferro-paramagnetic phase
transition as the averaged energy density h of an initial
preparation increases. This transition is associated with
the destruction of a photonic condensate and its deple-
tion to thermal states. In the other limiting case of ran-
dom coupling constants the photonic network is driven
from a paramagnetic to a spin-glass phase as h decreases.
Finally, we have shown that the same network, when pre-
pared at low energies, undergoes another transition from
a spin-glass to a ferromagnetic phase. The control pa-
rameter that drives this transition is the degree of ran-
domness (frustration) of the coupling constants between
the photonic spins. Our results shed light on the ongo-
ing effort of taming the flow of electromagnetic radiation
in nonlinear multimode photonic networks. We also ex-
pect to sparkle the interest of the statistical physics com-
munity since the mathematical models that are typically
used to describe light transport in multimode systems are
falling outside the traditional spin-network framework.
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