Networks of game Go

Célestin Coquidé Vivek Kandiah, Bertrand Georgeot Laboratoire de Physique Théorique, IRSAMC CNRS/ University Paul Sabatier, Toulouse Olivier Giraud LPTMS CNRS/University Paris-Sud

Supported by EC FET Open project NADINE

 CNRS and Région Midi-PyrénéesB.G. and O. Giraud, Europhysics Letters 9768002 (2012) V. Kandiah, B.G. and O. Giraud, EPJ B (2014) 87: 246

Part I : Introduction

Networks

->Recent field: study of complex networks, tools and models have been created;
->Many networks are scale-free with power-law distribution of links difference between directed and non directed networks
->Important examples from recent technological developments: internet, World Wide Web, social networks...
->Can be applied also to less recent objects
in particular, study of human behavior: languages, friendships...

Networks for games

-> Network theory never applied to games
-> Games are nevertheless a very ancient activity, with a mathematical theory attached to the more complex ones
-> Games represent a privileged approach to human decision-making
->Can be very difficult to modelize or simulate

The game of go

\rightarrow Game of go: very ancient Asian game, probably originated in China in Antiquity (image on the left from VIIIth century)
-> Go is the Japanese name; Weiqi in Chinese, Baduk in Korean

The game of go

-> Go is a very popular game played by many parts of the population (ex. right) on a board called Goban (see below)

Rules of go

->White and black stones alternatively put at intersections of 19×19 lines
->Stones without liberties are removed
->A chain with only one liberty is said in atari
->Handicap stones can be placed
->Aim of the game: construct protected territories

Beginnings: Fuseki and Joseki

During the game-Ko and ladders

Endgames-life and death

Player rankings

\rightarrow There are nine levels (dans) of professionals (top players) followed by nine levels of amateurs
->A handicap stone can compensate for roughly one dan: like in golfing, players of different levels can play evenly thanks to handicaps
->There are regular tournaments of go since very long times

Computer simulations

-->While Deep Blue famously beat the world chess champion Kasparov in 1997, We had to wait March 2016 for Go with Alphago a computer program wich has beaten one of best go player. Why is this game so difficult to simulate?
->Total number of legal positions 10^{171}, vs "only" 10^{50} for chess
-> Not easy to assign positional advantage to a move
-> Alphago uses Monte Carlo Go: play random games starting from one move and see the outcome until a value can be assigned to the move, and deep Learning techniques by neural networks

Databases

->We used databases of expert and amateur games in order to construct networks from the different sequences of moves, and study the properties of these networks
->Whole available record, from 1941 onwards, of the most important historical professional Japanese go tournaments:
Kisei (143 games), Meijin (259 games), Honinbo (305 games), Judan (158 games)
Contains also 135000 amateur games played online
->Level of players is known, mutually assessed according to games played
->We compare databases from human players to networks constructed from computer-generated games (program Gnugo)

Vertices of the network I

->"plaquette" : square of 3 x3 intersections
->We identify plaquettes related by symmetry
->We identify plaquettes with colors swapped
->1107 nonequivalent plaquettes with empty centers
->vertices of our network

Vertices of the networks II

->"plaquette" : square of 3×3 intersections + atari status of nearest-neighbors
->We still identify plaquettes related by symmetry
->Because of rules restrictions, only
2051 legal nonequivalent plaquettes with empty centers

Vertices of the networks III

->"plaquette" : diamond of $3 \times 3+4$ intersections
->We still identify plaquettes related by symmetry
->193995 nonequivalent plaquettes with empty centers (96771 actually never used in the database)

Zipf's law

->Zipf's law: empirical law observed in many natural distributions (word frequency, city sizes...) ->lf items are ranked according to their frequency, predicts a power-law decay of the frequency vs the rank.
->integrated distribution of three network nodes clearly follows a Zipf's law, with exponent close to 1

Normalized integrated frequency distribution of three types of nodes. Thick dashed line is $\mathrm{y}=-\mathrm{x}$.

Links of the network

->we connect vertices corresponding to moves a and b if b follows a in a game at a distance <d.
->Each choice of d defines a different network. The choice of d determines the distance beyond which two moves are considered nonrelated.
->Sequences of moves follow Zipf's law (cf languages)
Exponent decreases as longer sequences reflect individual strategies
->move sequences are well hierarchized by d=5
->amateur database departs from all professional ones, playing more often at shorter distances

Sizes of the three networks

-> Total number of links including degeneracies is 26116006, the same for all networks
->Network I: 1107 nodes, 558190 links without degeneracies
->Network II: 2051 nodes, 852578 links without degeneracies
->Network III: 193995 nodes, 7405395 links without degeneracies
->Very dense networks, especially the smallest ones
-> Very different from e.g. the World Wide Web

Part II : Networks from human games

Link distribution

->Tails of link distributions very close to power-law for all three networks
->network displays the scale-free property
->symmetry between
ingoing and outgoing links is a peculiarity of this network

Normalized integrated distribution of links for the three networks

Matrix for directed networks

Weighted adjacency matrix

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Google algorithm

Ranking pages $\{1, \ldots, N\}$ according to their importance. Idea:

- The importance of a page i depends on the importance of the pages j pointing on it
- If a page has many outgoing links the importance it transmits is inversely proportional to the number of pages it points to.
PageRank p_{i} should thus verify

$$
p_{i}=\sum_{j \rightarrow i} \frac{p_{j}}{n_{j}}
$$

$n_{j}=$ number of outgoing links of page j.
With the (stochastic) matrix H introduced above,

$$
\mathbf{p}=H \mathbf{p}
$$

Computation of PageRank

$\mathbf{p}=H \mathbf{p} \Rightarrow \mathbf{p}=$ stationary vector of H :
can be computed by iteration of H.

To remove convergence problems:
Replace columns of 0 (dangling nodes) by $\frac{1}{N}: H \rightarrow$ matrix S
In our example, $H=\left(\begin{array}{ccccccc}0 & 0 & \frac{1}{7} & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{7} & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{7} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{7} & 0 & 1 & 1 & 1 \\ 0 & 0 & \frac{1}{7} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & \frac{1}{7} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{7} & 0 & 0 & 0 & 0\end{array}\right)$.
To remove degeneracies of the eigenvalue 1 , replace S by

$$
G=\alpha S+(1-\alpha) \frac{1}{N} \mathrm{ee}^{T}
$$

PageRank and CheiRank

- The PageRank algorithm gives the PageRank vector, with amplitudes p_{i}, with $0 \leq p_{i} \leq 1$
- All webpages can then be ordered according to their PageRank value
- The PageRank value of a webpage can be understood as the average time a random surfer will spend there
- It ranks websites according to the number of links pointing to them which come from high-PageRank sites.
->PageRank is associated to the largest eigenvalue of the matrix G. It is based on ingoing links
->CheiRank corresponds to the PageRank of the network obtained by inverting all links. It can be associated to a new matrix G^{*}, and is based on outgoing links

Ranking vectors: network I

->PageRank: ingoing links
->CheiRank: outgoing links
->HITS algorithm:Authorities (ingoing links) and Hubs (outgoing links)
->Ranking vectors follow an algebraic law
->Symmetry between distributions of ranking vectors based on ingoing links and outgoing links.

Ranking vectors: other networks

->Still symmetry
between distributions of ranking vectors based on ingoing links and outgoing links.
->Power law different for the largest network

->Ranking vectors of G and G^{*} for the three networks red: size 1107, green: size 2051, blue: size 193995.

Ranking vectors: correlations

->Strong correlations
between PageRank and CheiRank
->Strong correlation between moves which open many possibilities of new moves and moves that can follow many other moves.
->However, the symmetry is far from exact.
->Correlation less strong for

 largest network

Figure: K^{*} vs K where $\mathrm{K}\left(\right.$ resp. $\left.\mathrm{K}^{*}\right)$ is the rank of a vertex when ordered according to PageRank vector (resp CheiRank) for the three networks (sizes 1107, 2051, 193995)

Ranking vectors vs most common moves

Figure: Top 30 most common moves of network III; right: top 30 PageRank and CheiRank for same network

Ranking vectors vs most common moves

->There are correlations between PageRank, CheiRank, and most common moves
->However, there are also many differences, which mark the importance of specific moves in the network even if they are not that common
->Genuinely new information, which can be obtained only from the network approach

Figure: frequency rank vs PageRank (blue) and CheiRank (red) for network III

Ranking vectors vs most common moves

-> In the World Wide Web, frequency count corresponds to ranking by e. g. indegree
->PageRank takes into account indegree but weighted by importance of nodes from where the links are coming
-> Here PageRank underlines moves to which converge many well-trodden paths in the database
->CheiRank does the same in the reverse direction, highlighting moves which open many such paths
-> Could be used to bias or calibrate the Monte Carlo Go

Spectrum of the Google matrix

->For second and third networks, still gap between the first eigenvalue and next ones
->Radius of the bulk of eigenvalues changes with size of network ->More structure in the networks with larger plaquettes which disambiguate the different game paths and should make more visible the communities of moves

Figure: Eigenvalues of G in the complex plane for the networks with 1107, 2051 and 193995 nodes

What is the meaning of eigenvectors of the Google matrix ?

->Next to leading eigenvalues are important, may indicate the presence of communities of moves with common features
->Indeed, eigenvectors of G for large eigenvalues correspond to parts of the network where the random surfer gets stopped for some time before going elsewhere
-> Correspond to sets of moves which are more linked together than with the rest of the network
-> Should indicate communities of moves which tend to be played together

Eigenvectors for network III

* \% : \% \% \% : \% \%	
\% \% \% \% \% \% \% \%	
- \% \% \% \% \% :	
4* 0.	
\% - \% \% \% \% \% \%	7 7h
	differ
\% \% \% \% \% \%	
- \% \% \% \% \% \% \%	
\%\%:	

Networks for different game phases

->Eigenvectors are different from those of full game network, showing specific communities
->Bias toward more empty plaquettes for beginnings, more filled plaquettes towards the end

Figure: fourth
eigenvector of G for 50 first moves (top), middle 50 (middle) and last 50 (bottom)

Part III : Networks from Computergenerated games

Databases

Gnugo 19X19: 7000 Independent
Games
72 hours = 1000
Games
U-go 19x19:
18000 amateurs
Games

Gnugo 9X9:
20000 Normal
Games
20000 Games with
Monte-Carlo
10 hours = 1000
Games

Link distribution

19X19 human and Gnugo seem to be the same, $a=-1$

9X9 different from 19X19 $a=-0.8$-> more filled plaquettes played

PageRank/CheiRank: Network I

Figure: Top
PageRank of 19X19
Gnugo and human
Networks and
PageRank of 9X9 without and with
Monte-Carlo option
Bottom CheiRank of 19X19 Gnugo and human Networks and PageRank of 9X9 without and with Monte-Carlo option

Fig. 1 - Top 10 des PageRank, de haut en bas Gnugo 19×19 (parties ordinateurs), parties amateurs $19 \times 19 \mathrm{U}$-go(parties humaines), Gnugo 9×9 sans et avec option Monte-Carlo

Fig. 4 - Top 10 des CheiRank, de haut en bas Gnugo 19×19 (parties ordinateurs), parties amateurs $19 \times 19 \mathrm{U}$-go(parties humaines), Gnugo 9×9 sans et avec option Monte-Carlo

Ohter Ranking Vector: Network I

-> Difference between Monte-Carlo Gnugo and not Monte-Carlo Gnugo starting from 4th Right Eigenvector

Fig. 9 - Les top 10 des plaquettes de 20000 parties Gnugo 9×9 avec 5 autres valeurs propres, de haut en bas $\lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$ et λ_{6}

Fig. 10 - Les top 10 des plaquettes de 20000 parties Gnugo 9×9 Monte-Carlo avec 5 autres valeurs propres, de haut en bas $\lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$
et λ_{6}

Spectrum for Gnugo

->For Gnugo Network, still gap between
the first eigenvalue and next ones
->Radius of the bulk of eigenvalues
changes with Computer-generated games wich is more exploded

Histogram of Spectrum

->Density for
Eigenvalues inside bulk decreases faster with human than computergenerated games
-0.65 vs -0.11

Figure 32: Plot des courbes normalisées et non normalisées pour 4000 parties Gnugo/U-go 19×19 on peut voir les pentes des courbes normalisées autour de -0.11 pour Gnugo et -0.65 pour $U_{-g o}$
Figure: radius from 0.05 to 0.5
square: Human
diamond: Gnugo
Red/black: Normalized/Not Normalized

Inverse Participation Ration

->Difference beetween
Gnugo and Human
-> Red dots cloud (Human) shifted to the right

$$
\frac{\left(\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}\right)^{2}}{\sum_{i=1}^{n}\left|\psi_{i}\right|^{4}}
$$

$$
|\lambda|=e^{-2 \gamma}
$$

Go turing test

->What if we could distinguish human from computer players?

Fig. 17 - En haut le premier groupe, au milieu le second et en bas le troisieme groupe de 4000 parties U-go
->We used
3×4000 games

Conclusion

->We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective.
->Ranking vectors highlight specific moves which are pivotal but may not be the most common
->Preliminary results: Networks built from human games and computer-generated games show some clear differences at various levels
->Computer seems to play differently from humans
->Can we construct estimators which will allow to distinguish human from computer at go? (go Turing test)

Networks for different levels of play

->The presence of handicaps means that the winner may not be the best player
-> However, the level of players is known (number of dans)
-> One can construct networks for 1d vs 1d and compare with 9d vs 9d. We look at

$$
r_{j}=\sum_{i \leftarrow j}\left|k_{i}-k_{i}^{\prime}\right| / \sum_{i} k_{i}
$$

which quantifies the difference in outgoing links between two networks
Figure: red is for $1 \mathrm{~d} / 1 \mathrm{~d}$ vs 9d/9d, blue for 6d/6d Network with 193995 vertices.

Is this difference significant?

Networks for different levels of play

-> We compared different samples of 6d/6d to the $1 \mathrm{~d} / 9 \mathrm{~d}$ and computed $r=\left\langle r_{j}\right\rangle$ in each case
-> Result: statistically significant difference between $1 \mathrm{~d} / 9 \mathrm{~d}$ and the 6d/6d samples
->Differences can be seen between the networks built from moves of players of different levels

Networks for different game phases

->One can separate the games into beginning, middle, and end ->The three networks are different, with markedly different spectra and eigenvectors

Figure: spectrum for all moves (black), 50 first moves (red), middle 50 (green) and last 50 (blue), Network with
 193995 vertices.

