

Introduction to Google matrix of directed networks

Klaus Frahm

Quantware MIPS Center Université Paul Sabatier Laboratoire de Physique Théorique, UMR 5152, IRSAMC
A. D. Chepelianskii, Y. H. Eom, L. Ermann, B. Georgeot, D. Shepelyansky

Applications of Google matrix to directed networks and Big Data
Luchon, May 14-18, 2016

Contents

Perron-Frobenius operators 3
PF Operators for directed networks 4
PageRank 6
Numerical diagonalization 7
Reduced Google matrix 9
University Networks 12
Wikipedia 15
Twitter network 17
Random Perron-Frobenius matrices 19
Poisson statistics of PageRank 21
Physical Review network 23
Perron-Frobenius matrix for chaotic maps 29
References 38

Perron-Frobenius operators

Consider a physical system with N states $i=1, \ldots, N$ and probabilities $p_{i}(t) \geq 0$ evolving by a discrete Markov process:

$$
p_{i}(t+1)=\sum_{j} G_{i j} p_{j}(t) \quad \text { with } \quad \sum_{i} G_{i j}=1 \quad, \quad G_{i j} \geq 0 .
$$

The transition probabilities $G_{i j}$ provide a Perron-Frobenius matrix. Conservation of probability: $\sum_{i} p_{i}(t+1)=\sum_{i} p_{i}(t)=1$.
In general $G^{T} \neq G$ and eigenvalues λ may be complex and obey $|\lambda| \leq 1$. The vector $e^{T}=(1, \ldots, 1)$ is left eigenvector with $\lambda_{1}=1$ \Rightarrow existence of (at least) one right eigenvector P for $\lambda_{1}=1$ also called PageRank in the context of Google matrices:

$$
G P=1 P
$$

For non-degenerate λ_{1} and finite gap $\left|\lambda_{2}\right|<1$:

$$
\lim _{t \rightarrow \infty} p(t)=P
$$

\Rightarrow Power method to compute P with rate of convergence $\sim\left|\lambda_{2}\right|^{t}$.

PF Operators for directed networks

Consider a directed network with N nodes $1, \ldots, N$ and N_{ℓ} links. Adjacency matrix:
$A_{j k}=1$ if there is a link $k \rightarrow j$ and $A_{j k}=0$ otherwise.
Sum-normalization of each non-zero column of $A \Rightarrow S_{0}$.
Replacing each zero column (dangling nodes) with $e / N \quad \Rightarrow \quad S$.
Eventually apply the damping factor $\alpha<1$ (typically $\alpha=0.85$):
Google matrix:

$$
G(\alpha)=\alpha S+(1-\alpha) \frac{1}{N} e e^{T}
$$

$\Rightarrow \quad \lambda_{1}$ is non-degenerate and $\left|\lambda_{2}\right| \leq \alpha$.
Same procedure for inverted network: $A^{*} \equiv A^{T}$ where S^{*} and G^{*} are obtained in the same way from A^{*}. Note: in general: $S^{*} \neq S^{T}$. Leading (right) eigenvector of S^{*} or G^{*} is called CheiRank.

Example:

PageRank

Example for university networks of Cambridge 2006 and Oxford $2006\left(N \approx 2 \times 10^{5}\right.$ and $N_{\ell} \approx 2 \times 10^{6}$).

$$
\begin{aligned}
& P(i)=\sum_{j} G_{i j} P(j)
\end{aligned}
$$

$P(i)$ represents the "importance" of "node/page i " obtained as sum of all other pages j pointing to i with weight $P(j)$. Sorting of $P(i) \Rightarrow$ index $K(i)$ for order of appearance of search results in search engines such as Google.

Numerical diagonalization

- Power method to obtain P : rate of convergence for $G(\alpha) \sim \alpha^{t}$.
- Full "exact" diagonalization $\left(N \lesssim 10^{4}\right)$.
- Arnoldi method to determine largest $n_{A} \sim 10^{2}-10^{4}$ eigenvalues. Idea: write

$$
G \xi_{k}=\sum_{j=0}^{k+1} H_{j k} \xi_{j} \quad \text { for } \quad k=0, \ldots, n_{A}-1
$$

where ξ_{k+1} is obtained from Gram-Schmidt orthogonalization of $G \xi_{k}$ to ξ_{0}, \ldots, ξ_{k} with ξ_{0} being some suitable normalized initial vector. $\xi_{0}, \ldots, \xi_{n_{A}-1}$ span a Krylov space of dimension n_{A} and the eigenvalues of the "small" representation matrix $H_{j k}$ are (very) good approximations to the largest eigenvalues of G. Example for Twitter network of 2009: $N \approx 4 \times 10^{7}$ and $N_{\ell} \approx 1.5 \times 10^{9}$ with $n_{A}=640$ (lower N in other examples allows for higher n_{A}).

- Practical problems due to invariant subspaces of nodes in realistic WWW networks creating large degeneracies of λ_{1} (or λ_{2} if $\alpha<1$). Decomposition in subspaces and a core space

$$
\Rightarrow \quad S=\left(\begin{array}{cc}
S_{s s} & S_{s c} \\
0 & S_{c c}
\end{array}\right)
$$

where $S_{s s}$ is block diagonal according to the subspaces. The subspace blocks of $S_{s s}$ are all matrices of PF type with at least one eigenvalue $\lambda_{1}=1$ explaining the high degeneracies.
To determine the spectrum of S apply exact (or Arnoldi) diagonalization on each subspace and the Arnoldi method to $S_{c c}$ to determine the largest core space eigenvalues λ_{j} (note: $\left|\lambda_{j}\right|<1$).

- Strange numerical problems to determine accurately "small" eigenvalues, in particular for (nearly) triangular network structure due to large Jordan-blocks (e.g. citation network of Physical Review).

Reduced Google matrix

Consider a sub-network with $N_{r} \ll N$ nodes providing a decomposition in reduced and scattering nodes:

$$
\begin{gathered}
G=\left(\begin{array}{ll}
G_{r r} & G_{r s} \\
G_{s r} & G_{s s}
\end{array}\right) \quad, \quad P=\binom{P_{r}}{P_{s}} \\
G P=P \quad \Rightarrow \quad G_{\mathrm{R}} P_{r}=P_{r}
\end{gathered}
$$

with the effective reduced Google matrix:

$$
G_{\mathrm{R}}=G_{r r}+G_{r s}\left(\mathbf{1}-G_{s s}\right)^{-1} G_{s r}
$$

containing direct link contributions from $G_{r r}$ and
scattering contributions from $G_{r s}\left(1-G_{s s}\right)^{-1} G_{s r}$.

Problem: pratical evaluation of $\left(1-G_{s s}\right)^{-1}$ is very difficult for large network sizes and the expansion

$$
\left(\mathbf{1}-G_{s s}\right)^{-1}=\sum_{l=0}^{\infty} G_{s s}^{l}
$$

typically converges very slowly since the leading eigenvalue λ_{c} of $G_{s s}$ is very close to unity: $1-\lambda_{c} \ll 1$.

Proposal of numerical algorithm:

$$
\left(\mathbf{1}-G_{s s}\right)^{-1}=\mathcal{P}_{c} \frac{1}{1-\lambda_{c}}+\mathcal{Q}_{c} \sum_{l=0}^{\infty} \bar{G}_{s s}^{l}
$$

with $\bar{G}_{s s}=\mathcal{Q}_{c} G_{s s} \mathcal{Q}_{c}$, the projectors $\mathcal{P}_{c}=\psi_{R} \psi_{L}^{T}, \mathcal{Q}_{c}=\mathbf{1}-\mathcal{P}_{c}$ and $\psi_{R, L}$ are right/left eigenvectors of $G_{s s}$ for λ_{c} such that $\psi_{L}^{T} \psi_{R}=1$.
The leading eigenvalue of $\bar{G}_{s s}$ is close to $\alpha=0.85$
$\Rightarrow \quad$ rapid convergence of the matrix series.

Additional damping factor:

$$
G_{\mathrm{mod}}=\left(\begin{array}{cc}
\mathbf{1} & (1-\eta) U_{r s} \\
0 & \eta \mathbf{1}
\end{array}\right) \times\left(\begin{array}{cc}
G_{r r} & G_{r s} \\
G_{s r} & G_{s s}
\end{array}\right)
$$

with $0.5 \leq \eta<1$ and $U_{r s}=\left(1 / N_{r}\right) e_{r} e_{s}^{T}$.

$$
\Rightarrow \quad\left(G_{\mathrm{mod}}\right)_{s s}=\eta G_{s s}
$$

\Rightarrow no convergence problem for

$$
\left(\mathbf{1}-\eta G_{s s}\right)^{-1}=\sum_{l=0}^{\infty} \eta^{l} G_{s s}^{l} \quad \text { if } \quad \eta<1
$$

University Networks

Cambridge 2006 (left), $N=212710, N_{s}=48239$

Oxford 2006 (right),
$N=200823, N_{s}=30579$

Spectrum of S (upper panels), S^{*} (middle panels) and dependence of rescaled level number on $\left|\lambda_{j}\right|$ (lower panels).

Blue: subspace eigenvalues
Red: core space eigenvalues (with Arnoldi dimension $n_{A}=20000$)

PageRank for $\alpha \rightarrow 1$:

Core space gap and quasi-subspaces

Left: Core space gap $1-\lambda_{1}^{(\text {core })}$ vs N for certain british universities.
Red dots for gap $>10^{-9}$; blue crosses (moved up by 10^{9}) for gap $<10^{-16}$.
Right: first core space eigenvecteur for universities with gap $<10^{-16}$ or gap
$=2.91 \times 10^{-9}$ for Cambridge 2004.
Core space gaps $<10^{-16}$ correspond to quasi-subspaces where it takes quite many "iterations" to reach a dangling node.

Wikipedia

Wikipedia 2009 : $N=3282257$ nodes, $N_{\ell}=71012307$ network links.

left (right): PageRank (CheiRank)
black: PageRank (CheiRank) at $\alpha=0.85$
grey: PageRank (CheiRank) at $\alpha=1-10^{-8}$
red and green: first two core space eigenvectors
blue and pink: two eigenvectors with large imaginary part in the eigenvalue

"Themes" of certain Wikipedia eigenvectors:

Twitter network

Twitter 2009 : $N=41652230$ nodes, $N_{\ell}=1468365182$ network links.
Matrix structure in K-rank order:

Number N_{G} of non-empty matrix elements in $K \times K$-square:

Spectrum for the Twitter network

$n_{A}=640 \Rightarrow$ requires ~ 200 GB of RAM memory.

Random Perron-Frobenius

matrices

Construct random matrix ensembles $G_{i j}$ such that:
$G_{i j} \geq 0, G_{i j}$ are (approximately) non-correlated and distributed with the same distribution $P\left(G_{i j}\right)$ (of finite variance σ^{2}),

$$
\sum_{j} G_{i j}=1 \quad \Rightarrow \quad\left\langle G_{i j}\right\rangle=1 / N
$$

\Rightarrow average of G has one eigenvalue $\lambda_{1}=1$ (\Rightarrow "flat" PageRank) and other eigenvalues $\lambda_{j}=0$ (for $j \neq 1$).
degenerate perturbation theory for the fluctuations \Rightarrow circular eigenvalue density with $R=\sqrt{N} \sigma$ and one unit eigenvalue.

Different variants of the model:
full $\quad \Rightarrow \quad R=1 / \sqrt{3 N}$
sparse with Q non-zero elements per column $\quad \Rightarrow \quad R \sim 1 / \sqrt{Q}$
power law with $P(G) \sim G^{-b}$ for $2<b<3 \quad \Rightarrow \quad R \sim N^{1-b / 2}$

Numerical verification:

uniform full:
$N=400$
uniform sparse:
$N=400$,
$Q=20$
power law:
$b=2.5$

triangular random and average
constant sparse:
$N=400$, $Q=20$

Poisson statistics of PageRank

Identify PageRank values to "energy-levels":

$$
P(i)=\exp \left(-E_{i} / T\right) / Z
$$

with $Z=\sum_{i} \exp \left(-E_{i} / T\right)$ and an effective temperature T (can be choosen: $T=1$).

Parameter dependance of $E_{i}=-\ln (P(i))$ on the damping factor α.

Physical Review network

$N=463347$ nodes and $N_{\ell}=4691015$ links.
Coarse-grained matrix structure (500×500 cells):

left: time ordered, right: journal and then time ordered
"11" Journals of Physical Review: (Phys. Rev. Series I), Phys. Rev., Phys. Rev. Lett., (Rev. Mod. Phys.), Phys. Rev. A, B, C, D, E, (Phys. Rev. STAB and Phys. Rev. STPER).
\Rightarrow nearly triangular matrix structure of adjacency matrix: most citations links $t \rightarrow t^{\prime}$ are for $t>t^{\prime}$ ("past citations") but there is a small number ($12126=2.6 \times 10^{-3} N_{\ell}$) of links $t \rightarrow t^{\prime}$ with $t \leq t^{\prime}$ corresponding to future citations.
Strong numerical problems due to large Jordan subspaces!

Triangular approximation

Remove the small number of links due to "future citations".
Semi-analytical diagonalization is possible:

$$
S=S_{0}+e d^{T} / N
$$

where $e_{n}=1$ for all nodes $n, d_{n}=1$ for dangling nodes n and $d_{n}=0$ otherwise. S_{0} is the pure link matrix which is nil-potent:

$$
S_{0}^{l}=0 \text { with } l=352
$$

Let ψ be an eigenvector of S with eigenvalue λ and $C=d^{T} \psi$.
If $C=0 \Rightarrow \psi$ eigenvector of $S_{0} \Rightarrow \lambda=0$ since S_{0} nil-potent.
These eigenvectors belong to large Jordan blocks and are responsible for the numerical problems.

If $C \neq 0 \Rightarrow \lambda \neq 0$ since the equation $S_{0} \psi=-C e / N$ does not have a solution $\Rightarrow \lambda 1-S_{0}$ invertible.

$$
\Rightarrow \psi=C\left(\lambda \mathbf{1}-S_{0}\right)^{-1} e / N=\frac{C}{\lambda} \sum_{j=0}^{l-1}\left(\frac{S_{0}}{\lambda}\right)^{j} e / N
$$

$$
\text { From } \lambda^{l}=\left(d^{T} \psi / C\right) \lambda^{l} \Rightarrow \mathcal{P}_{r}(\lambda)=0
$$

with the reduced polynomial of degree $l=352$:

$$
\mathcal{P}_{r}(\lambda)=\lambda^{l}-\sum_{j=0}^{l-1} \lambda^{l-1-j} c_{j}=0 \quad, \quad c_{j}=d^{T} S_{0}^{j} e / N
$$

\Rightarrow at most $l=352$ eigenvalues $\lambda \neq 0$ which can be numerically determined as the zeros of $\mathcal{P}_{r}(\lambda)$.
However: still numerical problems:

- $c_{l-1} \approx 3.6 \times 10^{-352}$
- alternate sign problem with a strong loss of significance.
- big sensitivity of eigenvalues on c_{j}

Solution:

Using the multi precision library GMP with 256 binary digits the zeros of $\mathcal{P}_{r}(\lambda)$ can be determined with accuracy \sim 10^{-18}.
Furthermore the Arnoldi method can also be implemented with higher precision.
red crosses: zeros of $\mathcal{P}_{r}(\lambda)$ from 256 binary digits calculation
blue squares: eigenvalues from Arnoldi method with $52,256,512,1280$ binary digits. In the last case: \Rightarrow break off at $n_{A}=352$ with vanishing coupling element.

Full Physical Review network

Accurate eigenvalue spectrum for the full Physical Review network by a new rational interpolation method (left) and the HP Arnoldi method (right):

Fractal Weyl law

$N_{\lambda}=$ number of complex eigenvalues with $\lambda_{c} \leq|\lambda| \leq 1$. $N_{t}=$ reduced network size of Physical Review at time t.

$$
N_{\lambda}=a N_{t}^{b}
$$

Perron-Frobenius matrix for

chaotic maps

A new variant of the Ulam Method to construct the Perron-Frobenius matrix for the case of a mixed phase space:
Subdivide phase space in square cells of size M^{-1} and iterate a classical trajectory ($t \sim 10^{11}-10^{12}$) and attribute a new number to each new cell which is entered. At the same time count the number of transitions from cell i to cell $j\left(\Rightarrow n_{j i}\right) \Rightarrow$ $N \times N$-PF-Matrix ($N=$ number of non-empty cells) by:

$$
G_{j i}=\frac{n_{j i}}{\sum_{l} n_{l i}}
$$

Example: Chirikov map at $k=k_{c}=0.971635406$
with $M=10$.

Eigenvalues

Phase space representation of the eigenvector for $\lambda_{0}=1$.

Eigenvectors

$$
\lambda_{0}=1, M=25, N=177
$$

$$
\lambda_{0}=1, M=35, N=332
$$

$$
\lambda_{0}=1, M=50, N=641
$$

$$
\lambda_{0}=1, M=70, N=1189
$$

35

Extrapolation of eigenvalues

$\left(\gamma_{j}=-2 \ln \left(\left|\lambda_{j}\right|\right)\right)$

$\gamma_{1}(M)$ in the limit $M \rightarrow \infty$:

$$
\begin{aligned}
& \quad f(M)=\frac{D}{M} \frac{1+\frac{C}{M}}{1+\frac{B}{M}} \\
& D=0.245 \\
& B=13.1 \\
& C=258
\end{aligned}
$$

$\gamma_{6}(M)$ in the limit $M \rightarrow \infty$:

Absorption for $p<0.05$

Chirikov map

Separatrix map

Red, green (left): Survial Monte-Carlo Method
Blue (left): Data of Weiss et al. PRL 89, 239401 (2002) and Chirikov et al. PRL 89, 239402 (2002).

References

1. D. L. Shepelyansky Fractal Weyl law for quantum fractal eigenstates, Phys. Rev. E 77, p.015202(R) (2008).
2. L. Ermann and D. L. Shepelyansky, Ulam method and fractal Weyl law for Perron-Frobenius operators, Eur. Phys. J. B 75, 299 (2010).
3. K. M. Frahm and D. L. Shepelyansky, Ulam method for the Chirikov standard map, Eur. Phys. J. B 76, 57 (2010).
4. K. M. Frahm, B. Georgeot and D. L. Shepelyansky, Universal emergence of PageRank, J. Phys. A: Math. Theor. 44, 465101 (2011).
5. K. M. Frahm, A. D. Chepelianskii and D. L. Shepelyansky, PageRank of integers, arxiv:1205.6343[cs.IR] (2012).
6. K. M. Frahm and D. L. Shepelyansky, Google matrix of Twitter, Eur. Phys. J. B 85, 355 (2012).
7. L. Ermann, K. M. Frahm and D. L. Shepelyansky, Spectral properties of Google matrix of Wikipedia and other networks, Eur. Phys. J. B 86, 193 (2013).
8. K. M. Frahm and D. L. Shepelyansky, Poincaré recurrences and Ulam method for the Chirikov standard map, Eur. Phys. J. B 86, 322 (2013).
9. K. M. Frahm, and D. L. Shepelyansky, Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks, Eur. Phys. J. B, 87, 93 (2014).
10. K. M. Frahm, Y. H. Eom, and D. L. Shepelyansky, Google matrix of the citation network of Physical Review, Phys. Rev. E 89, 052814 (2014).
11. L. Ermann, K. M. Frahm, and D. L. Shepelyansky, Google matrix analysis of directed networks, Rev. Mod. Phys. 87, 1261 (2015).
12. K. M. Frahm, and D. L. Shepelyansky, Reduced Google matrix, Feb. 7 (2016), arXiv:1602.02394 [physics.soc-ph] preprint.
