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1. Quantum mechanics + dissipation: open system
e resonant tunneling in a dissipative electromagnetic environment
e dissipation + symmetry of coupling - competition -> QPT

2. Quantum phase transition (QPT)
 change 1n ground state upon varying a parameter I
* exotic state of matter at the critical point T, § DOUICE o
* non-equilibrium properties?? - SGY




Quantum Mechanics + Environment

Tunneling with dissipation:

« environment as a collection of oscillators-- a “bosonic bath”
[Feynman & Vernon, 1963]

* spin-boson model: 2 states + bosonic environment
[Leggett, Dorsey, Fisher, Garg & Zwerger, RMP 1987]




In Quantum Transport Expt?: “Environmental Coulomb Blockade”
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After tunneling event, spreading of charge inhibited by environment
- Coulomb interaction leads to a charging energy
- blocks (suppresses) tunneling of electron

[Reviews: Devoret,Esteve,Urbina LesHouches 95, Ingold&Nazarov 92,
Flensberg PhysicaScripta 91]
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In Quantum Transport Expt?: “Environmental Coulomb Blockade”

4

TN
e”ergyL, —..-lﬂﬁ-..— =

position

After tunneling event, spreading of charge inhibited by environment
-> Coulomb interaction leads to a charging energy

- blocks (suppresses) tunneling of electron

measured observable: (differential) conductance, _ ol

—dv
2

G VZT with r = %Rleads (=~ 0.75 here)

[Reviews: Devoret,Esteve,Urbina LesHouches 95, Ingold&Nazarov 92,
Flensberg PhysicaScripta 91]



Outline

1. Experiment

» carbon nanotube g.dot
* dirty metal leads — R~ —

* B=6T = “spinless” )

2. Theory of approach to quantum critical point

* map to interacting 1D model-- a Luttinger liquid
e power laws from scaling at strong and weak coupling
e amazing consistency with experiment!

3. Model of quantum critical system/state

* introduce Majorana fermion representation
* QCP described by a decoupled zero-mode Majorana
* indirect experimental signature of Majorana: linear T dependence



Experimental System: Carbon Nanotube Quantum Dot

Gleb Finkelstein group: H. Mebrahtu, 1. Borzenets, Y. Bomze, A. Smirnov, GF

Short carbon
nanotube
(CNT)
quantum dot
(300 nm)
connected

to resistive
leads via
tunable tunnel
barriers.

Sample: tuning the coupling
asymmetry by the side gate
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B=6 T (spinless case)

Conductance, in units of e?/h




Resonant Tunneling

Ignore environment for now:
Tunneling through a double barrier - resonances (sharp)

T 41';I'r can tune
(AG)Z + (FL + FR)Z AE? FL) FR
Symmetric coupling + on resonance - perfect transmission
Conductance is Transmission! G- 6_2 T
(Landauer viewpoint) -}

Now connect the environment-- what happens? is T suppressed?

B=6 T (spinless case)



Preliminary: Environmental Coulomb Blockade

Conductance far away from resonance - single barrier case

10

G(V,T)/G(0,T)

-1.0 ' -0.5 ' 0.0 ' 0.5 ' 1.0 )
V (mV) eV/KT

2

2r
G ~ (max{eV, kBT}) with r = %Rleads (=~ 0.3 here)

“zero bias
anomaly”



Conductance Resonance: Symmetric vs. Asymmetric Coupling

N
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B=6 T (spinless case) [Mebrahtu, et al., Nature 488, 61 (2012)]




Conductance Resonance: Height and Width Power Laws

Height: Width:
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+ 1 special point— symmetric & on resonance—
Summary: with perfect transmission, G — 1

- for all other parameters, conduction blocked, G — 0




G~1 : Unstable, Strong-Coupling Fixed Point
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e unusual cusp in conductance!
e power law approach to full transparency
* V power and T power agree (quasi-linear)

[Henok Mebrahtu, et al., Nature Physics 2013]



From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

1 . o A’V-S.S

, gate

Shape of conductance resonance:

use Vgate to tune resonant level
through the chemical potential

g
| "2 0.1
Remember simple double 0
barrier result:
T A1'1 'R
- (Ae)2+ (I'p +TR)?
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[Henok Mebrahtu, et al., Nature Physics 2013]



From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

“"V-3.5

, Qgate

Shape of conductance resonance: 13

use Vgate to tune resonant level
through the chemical potential

Remember simple double
barrier result:

Here: power in tail is 3.5 not 2 !

0.1 1 o 10
+
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[Henok Mebrahtu, et al., Nature Physics 2013]



From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

1 | . A"V-3.5

, Qgate

Shape of conductance resonance:

use Vgate to tune resonant level
through the chemical potential

Remember simple double
barrier result:

Here: power in tail is 3.5 not 2 !

Scaling collapse of data at different T 0.1 1 10

2 r/(r+1)
: Ricads (% 0.65 here) Avgate(mv)/T (K)

h [Henok Mebrahtu, et al., Nature Physics 2013]
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Tunneling with Dissipation < Luttinger Liquid physics

Theoretical approach: [D. Liu, H. Zheng, S. Florens (Grenoble), HUB]

e model in which tunneling event excites the environment
e exploit formal correspondence to interacting 1D electrons
e analyze resulting 1D quantum field theory

e power laws come from scaling dimension of irrelevant and
relevant operators near the strong- and weak- coupling fixed points

Single barrier (environmental Coulomb blockade):

mapping FLL LL1

PR

. 147 Single weak Link
_( :)_ e —— [Safi & Saleur, PRL 04]

G ~T*, with » = R./(h*/e) G~ 1290 f

LL2 JFL
S




Model of Resonant Tunneling with Environment

After: Ingold & Nazarov review 1992, K. LeHur et al., C.-H. Chung et al., S. Florens et al.

vV V
[{ f% H =Hpot + Hreaas + Hr
T
. @ . + HEnV
()
Re V— Hpoy = eqd'd
Hicads = » _ €kChgChs + Y €kChpCrD
k k

Need quantum description of electrical properties of the junctions S and D,
i.e. a quantum capacitor: . /t

dt' oV (t')

— 0

introduce conjugate charge and ps.p(t) = A
phase fluctuations on the junctions:

Q> (h)’
H= -
20+ 2L \ e

p, Q] = ie




Model of Tunneling Junctions

operator 67390 Increments charge on capacitor by 1:

e¥Qe Y =Q —e [remember action of ¢*P on position]

Hr =Vs Z(clise_wsd + h.c.) + Vp Z(CLDB_W)DCZ + h.c.)

k \ k
/ electron destroyed in dot

quasi-particle appears in metallic lead and

charge on junction shifts by 1e . @ e

convenient to use sum and R kVJ T
difference variables:

ve. = (ps+¢p)/2 conjugate to total charge on dot

P =vYs — YD €'Y moves charge around circuit *



Model of the Environment

Couple phase to bath of LC oscillators:

P s ———
choose oscillators such that the I
impedance is ohmic (resistance R)

R| &
1 R IS .

[Devoret, LesHouches 95]
2 2
dm 1 h 1 ( >2
oc, " \e) or ¥ Fm

Integrate out bath degrees of freedom to get correlation of phi:

. . 1 Renvi
ip(t) —ip(0) L environ.
<€ ¢ > X t27° g RQuant.

q2
Hgnv — % —1—2

m

decay of quantum fluctuations of charge moving around the circuit
are controlled by the resistance



Bosonic Description of Electrons

in 1D, bosonize the fermionic leads

[Wait! why 1D?? a local quantum system couples to only 1
continuous degree of freedom:

K———————
dot

mathematically: can always tri-diagonalize H starting from given state]

: - 1
Leads: free fermions cs.p(z) = Fs p explids p(@)]
- chiral fermions = bosonize V2Ta

¢s(x) and ¢p(x) are standard chiral bosonic fields:

density fluctuations of the electrons in the leads



Mapping to Luttinger Liquid

Goal: combine these lead fields with the environmental phase

ds,0 = (92 £ ¢3)/V2

Hp =) Z&bisp ¢~ 58 (@=0)£¢}(@=0)] —i(wete/2) g 4 1) .
S,D

Combine so that fields in leads remain free; boundary op. changes:

— 0 1 . 1 . o Re
TN R 0 N P S

H = HDot‘|‘—/ de (0x ch) (aw¢f)2]
_I_Z |:VSDFSD :FZ\/FQbf(CU 0)6—1\/—¢C(ZB O)d_l_hc]

V27ma T

Emulate Luttlnger liquid physics using E&M environment‘




Analysis of the Effective 1D Interacting Model

To solve: draw on enormous literature on LL physics
[resonant level: Kane&Fisher 92, Eggert&Affleck 92, Furusaki 98,
Nazarov&Glazman 03, Komnik&Gogolin 03, Meden, et al. 05, Goldstein&Berkovits 10, ...]

e integrate out all quadratic degrees of freedom
e perform perturbative RG-- “Coulomb gas RG”
e at strong-coupling fixed point, analyze likely dominant operators

(1L,1)

<

(1,0)
VS
resulting
RG flow
diagram A

(on resonance):
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“healed chain” fixed point:
competition between the two
leads prevents the level from
being absorbed into either one



Operators Controlling the Flow

Most important effect on transmission:
2KF scattering (back scattering) from the barriers

in bosonized form, this corresponds to the operator cos (2\/7_7gbx20)

This operator is relevant-- causes flow to weak coupling

—> for low conductance, G ~ T?"
.

near unitary conductance, 1 — G ~ T'7+1

If the coefficient of this leading operator is exactly 0
(ie. on-resonance and with symmetric barriers),

then the next-to-leading operator is COS (Qﬁgbx:o)@mqu:o
corresponds to 2kr scattering off the Friedel oscillation in the density

This operator is irrelevant-- controls flow into the QCP along symmetric line

2
= near unitary conductance, | _ (7 ~ T7+1



Comparing Exponents to Experiment

1 +eun., |Gpeak VS T (@SYM.)  Gwidth Vs T (Sym.)
2r = 1.5 r
_0.14 "+ 1 — 043 %1__
= used to extract £
o r=0.75 =
0.01 4 045 =
0.1Temperature1(K) ”(;jl ll
. | Gpeak VS T or V (Svm) Temperature (K)
] e Peak1 14 ~— l‘.A\vl;;fe
1 A Peak2 ’,/ ; .
K 2 - :
= o g — 114 Tail of peak vsiVgate
@ P r _I_ 1 ’E\ 0.1E
Q < ©
F001- ‘e .;" © Vbias (uV) \
T “/: ° 1.1or1.2 0.014 ;
el 2(r+1) =35
Eal T :
01 {{{ 3.4 1E-3 +———rrrr——rrrm
Temperature (K) 0.1 1 10
AV gate(MV(T, via)" ™ k)



Strong Coupling Critical State: Majorana Fermion

Merl

What is special about the model
Hamiltonian at the critical point?

27ra

reorganize, drop inessential factors

~ iy #1(@=0) Vsd+ Vpd'] + o iy 1 (@=0) Vpd+ Vsd']

‘ If Vg = Vp, only the combination d + d' appears! ‘

(current around the loop involves both
destruction and creation of the dot electron)



Majorana Hamiltonian for the QCP

First, unitary transform eliminates @.. field from tunneling term:

U = exp [i(d'd — 1/2)¢.(0)/V2] , generating a density-density term

H = HDot + HLeads _WhrUF(de _ 1/2)858¢C(x — O)

—|—{V32—17:26_i—\/21Tf¢f(x:O)d—|— ‘\//DLD i—\/QleW(ﬂ?:O)d_l_ h.C.}

Fs ,—i¢s(z=0)

2ma

Second, refermionize for g=1/2 (ie. r=1): zp]i =

[as in Komnik & Gogolin PRL 03; like Emery & Kivelson for 2 channel Kondo]

competition between leads is like competition between channels
in 2CK-- leads to Majorana representation in same way



Majorana Hamiltonian for the QCP

Write the state in the quantum dot as two Majorana’s: d' = a — ib
HMajorana — HLeads"" (VS — VD) [TP}(O) T %‘-‘(0)] a
+i(Vs + Vp) [ }(0) + ¢(0)]b
+ 2ieqab — 2imhvp] (0)1).(0)ab

e one Majorana hybridizes with the leads
e the other is uncoupled (when symmetric and on resonance)
[much as in describing the two-channel Kondo problem]

1
an independent Majorana zero mode‘ S = 5log2

In experiment, r is not quite 1 :
interacting leads with g o< (1 —7) S = Zlog(1 + r) [Wong &
Affleck]

If neglect contact interaction: Majorana resonant level
- non-interacting model, so dependence on T and V is quadratic



Majorana Hamiltonian for the QCP

Write the state in the quantum dot as two Majorana’s: d' = a — ib
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1
an independent Majorana zero mode‘ S = 5log2

In experiment, r is not quite 1 :
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Majorana Hamiltonian: Linear Conductance from Interactions

If neglect contact interaction: Majorana resonant level
- hon-interacting model, so dependence on T and V is quadratic

But in system studied, the interaction is large, ~Er 5.+ 110V (0)ab
Nevertheless, try perturbation theory: il (0)ye(0)a

physical current in transformed basis: [ = V]Y(0) — w}(())} b

Y ¢ unaffected by interaction
- correction to G=1 comes from self-energy of b Majorana!

Gy(t) = (bT(0)b(t)) o< 1/t
Gy (om0 (1) o 1/t Ga(t) = (a™(0)a(t)) x 1

> p(t) x vEGa (1G5, (t) ox 1/t7

2 1—G o T" by Fourier transform
linear dependence on T or V is signature of Majorana fermion

If r not 1, ~near linear dependence... [H. Zheng, S. Florens, HB, PRB 2014]



G~1 : Unstable, Strong-Coupling Fixed Point
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e unusual cusp in conductance!
* power law approach to full transparency
e \V power and T power agree (quasi-linear)

non-quadratic dependence is signature of Majorana zero mode
[Henok Mebrahtu, et al., Nature Physics 2013]



CONCLUSIONS

Majorana Quantum Critical Behavior for
Resonant Level + Dissipative Environment

=» Resonant tunneling in a m | I.

dissipative environment
» dissipation + symmetry of coupling - competition - QPT

» 1. Experiment: Beautiful data accessing both
strong- and weak- coupling fixed points

®» 2. Theory: mapping to interacting 1D model-- emulation of LL
uncoupled Majorana state - ~linear dependence of 1-G

D. Liu, H. Zheng, S. Florens, HUB
H. Mebrahtu, |. Borzenets,Y. Bomze,
A. Smirnov, G. Finkelstein eg&
[Mebrahtu, et al., Nature 488, 61 (2012), ' )
Nature Physics (2013)]
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