

Resonant Tunneling in a Dissipative Environment: Quantum Critical Behavior

Harold Baranger, *Duke University*

- 1. Quantum mechanics + dissipation: <u>open system</u>
 - resonant tunneling in a dissipative electromagnetic environment
 - dissipation + symmetry of coupling \rightarrow competition \rightarrow QPT

2. Quantum phase transition (QPT)

- change in ground state upon varying a parameter
- exotic state of matter at the critical point
- non-equilibrium properties??

Tunneling with dissipation:

- environment as a collection of oscillators-- a "bosonic bath"
 - [Feynman & Vernon, 1963]
- spin-boson model: 2 states + bosonic environment
 [Leggett, Dorsey, Fisher, Garg & Zwerger, RMP 1987]

Environmental modes suppresses tunneling.

After tunneling event, spreading of charge inhibited by environment

- \rightarrow Coulomb interaction leads to a charging energy
- \rightarrow blocks (suppresses) tunneling of electron

[Reviews: Devoret,Esteve,Urbina LesHouches 95, Ingold&Nazarov 92, Flensberg PhysicaScripta 91]

After tunneling event, spreading of charge inhibited by environment

- \rightarrow Coulomb interaction leads to a charging energy
- \rightarrow blocks (suppresses) tunneling of electron

top view of structure

charge localized → **Coulomb barrier**

After tunneling event, spreading of charge inhibited by environment

- \rightarrow Coulomb interaction leads to a charging energy
- \rightarrow blocks (suppresses) tunneling of electron

 top view of structure
 •
 •
 Charge localized → Coulomb barrier

 still tunneling under Coulomb barrier

After tunneling event, spreading of charge inhibited by environment

- \rightarrow Coulomb interaction leads to a charging energy
- \rightarrow blocks (suppresses) tunneling of electron

 top view of structure
 Coulomb barrier

 still tunneling under Coulomb barrier

 finally comes out

After tunneling event, spreading of charge inhibited by environment
→ Coulomb interaction leads to a charging energy
→ blocks (suppresses) tunneling of electron

measured observable: (differential) conductance, $G \equiv \frac{dI}{dV}$

$$G \propto V^{2r}$$
 with $r \equiv \frac{e^2}{h} R_{\text{leads}} \ (\approx 0.75 \text{ here})$
 $\left(I \propto V^{2r+1}\right)$

[Reviews: Devoret,Esteve,Urbina LesHouches 95, Ingold&Nazarov 92, Flensberg PhysicaScripta 91]

Outline

1. Experiment

- carbon nanotube q.dot
- dirty metal leads $\rightarrow R \sim \frac{h}{c^2}$
- B=6T \Rightarrow "spinless"

2. Theory of approach to quantum critical point

- map to interacting 1D model-- a Luttinger liquid
- power laws from scaling at strong and weak coupling
- amazing consistency with experiment!

3. Model of quantum critical system/state

- introduce Majorana fermion representation
- QCP described by a decoupled zero-mode Majorana
- indirect experimental signature of Majorana: linear T dependence

Experimental System: Carbon Nanotube Quantum Dot

Gleb Finkelstein group: H. Mebrahtu, I. Borzenets, Y. Bomze, A. Smirnov, GF

Resonant Tunneling

Ignore environment for now:

Tunneling through a double barrier \rightarrow resonances (sharp)

$$T = \frac{4\Gamma_L\Gamma_R}{(\Delta\epsilon)^2 + (\Gamma_L + \Gamma_R)^2} \qquad \begin{array}{c} \text{can tune} \\ \Delta\epsilon, \ \Gamma_L, \ \Gamma_R \end{array}$$

Symmetric coupling + on resonance → perfect transmission

Conductance is Transmission! $G = \frac{e^2}{h}T$ (Landauer viewpoint)

Now connect the environment-- what happens? is *T* suppressed?

B=6 T (spinless case)

Preliminary: Environmental Coulomb Blockade

Conductance far away from resonance \rightarrow single barrier case

B=6 T (spinless case)

[Mebrahtu, et al., Nature 488, 61 (2012)]

G~1 : Unstable, Strong-Coupling Fixed Point

- unusual cusp in conductance!
- power law approach to full transparency
- V power and T power agree (quasi-linear)

[Henok Mebrahtu, et al., Nature Physics 2013]

From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

[Henok Mebrahtu, et al., Nature Physics 2013]

From G~1 to G=0: Flow Toward Weak-Coupling Fixed Point

Tunneling with Dissipation ↔ Luttinger Liquid physics

Theoretical approach: [D. Liu, H. Zheng, S. Florens (Grenoble), HUB]

- model in which tunneling event excites the environment
- exploit formal correspondence to interacting 1D electrons
- analyze resulting 1D quantum field theory
- power laws come from scaling dimension of irrelevant and relevant operators near the strong- and weak- coupling fixed points

Single barrier (environmental Coulomb blockade):

Model of Resonant Tunneling with Environment

After: Ingold & Nazarov review 1992, K. LeHur et al., C.-H. Chung et al., S. Florens et al.

Need quantum description of <u>electrical</u> properties of the junctions S and D, i.e. a **quantum capacitor**: $e^{-\int_{-\infty}^{t} f^{t}}$

introduce conjugate charge and phase fluctuations on the junctions:

$$H = \frac{Q^2}{2C} + \frac{\varphi^2}{2L} \left(\frac{\hbar}{e}\right)^2$$

$$\varphi_{S,D}(t) = \frac{e}{\hbar} \int_{-\infty}^{t} dt' \, \delta V(t')$$
$$[\varphi, Q] = ie$$

Model of Tunneling Junctions

operator $e^{i\varphi}$ increments charge on capacitor by 1:

 $e^{i\varphi}Qe^{-i\varphi} = Q - e$ [remember action of $e^{i\hat{p}}$ on position]

$$H_{\rm T} = V_S \sum_{k} (c_{kS}^{\dagger} e^{-i\varphi_S} d + \text{h.c.}) + V_D \sum_{k} (c_{kD}^{\dagger} e^{-i\varphi_D} d + \text{h.c.})$$

electron destroyed in dot

quasi-particle appears in metallic lead and charge on junction shifts by 1e

convenient to use sum and difference variables:

 $arphi_c \equiv (arphi_S + arphi_D)/2$ conjugate to total charge on dot $arphi \equiv arphi_S - arphi_D$ $e^{i\varphi}$ moves charge around circuit *****

 R_{e}

Couple phase to bath of LC oscillators:

Integrate out bath degrees of freedom to get correlation of phi:

$$\left\langle e^{i\varphi(t)}e^{-i\varphi(0)}\right\rangle \propto \frac{1}{t^{2r}}$$
, $r \equiv \frac{R_{\text{environ.}}}{R_{\text{Quant.}}}$

decay of quantum fluctuations of charge moving around the circuit are controlled by the resistance

in 1D, bosonize the fermionic leads

[Wait! why 1D?? a local quantum system couples to only 1 continuous degree of freedom:

mathematically: can always tri-diagonalize H starting from given state]

Leads: free fermions → chiral fermions → bosonize

$$c_{S,D}(x) = \frac{1}{\sqrt{2\pi a}} F_{S,D} \exp[i\phi_{S,D}(x)]$$

 $\phi_S(x)$ and $\phi_D(x)$ are standard chiral bosonic fields:

density fluctuations of the electrons in the leads

Mapping to Luttinger Liquid

Goal: combine these lead fields with the environmental phase $\phi_{S,D} = (\phi_c^0 \pm \phi_f^0)/\sqrt{2}$

$$H_{\rm T} = \sum_{S,D} \frac{V_{S,D}F_{S,D}}{\sqrt{2\pi a}} e^{-i\frac{1}{\sqrt{2}}[\phi_c^0(x=0)\pm\phi_f^0(x=0)]} e^{-i(\varphi_c\pm\varphi/2)}d + \text{h.c.}$$

Combine so that fields in leads remain free; boundary op. changes:

$$\phi_f \equiv \sqrt{g_f} \left(\phi_f^0 + \frac{1}{\sqrt{2}} \varphi \right)$$
 $g_f \equiv \frac{1}{1+r} \le 1 \quad \text{with } r \equiv \frac{R_e}{R_Q}$

$$H = H_{\text{Dot}} + \frac{v_F}{4\pi} \int_{-\infty}^{\infty} dx \left[(\partial_x \phi_c)^2 + (\partial_x \phi_f)^2 \right] \\ + \sum_{S,D} \left[\frac{V_{S,D} F_{S,D}}{\sqrt{2\pi a}} e^{\mp i \frac{1}{\sqrt{2g_f}} \phi_f(x=0)} e^{-i \frac{1}{\sqrt{2}} \phi_c(x=0)} d + \text{h.c.} \right]$$

Emulate Luttinger liquid physics using E&M environment

Analysis of the Effective 1D Interacting Model

To solve: draw on enormous literature on LL physics [resonant level: Kane&Fisher 92, Eggert&Affleck 92, Furusaki 98, Nazarov&Glazman 03, Komnik&Gogolin 03, Meden, et al. 05, Goldstein&Berkovits 10, ...]

- integrate out all quadratic degrees of freedom
- perform perturbative RG-- "Coulomb gas RG"
- at strong-coupling fixed point, analyze likely dominant operators

Most important effect on transmission:

 $2k_F$ scattering (back scattering) from the barriers

in bosonized form, this corresponds to the operator $\cos\left(2\sqrt{\pi}\phi_{x=0}
ight)$

This operator is relevant -- causes flow to weak coupling

→ for low conductance, $G \sim T^{2r}$ near unitary conductance, $1 - G \sim T^{\frac{r}{r+1}}$

If the coefficient of this leading operator is exactly 0 (ie. on-resonance and with symmetric barriers), then the next-to-leading operator is $\cos\left(2\sqrt{\pi}\phi_{x=0}\right)\partial_x\phi_{x=0}$ corresponds to $2k_F$ scattering off the Friedel oscillation in the density

This operator is irrelevant-- controls flow into the QCP along symmetric line \rightarrow near unitary conductance, $1 - G \sim T^{\frac{2}{r+1}}$

Comparing Exponents to Experiment

Strong Coupling Critical State: Majorana Fermion

What is special about the model Hamiltonian at the critical point?

$$H_T \sim \sum_{S,D} \left[\frac{V_{S,D} F_{S,D}}{\sqrt{2\pi a}} e^{\mp i \frac{1}{\sqrt{2g_f}} \phi_f(x=0)} e^{-i \frac{1}{\sqrt{2}} \phi_c(x=0)} d + \text{h.c.} \right]$$

reorganize, drop inessential factors

$$\sim e^{-i\frac{1}{\sqrt{2g_f}}\phi_f(x=0)} \left[V_S \, d + V_D \, d^{\dagger} \right] + e^{+i\frac{1}{\sqrt{2g_f}}\phi_f(x=0)} \left[V_D \, d + V_S \, d^{\dagger} \right]$$

If $V_S = V_D$, only the combination $d + d^{\dagger}$ appears!

(current around the loop involves both destruction and creation of the dot electron)

Majorana Hamiltonian for the QCP

First, unitary transform eliminates ϕ_c field from tunneling term:

 $U = \exp\left[i(d^{\dagger}d - 1/2)\phi_c(0)/\sqrt{2}
ight]$, generating a density-density term

$$H = H_{\text{Dot}} + H_{\text{Leads}} - \pi \hbar v_F (d^{\dagger} d - 1/2) \partial_x \phi_c (x = 0) + \left[\frac{V_S F_S}{\sqrt{2\pi a}} e^{-i \frac{1}{\sqrt{2g_f}} \phi_f (x=0)} d + \frac{V_D F_D}{\sqrt{2\pi a}} e^{+i \frac{1}{\sqrt{2g_f}} \phi_f (x=0)} d + \text{h.c.} \right]$$

Second, refermionize for g=1/2 (ie. r=1): $\psi_f^{\dagger} \equiv \frac{F_S}{\sqrt{2\pi a}} e^{-i\phi_f(x=0)}$

[as in Komnik & Gogolin PRL 03; like Emery & Kivelson for 2 channel Kondo]

competition between leads is like competition between channels in 2CK-- leads to Majorana representation in same way

Majorana Hamiltonian for the QCP

Write the state in the quantum dot as two Majorana's: $d^{\dagger} = a - ib$ $H_{\text{Majorana}} = H_{\text{Leads}} + (V_S - V_D) [\psi_f^{\dagger}(0) - \psi_f(0)] a$ $+ i(V_S + V_D) [\psi_f^{\dagger}(0) + \psi_f(0)] b$ $+ 2i\epsilon_d ab - 2i\pi\hbar v_F \psi_c^{\dagger}(0)\psi_c(0)ab$

- one Majorana hybridizes with the leads
- the other is uncoupled (when symmetric and on resonance) [much as in describing the two-channel Kondo problem]

an independent Majorana zero mode

$$S = \frac{1}{2}\log 2$$

In experiment, r is not quite 1 :

interacting leads with
$$\tilde{g} \propto (1-r)$$
 $S = \frac{1}{2}\log(1+r)$ [Wong & Affleck]

If neglect contact interaction: Majorana resonant level \rightarrow non-interacting model, so dependence on T and V is quadratic

Majorana Hamiltonian for the QCP

Write the state in the quantum dot as two Majorana's: $d^{\dagger} = a - ib$ $H_{\text{Majorana}} = H_{\text{Leads}} + (V_S - V_P) [\psi_f^{\dagger}(0) = \psi_f(0)] a$ $+ i(V_S + V_D) [\psi_f^{\dagger}(0) + \psi_f(0)] b$ $+ 2\nu_a db - 2i\pi \hbar v_F \psi_c^{\dagger}(0) \psi_c(0) ab$

- one Majorana hybridizes with the leads
- the other is uncoupled (when symmetric and on resonance) [much as in describing the two-channel Kondo problem]

an independent Majorana zero mode

$$S = \frac{1}{2}\log 2$$

In experiment, r is not quite 1 :

interacting leads with
$$\tilde{g} \propto (1-r)$$
 $S = \frac{1}{2} \log(1+r)$ [Wong & Affleck]

If neglect contact interaction: Majorana resonant level \rightarrow non-interacting model, so dependence on T and V is quadratic

If neglect contact interaction: Majorana resonant level

 \rightarrow non-interacting model, so dependence on T and V is quadratic

But in system studied, the interaction is **large**, $\sim E_F -2i\pi\hbar v_F \psi_c^{\dagger}(0)\psi_c(0)ab$ Nevertheless, try perturbation theory:

physical current in transformed basis: $\hat{I} = V \left[\psi_f(0) - \psi_f^{\dagger}(0) \right] b$

 ψ_f unaffected by interaction

 \rightarrow correction to G=1 comes from self-energy of b Majorana!

$$G_b(t) \equiv \left\langle b^+(0)b(t) \right\rangle \propto 1/t$$

$$G_{\psi_c(x=0)}(t) \propto 1/t$$

$$G_a(t) = \left\langle a^+(0)a(t) \right\rangle \propto 1$$

- $\rightarrow \Sigma_b(t) \propto v_F^2 G_a(t) G_{\psi_c}^2(t) \propto 1/t^2$
- $\rightarrow 1 G \propto T^1$ by Fourier transform

linear dependence on T or V is signature of Majorana fermion

If r not 1, ~near linear dependence...

[H. Zheng, S. Florens, HB, PRB 2014]

G~1 : Unstable, Strong-Coupling Fixed Point

- unusual cusp in conductance!
- power law approach to full transparency
- V power and T power agree (quasi-linear)

non-quadratic dependence is signature of Majorana zero mode

[Henok Mebrahtu, et al., Nature Physics 2013]

CONCLUSIONS

Majorana Quantum Critical Behavior for Resonant Level + Dissipative Environment

 Resonant tunneling in a dissipative environment

- dissipation + symmetry of coupling \rightarrow competition \rightarrow QPT
- 1. Experiment: Beautiful data accessing both strong- and weak- coupling fixed points
- → 2. Theory: mapping to interacting 1D model-- emulation of LL uncoupled Majorana state \rightarrow ~linear dependence of 1-G

D. Liu, H. Zheng, S. Florens, HUB H. Mebrahtu, I. Borzenets, Y. Bomze, A. Smirnov, <u>G. Finkelstein</u>

[Mebrahtu, et al., Nature 488, 61 (2012), Nature Physics (2013)]

