Quantum corrections for Work

Olivier Brodier - L.M.P.T., Tours, France
in collaboration with
Kirone Mallick - Saclay, Paris.
Alfredo Ozorio de Almeida - C.B.P.F., Rio de Janeiro, Brésil

Plan

\rightarrow Work in thermodynamics
\rightarrow Jarzynski approach
\rightarrow Quantum problem
\rightarrow Different scenarii

WORK IN THERMODYNAMICS

$\mathrm{T}=\mathrm{T}_{0}$ constant + second principle :

$$
W \geqslant W_{\min }=\Delta F\left(T_{0}, V\right)
$$

Jarzynski approach

Thermodynamics is intrinsically statistical and

$$
" W^{\prime}=\frac{1}{N} \sum_{n=1}^{N} W_{n}=\langle W\rangle
$$

Jarzynski states that, if the initial state is a thermal state, then

$$
\left\langle e^{-\beta W}\right\rangle \equiv \int \frac{e^{-\beta H_{0}\left(x_{0}\right)}}{Z_{0}} e^{-\beta W\left(x_{0} \rightarrow x_{\tau}\right)} d x_{0}=e^{-\beta \Delta F}=\frac{Z_{B}}{Z_{A}}
$$

[Jarzynski 1996]

Some definitions

Time perturbation of a Hamiltonian :

$$
\mathrm{H}_{\mathrm{t}}(\mathrm{x})=\mathrm{H}_{0}-\Phi_{\mathrm{t}} \cdot \mathrm{q}
$$

with $\Phi_{\tau}=\Phi_{0}=0, x=(p, q)$ and Φ_{t} is a force.

$$
W=\int_{0}^{\tau} \Phi_{\mathrm{t}} \cdot \dot{\mathrm{q}}_{\mathrm{t}} d \mathrm{t}
$$

Integration by parts

$$
\begin{gathered}
W=0-\int_{0}^{\tau} \dot{\Phi}_{t} \cdot q_{t} d t \\
W=\int_{0}^{\tau} \frac{\partial H_{t}}{\partial t}\left(x_{t}\right) d t
\end{gathered}
$$

General scheme of the proofs ([Jarzynski PRE 1997])
(1) $\frac{d}{d \tau}\left\langle e^{-\beta W}\right\rangle_{x_{\tau}=x}=\int K_{\tau}\left(x, x^{\prime}\right)\left\langle e^{-\beta W}\right\rangle_{x_{\tau}=x^{\prime}} d x^{\prime}-\beta \frac{\partial H_{\tau}}{\partial \tau}\left\langle e^{-\beta W}\right\rangle_{x_{\tau}=x}$

Thermal equilibrium state $\Pi_{\tau}=\frac{e^{-\beta H_{\tau}(x)}}{Z_{\tau}}$ verifies detailed balance :

$$
\int K_{\tau}\left(x, x^{\prime}\right) \Pi_{\tau}\left(x^{\prime}\right) d x^{\prime}=0
$$

Hence $\frac{Z_{\tau}}{Z_{0}} \Pi_{\tau}(x)$ is a solution of (1) and

$$
\frac{1}{Z_{0}} \int Z_{\tau} \Pi_{\tau}(x) d x=\int\left\langle e^{-\beta W}\right\rangle_{x_{\tau}=x} d x
$$

QuAntum PROBLEM

\rightarrow Problem in defining a single work operator for the whole process.
\rightarrow Work as the difference between final and initial energy in an adiabatical process.
\rightarrow Work as a difference between final and initial energy of the operator?
\rightarrow Master equation approach to generalize the notion of classical path in a non-adiabatical process

Master equation approach

$$
\frac{\partial \widehat{\rho}_{t}}{d t}=-\frac{i}{\hbar}\left[\widehat{H}_{t}, \widehat{\rho}_{t}\right]+\frac{1}{2 \hbar} \sum_{n}\left(2 \widehat{L}_{n, t} \widehat{\rho}_{t}\left(\widehat{\mathrm{~L}}_{n, t}\right)^{\dagger}-\left(\widehat{\mathrm{L}}_{n, t}\right)^{\dagger} \widehat{\mathrm{L}}_{n, t} \widehat{\rho}_{t}-\widehat{\rho}_{t}\left(\widehat{\mathrm{~L}}_{n, t}\right)^{\dagger} \widehat{\mathrm{L}}_{n, t}\right)=\mathcal{L}_{t}\left(\widehat{\rho}_{t}\right)
$$

as \mathcal{L}_{t} is time dependent, $\widehat{\Pi}_{\mathrm{t}}$ is not solution, that is

$$
\frac{\partial \hat{\Pi}_{t}}{\mathrm{dt}} \neq \mathcal{L}_{\mathrm{t}}\left(\hat{\Pi}_{\mathrm{t}}\right)
$$

- Find a superoperator \mathcal{W}_{t} such that

$$
\frac{\mathrm{d}}{\mathrm{dt}} \hat{\Pi}_{\mathrm{t}}=\left(\mathcal{L}_{\mathrm{t}}+\mathcal{W}_{\mathrm{t}}\right)\left(\hat{\Pi}_{\mathrm{t}}\right)
$$

- With the assumption that $\hat{\Pi}_{t}$ is "balanced" by \mathcal{L}_{t}, that is

$$
\mathcal{L}_{\mathrm{t}}\left(\hat{\Pi}_{\mathrm{t}}\right)=0,
$$

then a brute force solution is then

$$
\mathcal{W}_{\mathrm{t}}(\widehat{\rho})=\left(\frac{\mathrm{d}}{\mathrm{dt}} \hat{\Pi}_{\mathrm{t}}\right)\left(\hat{\Pi}_{\mathrm{t}}\right)^{-1} \hat{\rho}
$$

Expansion in \mathcal{W}_{t}

To obtain a Jarzynski-like equation one uses a Schwinger-Dyson expansion in \mathcal{W}_{t} of the solution to the modified master equation

$$
\mathcal{U}_{0, \tau}^{\mathcal{L}+\mathcal{W}}=\sum_{n} \int_{0 \leqslant t_{1} \leqslant \ldots \leqslant t_{n} \leqslant t}\left(\prod_{i=1}^{n} d t_{i}\right) \mathcal{U}_{0, t_{1}} \mathcal{W}_{t_{1}} \mathcal{U}_{t_{1}, t_{2}} \ldots \mathcal{W}_{t_{n}} \mathcal{U}_{t_{n}, t}
$$

$$
\operatorname{Tr}\left(\widehat{\Pi}_{\tau} \widehat{\mathcal{A}}\right)=\operatorname{Tr}\left(\widehat{\Pi}_{0} \vec{e} \int_{0}^{\tau} \mathcal{W}_{\mathrm{t}}^{\mathcal{L}} \mathrm{dt}\left(\widehat{\mathcal{A}}_{\tau}\right)\right)
$$

[R. Chetrite and K.Mallick_2011]

Quantum work corrections

From Baker-Campbell-Hausdorff
$\frac{d}{d t}\left(Z_{t} \widehat{\Pi}_{t}\right)\left(Z_{t} \widehat{\Pi}_{t}\right)^{-1}=-\beta \frac{\partial \widehat{H}_{t}}{\partial t}-\frac{\beta^{2}}{2!}\left[\frac{\partial \widehat{H}_{t}}{\partial t}, \widehat{H}_{t}\right]-\frac{\beta^{3}}{3!}\left[\left[\frac{\partial \widehat{H}_{t}}{\partial t}, \widehat{H}_{t}\right] \widehat{H}_{t}\right]-\ldots$

From Moyal expansion in Weyl representation
$\mathcal{W}_{\mathrm{t}}(x)=-\beta\left[\frac{\partial \mathrm{H}_{\mathrm{t}}}{\partial \mathrm{t}}(x)+\frac{i \hbar \beta}{2}\left\{\frac{\partial \mathrm{H}_{\mathrm{t}}}{\partial \mathrm{t}}(x), \mathrm{H}_{\mathrm{t}}(x)\right\}+\frac{(i \hbar \beta)^{2}}{6}\left\{\left\{\frac{\partial \mathrm{H}_{\mathrm{t}}}{\partial \mathrm{t}}(x), \mathrm{H}_{\mathrm{t}}(x)\right\}, \mathrm{H}_{\mathrm{t}}(x)\right\}+\mathcal{O}\left((\hbar \beta)^{3}\right)\right]$

Harmonic oscillator

$$
\widehat{\mathrm{H}}_{\mathrm{t}}=\frac{\widehat{\mathrm{p}}^{2}}{2 \mathrm{~m}}+\frac{k_{\mathrm{t}}}{2} \widehat{\mathrm{q}}^{2}
$$

In Weyl representation

$$
\begin{aligned}
& \mathcal{W}_{t}(p, q)=-\dot{\theta}\left[(1-f(\theta)) \frac{p^{2}}{m \hbar \omega}+(1+f(\theta)) \frac{m \omega q^{2}}{\hbar}+i g(\theta) \frac{p q}{\hbar}\right] \\
& f(t)=\sinh (4 t) /(4 t) \\
& g(t)=\sinh (2 t)^{2} / t \\
& \theta=\beta \hbar \omega
\end{aligned}
$$

ћ EXPANSION

$$
\mathcal{W}_{\mathrm{t}}(p, q)=-\beta\left[\frac{\dot{k}_{t}}{2} \widehat{q}^{2}+i(\beta \hbar \omega) \frac{\dot{\omega}}{\omega} \omega p q+(\beta \hbar \omega)^{2} \frac{2}{3} \frac{\dot{\omega}}{\omega}\left(\frac{p^{2}}{2 m}-\frac{k}{2} q^{2}\right)+\mathcal{O}\left((\beta \hbar \omega)^{3}\right)\right]
$$

during a time step δt the state $|\psi\rangle$ can chose between

- a jump with Lindblad operator (proba $\mathrm{p} \delta \mathrm{t}$)

$$
\left|\Psi_{t}\right\rangle \longrightarrow \widehat{\mathrm{L}}_{k}\left|\Psi_{t}\right\rangle
$$

■ or a pseudo-unitary evolution (proba $1-\mathrm{p} \delta \mathrm{t}$) with effective non-Hermitian Hamiltonian $\widehat{\mathrm{H}}_{\mathrm{t}}^{\mathcal{L}}$

$$
\left|\Psi_{t}\right\rangle \longrightarrow e^{-\frac{i \delta t}{\hbar}} \widehat{H}_{t}^{c}\left|\Psi_{t}\right\rangle
$$

Then

$$
\hat{\rho}_{t}=\overline{\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|}
$$

QUANTUM TRAJECTORY FOR THE THERMAL STATE

$$
\widehat{\Pi}_{t}=\sum_{n}\left|n_{t}\right\rangle e^{-\beta E_{n, t}}\left\langle n_{t}\right|
$$

$\Pi(\tau)=\overline{|\rho(\tau)><\phi(\tau)|}$

Modify $\widehat{H}_{t}^{\mathcal{L}}$ so that quantum trajectory follows $\widehat{\Pi}_{t}$

$$
\begin{gathered}
\hat{H}_{t}^{\varepsilon} \longrightarrow H_{t}^{\ell}+\widehat{H}_{t}^{\pi} \\
\frac{d}{d t} \hat{\Pi}_{t}=-\frac{i}{\hbar}\left[\hat{H}_{\mathrm{t}}^{\pi}, \hat{\Pi}_{\mathrm{t}}\right]+\mathcal{L}_{\mathrm{t}}\left(\hat{\Pi}_{\mathrm{t}}\right)
\end{gathered}
$$

Quantum Work of the trajectory

- A possible expression is

$$
\widehat{H}_{t}^{\pi}=i \hbar \sum_{n}\left|\dot{n}_{t}\right\rangle\left\langle n_{t}\right|-\frac{i \beta \hbar}{2} \sum_{n} \dot{E}_{n, t}\left|n_{t}\right\rangle\left\langle n_{t}\right|-\frac{i \hbar}{2} \frac{\dot{Z}_{t}}{Z_{t}}
$$

- Example of the Harmonic oscillator $\widehat{H}_{t}=\frac{p^{2}}{2 m}+\frac{k_{t}}{2} q^{2}$

$$
\widehat{H}_{t}^{\pi}=-\frac{\dot{\omega}}{2 \omega} \frac{\widehat{p} \widehat{q}+\widehat{q} \widehat{p}}{2}-\frac{i \beta \hbar}{2} \frac{\dot{\omega}}{\omega} \widehat{H}_{t}-\frac{i \hbar}{2} \frac{\dot{Z}_{t}}{Z_{t}}
$$

- First term makes evolution of $\left|n_{t}\right\rangle$, and second term makes evolution of $E_{n, t}$. Third term is normalization.

PERSPECTIVES

- Find a more natural proof
- Unify the different approaches
- Treat a realistic system where work is an accessible quantity
- Give an experimental meaning to the "quantum work"

A simple proof

$$
\left\langle e^{-\beta W}\right\rangle=\int \rho_{0}\left(x_{0}\right) e^{-\beta W\left(x_{0}, x_{t}\right)} d x_{0}
$$

thermal initial state and adiabatic Hamiltonian system :

$$
\begin{gathered}
\left\langle e^{-\beta W}\right\rangle=\int \frac{e^{-\beta H_{0}\left(x_{0}\right)}}{Z_{0}} e^{-\beta\left[H_{t}\left(x_{t}\right)-H_{0}\left(x_{0}\right)\right]} d x_{0} \\
\left\langle e^{-\beta W}\right\rangle=\frac{1}{Z_{0}} \int e^{-\beta H_{t}\left(x_{t}\right)} d x_{0}
\end{gathered}
$$

simplecticity :

$$
\left\langle e^{-\beta W}\right\rangle=\frac{1}{Z_{0}} \int e^{-\beta H_{t}\left(x_{t}\right)} d x_{t}=\frac{Z_{t}}{Z_{0}}
$$

with

$$
Z_{t}=e^{-\beta F_{t}}=\int e^{-\beta H_{t}(x)} d x
$$

General scheme of the proofs

Transport of the real state :

$$
\begin{gathered}
\frac{d}{d t}\left[\rho_{t}\left(x_{t}\right)\right]=\dot{\rho}_{t}\left(x_{t}\right)-\left\{H_{t}\left(x_{t}\right), \rho_{t}\left(x_{t}\right)\right\}=0 \\
\rho_{\tau}\left(x_{\tau}\right)=\rho_{0}\left(x_{0}\right)
\end{gathered}
$$

Invariance by transport for the thermal equilibrium state :

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\Pi_{\mathrm{t}}\left(x_{\mathrm{t}}\right)\right]=\dot{\Pi}_{\mathrm{t}}\left(x_{\mathrm{t}}\right)-\left\{\mathrm{H}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right), \Pi_{\mathrm{t}}\left(x_{\mathrm{t}}\right)\right\}=\left[-\beta \dot{H}_{\mathrm{t}}\left(x_{\mathrm{t}}\right)-\frac{\dot{Z}_{t}}{\mathrm{Z}_{t}}\right] \Pi_{\mathrm{t}}\left(x_{\mathrm{t}}\right)
$$

$$
\Pi_{\tau}\left(x_{\tau}\right)=\Pi_{0}\left(x_{0}\right) \frac{Z_{0}}{Z_{t}} e^{-\beta \int_{0}^{\tau} \dot{H}_{t}\left(x_{t}\right) d t}
$$

Fluctuation Relations

Jarzynski relation allows to derive some fluctuation relations

$$
\begin{aligned}
& \widehat{H}_{t}=\widehat{H}_{0}+\lambda_{t} \widehat{V} \\
& \operatorname{Tr}\left(\hat{\Pi}_{\tau} \hat{A}\right)=\operatorname{Tr}\left(\hat{\Pi}_{0} e^{\tau_{0}^{\tau} \mathcal{W}_{\tau}^{\mathcal{L}} d t} \hat{A}_{\tau}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} \lambda_{\mathrm{t}}}\left[\operatorname{Tr}\left(\hat{\Pi}_{\tau} \widehat{\mathcal{A}}\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} \lambda_{\mathrm{t}}}\left[\operatorname{Tr}\left(\hat{\Pi}_{0} e^{\int_{0}^{\tau} \mathcal{W}_{\mathrm{t}}^{\tau} \mathrm{dt}} \hat{A}_{\tau}\right)\right] \\
& 0=\left.\left\langle\left(u_{0, t} \frac{\partial \mathcal{W}_{t}}{\partial \lambda_{t}} u_{t, \tau}\right)\left(\widehat{A}_{\tau}\right)\right\rangle\right|_{\lambda=0}-\left.\frac{\partial}{\partial \lambda_{t}}\left\langle\widehat{A}_{\tau}\right\rangle\right|_{\lambda=0}
\end{aligned}
$$

Quantum work

\mathcal{W}_{t} interpreted as some work rate operator.

A brute force solution is

$$
\mathcal{W}_{\mathrm{t}}(\widehat{\rho})=\left(\frac{\mathrm{d}}{\mathrm{dt}} \widehat{\Pi}_{\mathrm{t}}\right)\left(\widehat{\Pi}_{\mathrm{t}}\right)^{-1} \widehat{\rho}
$$

So that

$$
\frac{\mathrm{d}}{\mathrm{dt}} \widehat{\Pi}_{\mathrm{t}}=\mathcal{W}_{\mathrm{t}}\left(\widehat{\Pi}_{\mathrm{t}}\right)=\left(\mathcal{L}_{\mathrm{t}}+\mathcal{W}_{\mathrm{t}}\right)\left(\widehat{\Pi}_{\mathrm{t}}\right)
$$

Quantum trajectory

$$
\hat{\Pi}_{t}=\sum_{n} e^{-\beta E_{n, 0}} \sum_{\gamma(n)}(\delta t)^{[\gamma]} \widehat{T}_{N}^{\gamma} \ldots \widehat{T}_{1}^{\gamma}\left|n_{0}\right\rangle\left\langle n_{0}\right|\left(\widehat{T}_{1}^{\gamma}\right)^{\dagger} \ldots\left(\hat{T}_{N}^{\gamma}\right)^{\dagger}
$$

with

$$
[\gamma]=\text { number of jumps in trajectory } \gamma
$$

The natural quantum trajectory is combined by episodes which track the thermal state

$$
e^{-\frac{i \delta t}{\hbar}} \hat{H}_{t}^{\pi}\left|n_{t}\right\rangle \simeq e^{-\frac{\beta \delta t}{2} \dot{E}_{n, t}}\left|n_{t+\delta t}\right\rangle
$$

Adiabatical case

where $\alpha_{n}(t)$ is Berry's phase.

$$
\widehat{\Pi}_{t}=\sum_{n} e^{-\beta E_{n}} \sum_{\gamma(n)}(\delta t)^{[\gamma]} \widehat{T}_{N}^{\gamma} \ldots \widehat{T}_{1}^{\gamma}|n\rangle\langle n|\left(\widehat{T}_{1}^{\gamma}\right)^{\dagger} \ldots\left(\hat{T}_{N}^{\gamma}\right)^{\dagger}
$$

with

$$
[\gamma]=\text { number of jumps in trajectory } \gamma
$$

