Google matrix analysis of the multiproduct world trade network

Leonardo Ermann CNEA (Buenos Aires, Argentina)

Colab. Dima Shepelyansky

Alexei Chepelianskii and Klaus Frahm

supported by EC FET Open project NADINE

Quantum chaos: fundamentals and applications March 15th, 2015 School for advanced sciences of Luchon

Motivations

Google approach to the World Trade Network

L. ERMANN G matrix analysis of multiprod WTN

thanks to Klaus introduction of G matrix

Brin and Page (1998)

centrality measure:

Spectral Indices

- directed networks
- easy to compute
- incoming links
- non-local properties

directed network

adjacency matrix

thanks to Klaus introduction of G matrix

Brin and Page (1998)

centrality measure:

Spectral Indices

- directed networks
- easy to compute
- incoming links
- non-local properties

directed network

$$S = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{2} & 1 & 0 & 0 \end{pmatrix}$$
$$-\sum_{i} S_{i,j} = 1$$

-
$$\lambda_1 = 1$$
 (degeneracy)

March 15th 2015, Luchon

L. ERMANN G matrix analysis of multiprod WTN

thanks to Klaus introduction of G matrix

Brin and Page (1998)

PageRank $\mathbf{G}P = P$

directed network

L. ERMANN G matrix analysis of multiprod WTN

centrality measure:

Spectral Indices

- directed networks
- easy to compute
- incoming links
- non-local properties

 $\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) \mathbf{E} / N \ (\alpha = 0.85)$

Google Matrix

G =	_		1 61 61 61 61 6	1 61 61 61 61 6	$\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{20}$ $\frac{1}{40}$ $\frac{1}{20}$ $\frac{1}{40}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$	$\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{8}$	9 20 140 20 20 140 140 140 140 140	$\frac{9}{20}$ $\frac{9}{20}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{40}$	
- $\alpha \rightarrow S, (1 - \alpha) \rightarrow random node$									
	- Perron-Frobenius (positive) $\lambda_1 = 1$								
	- $\Delta \ge (1 - \alpha)$ (global convergence)								

L.E, Chepelianskii and Shepelyansky, Jour. Phys. A 45, 275101 (2012).

THE EUROPEAN

PHYSICAL JOURNAL B

FWL in Google matrices

Eur. Phys. J. B **75**, 299–304 (2010) DOI: 10.1140/epjb/e2010-00144-0

Regular Article

Ulam method and fractal Weyl law for Perron-Frobenius operators

L. Ermann and D.L. Shepelyansky^a

Laboratoire de Physique Théorique du CNRS (IRSAMC), Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France Eur. Phys. J. B 79, 115–120 (2011) DOI: 10.1140/epjb/e2010-10774-7

THE EUROPEAN PHYSICAL JOURNAL B

Regular Article

Fractal Weyl law for Linux Kernel architecture

L. Ermann¹, A.D. Chepelianskii², and D.L. Shepelyansky^{1,a}

- ¹ Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, UPS-CNRS, 31062 Toulouse, France
- ² LPS, Université Paris-Sud, CNRS, UMR8502, 91405 Orsay, France

2D rankings

wiki: K-K* plane

PageRank-CheiRank 2d ranking

PageRank: 1. Napoleon I of France, 2. George W. Bush, 3. Elizabeth II of the United Kingdom, 4. William Shakespeare, 5. Carl Linnaeus, 6. Adolf Hitler, 7. Aristotle, 8. Bill Clinton, 9. Franklin D. Roosevelt, 10. Ronald Reagan.

CheiRank: 1. Kasey S. Pipes, 2. Roger Calmel, 3. Yury G. Chernavsky, 4. Josh Billings (pitcher), 5. George Lyell, 6. Landon Donovan, 7. Marilyn C. Solvay, 8. Matt Kelley, 9. Johann Georg Hagen, 10. Chikage Oogi.

2DRank: 1. Michael Jackson, 2. Frank Lloyd Wright, 3. David Bowie, 4. Hillary Rodham Clinton, 5. Charles Darwin, 6. Stephen King, 7. Richard Nixon, 8. Isaac Asimov, 9. Frank Sinatra, 10. Elvis Presley.

Chepelianskii (2010) O. Zhirov and Shepelyansky, (2010), LE, Chepeliansskii, Shepelyansky JPA (2012)

World Trade Network

Import-Export trade database:

United Nation Commodities Trade Network HTTP://COMTRADE.UN.ORG/DB/

- * Each year from 1962 to 2011 (2014)
- * All UN countries: ~ 220 (Nc=227 in 2008)
- * Product classification (SITC Rev. 1): Np=61
- * Trade volume is given in USD (N=13847 x 50 years)

Money Matrices

$$M_{c,c'} = \$ \ (c' \to c)$$

$$M^p_{c,c'} = \$ \ (c' \to c)$$

Google matrix of the WTN

Democracy in countries but not in products

L. ERMANN G matrix analysis of multiprod WTN

Google matrix of the WTN

L. Ermann and D.L. Shepelyansky, APPA, Vol. 120, A-158 (2011), http://www.quantware.ups-tlse.fr/QWLIB/tradecheirank

L. Ermann and D.L. Shepelyansky, EPJB (2015).

L. ERMANN G matrix analysis of multiprod WTN

all commodities and given products (N=227)

PageRank, CheiRank, ImportRank, ExportRank $\alpha=0.5$

L. ERMANN G matrix analysis of multiprod WTN

2d rank evolution

1962

L. ERMANN G matrix analysis of multiprod WTN

2d rank evolution

L. ERMANN G matrix analysis of multiprod WTN

2d ranking of countries (multiproducts)

multi-prod WTN spectrum

2d reduced ranks

L. ERMANN G matrix analysis of multiprod WTN

PageRank CheiRank correlator

L. ERMANN G matrix analysis of multiprod WTN

Sensitivity to price variation

L. ERMANN G matrix analysis of multiprod WTN

L. ERMANN G matrix analysis of multiprod WTN

Sensitivity to price variation II

L. ERMANN G matrix analysis of multiprod WTN

Conclusions

- Google matrix of the WTN (democratic in countries, global network properties):
 - 1) one product of all comm. (Nc)
 - 2) multiprod (Nc x Np)

2d-ranking, spectrum, communities in eigenstates, correlation between P-C, comparison with I-E, new tool for trade analysis

- Asymmetry in products
- Time evolution analysis
- Sensitivity to price variation (weak coupling between products) would lead to prediction of crisis and time evolution

Thank you

2d global ranks

L. ERMANN G matrix analysis of multiprod WTN

L. ERMANN G matrix analysis of multiprod WTN

year

product names

code	name	code	name
00	Live animals	54	Medicinal and pharmaceutical products
01	Meat and meat preparations	55	Perfume materials, toilet & cleansing preptions
02	Dairy products and eggs	56	Fertilizers, manufactured
03	Fish and fish preparations	57	Explosives and pyrotechnic products
04	Cereals and cereal preparations	58	Plastic materials, etc.
05	Fruit and vegetables	59	Chemical materials and products, nes
06	Sugar, sugar preparations and honey	61	Leather, lthr. Manufs., nes & dressed fur skins
07	Coffee, tea, cocoa, spices & manufacs. Thereof	62	Rubber manufactures, nes
08	Feed. Stuff for animals excl. Unmilled cereals	63	Wood and cork manufactures excluding furniture
09	Miscellaneous food preparations	64	Paper, paperboard and manufactures thereof
11	Beverages	65	Textile yarn, fabrics, made up articles, etc.
12	Tobacco and tobacco manufactures	66	Non metallic mineral manufactures, nes
21	Hides, skins and fur skins, undressed	67	Iron and steel
22	Oil seeds, oil nuts and oil kernels	68	Non ferrous metals
23	Crude rubber including synthetic and reclaimed	69	Manufactures of metal, nes
24	Wood, lumber and cork	71	Machinery, other than electric
25	Pulp and paper	72	Electrical machinery, apparatus and appliances
26	Textile fibres, not manufactured, and waste	73	Transport equipment
27	Crude fertilizers and crude minerals, nes	81	Sanitary, plumbing, heating and lighting fixt.
28	Metalliferous ores and metal scrap	82	Furniture
29	Crude animal and vegetable materials, nes	83	Travel goods, handbags and similar articles
32	Coal, coke and briquettes	84	Clothing
33	Petroleum and petroleum products	85	Footwear
34	Gas, natural and manufactured	86	Scientif & control instrum, photogr gds, clocks
35	Electric energy	89	Miscellaneous manufactured articles, nes
41	Animal oils and fats	91	Postal packages not class. According to kind
42	Fixed vegetable oils and fats	93	Special transact. Not class. According to kind
43	Animal and vegetable oils and fats, processed	94	Animals, nes, incl. Zoo animals, dogs and cats
51	Chemical elements and compounds	95	Firearms of war and ammunition therefor
52	Crude chemicals from coal, petroleum and gas	96	Coin, other than gold coin, not legal tender
53	Dyeing, tanning and colouring materials		