

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

16 years of experiments on the atomic kicked rotor!

Chaos, disorder in dynamical ultracold atom systems

Jean-Claude Garreau

Workshop "Quantum chaos: fundamentals and applications" Luchon-Superbagnères – 18 Mars 2015 1

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

PhLAM

Clément Hainaut Jamal Kalloufi Isam Manai Radu Chicireanu J.-F. Clément Pascal Szriftgiser JCG

LKB

Dominique Delande Nicolas Cherroret

LPT

Gabriel Lemarié

The kicked rotor: A paradigm of classical and quantum chaos

The atomic kicked rotor: An almost ideal "quantum simulator"

$$H = \frac{p^2}{2} + K \cos x \sum_{n} \delta(t - n)$$
$$[x, p] = i\hbar$$

$$p_{\text{after}} = p_{\text{before}} + 2\hbar k$$

"Optical potential"
$$V(x) \sim \frac{I}{\Delta} \to I_0 \cos(2kx)$$

Doing it with cold atoms

$$H = \frac{p^2}{2} + K \cos x \sum_{n} \delta(t-n)$$

F. L. Moore *et al.*, *Atom optics realization of the quantum* δ *-kicked rotator*, Phys. Rev. Lett. **75**, 4598 (1995)

Doing it with cold atoms

Probing quantum disordered systems with ultracold atoms

Tight-binding

P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492--1505 (1958)

3D: Quantum phase transition

Anderson model

The Anderson model

- 1D : Exponential localization of the eigenfunctions
- Suppression of the diffusion \rightarrow Insulator
- * $3D \rightarrow$ Mobility edge \gg Metal-insulator transition

$$\psi \sim \exp\left(\frac{-|x-x_0|}{\xi}\right)$$

Simulating condensed matter systems with ultracold atoms

Experiments in condensed-matter and ultracold atoms

Condensed matter

- Decoherence (ill-defined quantum phases)
- No access to the wave function
- Electron-electron Coulomb interactions

Ultracold atoms

- Control of decoherence
- Access to probability distributions (and even the full wavefunction)
- Control of interactions (Feshbach resonances)

Doing with cold atoms

Palaiseau

Urbana-Champain

Florence

1D: J. Billy *et al.*, *Direct observation of Anderson localization of matter-waves in a controlled disorder*, Nature **453**, 891 (2008)

3D : F. Jendrzejewski *et al., Threedimensional localization of ultracold atoms in an optical disordered potential*, Nature Physics **8**, 398 (2012) **3D** : S. S. Kondov *et al., Three-Dimensional Anderson Localization of Ultracold Fermionic Matter,* Science **334**, 66 (2011) **3D** : G. Semeghini, *et al.*, *Measurement of the mobility edge for 3D Anderson localization*, arXiv:1404.3528 (2014)

Simulating the Anderson model with the atomic kicked rotor

Exponential "localization" in momentum space \rightarrow "dynamical" localization

Can be mathematically mapped into a 1D "Anderson model" which discribes disorder in quantum system. Predicts exponential localization in real space

G. Casati *et al., Stochastic behavior of a quantum pendulum under periodic perturbation,* Lect. Notes Phys. **93**, 334 (1979) S. Fishman *et al., Chaos, Quantum Recurrences, and Anderson Localization,* Phys. Rev. Lett. **49**, 509–512 (1982)

t

Dynamical localization, experiment with the atomic kicked rotor

The Anderson transition

In 3D "the Anderson model predicts a quantum metal-insulator transition How to do it with the atomic kicked rotor ?

$$H = \frac{p^2}{2} + K \cos x \left(1 + \epsilon \cos(\omega_2 t) \cos(\omega_3 t)\right) \sum_n \delta(t - n)$$

Maps onto a **3D** Anderson model !!!

20/36G. Casati et al., Anderson Transition in a One-Dimensional System with Three Incommensurate Frequencies, Phys. Rev. Lett. **62**, 345--348 (1989)

The Anderson transition

J. Chabé *et al., Experimental Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves*, Phys. Rev. 21/36 Lett. **101**, 255702 (2008)

Critical exponent

K. Slevin and T. Ohtsuki, *Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class*, New J. Phys 16, 015012 (2014)

G. Lemarié et al., Universality of the Anderson transition with the quasiperiodic kicked rotor, EPL 87, 37007 (2009)

PRL 105, 090601 (2010)

PHYSICAL REVIEW LETTERS

G

week ending 27 AUGUST 2010

Critical State of the Anderson Transition: Between a Metal and an Insulator

Gabriel Lemarié,^{1,*} Hans Lignier,^{2,†} Dominique Delande,¹ Pascal Szriftgiser,² and Jean Claude Garreau² ¹Laboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS; 4 Place Jussieu, F-75005 Paris, France ²Laboratoire de Physique des Lasers, Atomes et Molécules, Université Lille 1 Sciences et Technologies, UMR CNRS 8523; F-59655 Villeneuve d'Ascq Cedex, France[‡]

PRL 108, 095701 (2012) PHYSICAL REVIEW LETTERS

Experimental Test of Universality of the Anderson Transition

Matthias Lopez,¹ Jean-François Clément,¹ Pascal Szriftgiser,¹ Jean Claude Garreau,¹ and Dominique Delande² ¹Laboratoire de Physique des Lasers, Atomes et Molécules, Université Lille 1 Sciences et Technologies, CNRS; F-59655 Villeneuve d'Ascq Cedex, France^{*} ²Laboratoire Kastler-Brossel, UPMC-Paris 6, ENS, CNRS; 4 Place Jussieu, F-75005 Paris, France

Phase diagram

Phase diagram of the anisotropic Anderson transition with the atomic kicked rotor: theory and experiment

Matthias Lopez¹, Jean-François Clément¹, Gabriel Lemarié^{2,3}, Dominique Delande³, Pascal Szriftgiser¹ and Jean Claude Garreau^{1,4}

¹ Laboratoire de Physique des Lasers, Atomes et Molécules (Unité Mixte de Recherche 8523 of CNRS), Université Lille 1 Sciences et Technologies, CNRS; F-59655 Villeneuve d'Ascq Cedex. France

 ² Laboratoire de Physique Théoriqu Toulouse, F-31062 Toulouse, Franca
 ³ Laboratoire Kastler-Brossel, UPN F-75005 Paris, France
 E-mail: jean-claude.garreau@univ-

New Journal of Physics **15** (2013) (Received 21 February 2013 Published 21 June 2013 Online at http://www.njp.org/ doi:10.1088/1367-2630/15/6/065013

M. Lopez et al., *Phase diagram of the anisotropic Anderson transition with the atomic kicked rotor: theory and experiment*, New J. Phys **15**, 065013 (2013).

D = 2 is the "lower critical dimension" for Anderson physics All states are localized but with exponentially large localization length

$$H = \frac{p^2}{2} + K\cos x \left(1 + \varepsilon \cos(\omega_2 t)\right) \sum_n \delta(t - n)$$

Experiment limited to a few ms

Vertical geometry

Not a kicked rotor (kicked accelerator)

Recent results: 2D Anderson localization (unpublished)

I. Manai *et al., Experimental observation of two-dimensional Anderson localization with the atomic kicked rotor*, to be published

Recent results: 2D Anderson localization (unpublished)

$$H = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos(\omega_2 t)\right) \sum_n \delta(t - n)$$

Comparison with the self-consistent prediction

Breaking the orthogonal symmetry (brand-new preliminary results !)

$$H = \frac{p^2}{2} + K \sum_{n} \left[\delta(t - 2n) \cos x + \delta(t - 2n - 1) \cos(x + a) \right]$$

C. Tian et al., *Weak Dynamical Localization in Periodically Kicked Cold Atomic Gases*, Phys. Rev. Lett. **93**, 124101 (2004) C. Hainaut *et al.*, to be published

Coherent back-scattering (brand-new preliminary results !)

Coherent back-scattering (brand-new preliminary results !)

In the unitary case the CBS peak is there only after two kicks!

Coherent back-scattering (brand-new preliminary results !)

Next: Nonlinear interacting systems!

The funniest is still to come...

Use a Bose-Einstein condensate

Individual atoms \rightarrow Coherent matter wave

$$i\frac{\partial\psi}{\partial t} = -\frac{\Delta\psi}{2} + V\psi \quad \rightarrow \quad i\frac{\partial\psi}{\partial t} = -\frac{\Delta\psi}{2} + V\psi + g|\psi|^{2}\psi$$
$$Hu_{n} = V_{n}u_{n} + T_{n}\left(u_{n-1} + u_{n+1}\right) + g\left|u_{n}\right|^{2}u_{n}$$

Nonlinear quantum disorder! (the ultimate dream – or nightmare – of a quantum-chaotician?)

The K-BEC project:

Potassium BEC-nonlinear QKR, started 2014, first results expected 2016

A. S. Pikovsky and D. L. Shepelyansky, *Destruction of Anderson Localization by a Weak Nonlinearity*, Phys. Rev. Lett. **100**, 094101 (2008)

B. Vermersch and J. C. Garreau, *Spectral description of the dynamics of ultracold interacting bosons in disordered lattices*, New J. Phys **15**, 045030 (2013)

N. Cherroret *et al., How Nonlinear Interactions Challenge the Three-Dimensional Anderson Transition*, Phys. Rev. Lett. **112**, 170603 (2014)

L. Ermann and D. L. Shepelyansky, *Destruction of Anderson localization by nonlinearity in kicked rotator at different effective* 36/36 *dimensions*, J. Phys. A: Math. Theor. **47**, 335101 (2014)

Conclusion

- Ultracold atom physics is very powerful tool for the study of quantum complexity
- KR as "quantum simulator"
 - 4D Anderson transition
 - Anderson transition and interactions N. Cherroret *et al.*, Phys. Rev. Lett. **112**, 170603 (2014)
 - *3D Unitary class (critical exponent)* M. Thaha *et al.*, Phys. Rev. E **48**, 1764--1781 (1993)
 C. Tian *et al.*, Phys. Rev. Lett. **93**, 124101 (2004)
 - Harper model and the Hofstadter butterfly

 R. Lima and D. Shepelyansky, Phys. Rev. Lett. 67, 1377-1380 (1991)
 J. Wang and J. Gong, Phys. Rev. A 77, 031405(R) (2008)
 - Spin-orbit coupled KR: Topological and quantum Hall physics
 J. P. Dahlhaus *et al.*, Phys. Rev. B **84**, 115133 (2011)
 Y. Chen and C. Tian, Phys. Rev. Lett. **113**, 216802 (2014)

