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Fractals and multifractals 
->Fractal behaviour : well-known in many areas 
 
->Multifractal systems cannot be 
  described by a single fractal  
   dimension 
 
->Observed in many fields of  
   classical physics,  
   from turbulence to stock market 
 
->Much more recently predicted to occur 
    in quantum mechanics 
 
     



Different quantum states 
-> Ergodic states: wave functions  
           spread over the system  
        with random-like fluctuations 
 
->Localized states: wave functions  
                      exponentially localized 
 
->Multifractal states: large fluctuations  
                     all over the system 
 
These different states give rise to  
     specific spectral statistics 
 
 



 Localized vs multifractal states 

Une fractale représente les objets qui ont une structure qui est invariante par 
changement d’échelle 

• Un exemple classique Le chou de 
Romanesco  

•  Un  exemple  d’objet  
(multi)fractale quantique 
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Modèle quantique 

Dynamique du rotateur pulsé quantique 

 
l’opérateur  d’évolution  sur  une  période  s’écrit  comme le produit de deux opérateurs : 
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III. WAVELET TRANSFORMS AND
MULTIFRACTAL PROPERTIES

An important procedure has been developed in recent
years to extract multifractal exponents from a distribu-
tion. It uses the wavelet transform [41], a generalization
of the Fourier transform which expands a function on the
wavelet basis instead of the Fourier basis. Contrary to the
sinusoidal waves which compose the Fourier basis, which
have specified frequencies but are extended in position
space, the wavelets are localized both in momentum and
position. They can thus probe many properties which
are difficult to reach with the standard Fourier trans-
form, such as singularities of the distribution. This has
made wavelet transforms a popular tool in recent devel-
opments of e.g. image or sound treatment and compres-
sion in classical information, such as the formats JPEG
and MPEG.

Wavelet transforms are based on a single function g,
called the analyzing wavelet or mother wavelet. The
wavelet transform of a function f is a function Tf of two
variables defined as

Tf (a, b) =
1

a

∫

dx f(x)g

(

x − b

a

)

. (6)

Variable a corresponds to the scale at which the function
f is analyzed, while b is a space variable. Thus Tf(a, b)
is a measure of how close the function f is to the mother
wavelet at point b and at scale a.

If the function f is sampled as a N -dimensional vector
where N = 2n, the wavelet transform can be discretized
and implemented as a unitary transformation, resulting
in a Fast Wavelet Transform (FWT) analogous to the
Fast Fourier Transform. The scale parameter a takes
values 1, 1/2, 1/4, ...1/2n−1, while the space parameter b
varies over L(a) = {1, 2, . . . , 1/a} at scale a. A discrete
version of the mother wavelet is constructed recursively
at each scale. Commonly used mother wavelets for the
FWT include the Haar wavelet [42] and the Daubechies
wavelet [43]. Throughout the paper, we will use the
Daubechies 4 discrete wavelet transform in the numerical
simulations. It has been shown that a quantum wavelet
transform (QWT) implementing such discrete wavelet
transforms can be performed efficiently on a quantum
computer [26, 27, 28], namely an exponentially large vec-
tor

∑N−1
i=0 ψi|i〉 of size N = 2n can be transformed in

a number of operations polynomial in n into a vector
∑

a,b Tψ(a, b)|a, b〉, where the wavelet transform at scale
a is stored on the computational basis vectors |a, .〉.

The wavelet transform has been put forward recently
as a tool for extracting the value of the exponents from
a multifractal distribution. These exponents are usually
quite hard to extract numerically, and are very unstable,
since the values obtained depend on the chosen numeri-
cal method up to very large system sizes. An example of
a multifractal distribution (for an eigenvector of (4)) is
shown on Fig.1, together with its wavelet transform. One
sees that the wavelet transform does not look especially

FIG. 1: (Color online) Example of one eigenfunction of (4)
(top) and its wavelet transform (bottom). The red/grey
dashed vertical lines on the bottom panel separate the dif-
ferent scales in the wavelet transform.

simpler than the original distribution. However, recent
works have shown [34, 44, 45] that the wavelet transform
allows to extract the exponents of the distribution f , us-
ing the maxima of the wavelet transform at each scale.
Such methods based on the wavelet transform have en-
abled to extract multifractal exponents in complicated
physical systems of great fundamental and technological
importance such as e.g. DNA sequences [46], fully devel-
oped turbulence [47] or high-resolution satellite images
of cloud structure [48].

However, these methods use the continuous wavelet
transform, which is delicate to implement for many sys-
tems of interest. A variation of the wavelet method de-
veloped in [49, 50] uses instead of the maxima of the
continuous wavelet transform the sum of the values of
the discrete wavelet transform, properly normalized at
each scale. One defines the partition function

Z(a, q) =
∑

b∈L(a)

[

|Tf (a, b)|
∑

b∈L(a) |Tf (a, b)|

]q

(7)

where a is the scale and L(a) is the interval corresponding
to each scale a. The asymptotic behavior of the partition
function at small scales is governed by the generalized
dimensions as

Z(a, q) ∼a→0+ aτq (8)

with τq ≡ Dq(q − 1).

IV. QUANTUM ALGORITHMS FOR
MULTIFRACTAL EXPONENTS

There does not seem to be a simple way to implement
efficiently the maxima method on a quantum computer.



 Systems with quantum 
multifractality 

   ->3D Anderson model at metal-insulator transition: 
     disordered system form solid-state physics 
 
   ->Pseudo integrable systems, dynamical systems  
    in between integrable and chaotic systems:  
 classical motion takes place not on tori as for integrability,   
     but on surfaces of higher genus: 
       
 

 
 



 How to observe multifractality? 
 
->Multifractal states are difficult to observe  
   experimentally  
 
-> Multifractality has been seen with acoustic waves 
    (S. Faez, A. Strybulevych, J. H. Page, A. Lagendijk  
    and B. A. van Tiggelen, Phys. Rev. Lett. 103,155703  (2009)) 
   but  in a quantum context, only indirect evidences 
    up to now 
 
 ->Important to assess how multifractality  
    resists perturbation 
 
 



 Anderson model 
 
particles on a lattice of sites 
 
 
 
 
 
->classically: diffusion 
-> in 1D or 2D: quantum particles localized 
-> in 3D metal-insulator transition at 
-> At the transition point, multifractal states 
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Intermediate map

We consider a change of basis of the intermediate map (4),
which is a smooth deformation of the identity. The unitary
matrix defining the basis change is taken to be

U(ε) = exp(iεH) (61)

where ε is the deformation parameter and H an element of the
Gaussian Orthogonal Ensemble (GOE) of random matrices.
The quantum propagator U ′ in the new basis is defined by:

U ′ = U(ε) U U(ε)−1

It is obvious to check that the original intermediate map is re-
covered for ε = 0. As we are interested in the eigenvector
statistics, the eigenvectors of the new map U ′ are obtained by
applying the map (61) to the eigenvectors of the original in-
termediate map. The multifractality of the obtained vectors is
analysed using box counting method. In order to characterise
how the multifractality is changed under a change of basis
(61) we computed the multifractal spectrum Dq as a function
of deformation parameter ε. The results for D2 are shown in
Fig. 20. Again we are considering the random and not random
version of the model. First one should emphasize that the fit
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FIG. 20: (Color online) Multifractal exponent D2 for the intermedi-
ate map for γ = 1/5 and different N as a function of the deforma-
tion parameter ε of the basis change. Black circles: N = 729. Red
squares: N = 2187. Green diamonds: N = 6561. Blue triangles:
N = 19683. The multifractal exponent is extracted by a power law fit
of the moment defined in (6) with # = 9..N/9. a) Random model.
b) Not random model.

following (7) works generally well so that it is not necessary
to consider local quantities. The intensity fluctuations are now
affected at all scales and one can see that, as the deformation
parameter ε is increased, the multifractal dimension smoothly
goes from the value for the original intermediate map to the
ergodic value. Similar curves can be obtained for any q (data
not shown). As already pointed out in [31] this is very differ-
ent from a perturbation obtained by smoothing the potential
singularity. This change of multifractality at all scale can also
be illustrated by looking at 2−point correlation functions, see
[31].
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FIG. 21: (a) R2 as a function of #/L for different values of t/τTH,
the Thouless time associated with the quasiperiodic kicked rotor.
W = 16.53 ≈ Wc, L = 120 and t/τTH = 0 (black circles),
8.9 10−11 (red squares), 1.1 10−9 (green diamonds), 2.8 10−7 (blue
triangles up), 8.7 10−6 (purple triangles tilted), 2.3 (brown trian-
gles down). (b) Multifractal dimensions Dq as a function of t/τTH.
W = 16.53 ≈ Wc, L = 120 and q = 1.5, q = 2 and q = 4
from top to bottom. τTh = 1.19 1011 (black), 9.3 109 (red), 8.3 108

(green), 7.5 107(blue), 6.8 106 (yellow), 6.2 106 (brown), 5.6 104

(grey), 5121.2 (dark purple), 468.5 (cyan), to 43.1 (magenta).

Perturbation of the Anderson transition

Multifractality is a characteristic signature of the Anderson
metal-insulator transition [6]. In three dimensions, the Ander-
son model in site basis:

H =
∑

i

µi|i〉〈i|+
∑

〈i,j〉

|i〉〈j| , (62)

where the random on-site energies µi are uniformly dis-
tributed in [−W/2,W/2] and 〈i, j〉 denote nearest neighbors,
performs a localization-delocalization transition at a value
Wc ≈ 16.53 at energy E = 0 [9]. For W = Wc, the states are
multifractal, characterized by a universal scale-invariant set of
multifractal spectrum f(α).

As in the case of pseudo-integrable systems, it is interest-
ing to study how this critical multifractality survives a pertur-
bation. First, a natural choice of perturbation is changing the
disorder strength slightly below or above the critical value Wc.
Then, it is known [38] that the eigenstates are either localized
or delocalized with a characteristic length ξ. Below the local-
ization/correlation length, they are multifractal with the same
critical multifractal spectrum, and they form a “multifractal
insulator” or a “multifractal metal”. This is a consequence
of a one parameter scaling law that governs the multifractal
spectrum in the vicinity of the transition [9]. This type of
perturbation therefore follows the first scenario of quantum
multifractality breakdown: quantum multifractality survives
below a certain characteristic length.
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FIG. 20: (Color online) Multifractal exponent D2 for the intermedi-
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of the moment defined in (6) with # = 9..N/9. a) Random model.
b) Not random model.
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 Quantum map 

->One-dimensional quantum map 
Hamiltonian H(p,q,t)= p2/2 - γ { q} Σn δ(t-n) , 
periodically kicked by a discontinuous linear potential 
p is momentum and q the space coordinate;{q} is 
 fractional part of q, γ is a real parameter, and the sum 
 runs over all integers. 
Classical system integrated over one period: 
 
For γ irrational, ergodic dynamics 
For  γ rational=a/b with a,b integers 
iterates cover b circles=pseudo-integrable system 
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We expose two scenarios for the breakdown of quantum multifractality under the effect of perturbations. In
the first scenario, multifractality survives below a certain scale of the quantum fluctuations. In the other one,
the fluctuations of the wave functions are changed at every scale and each multifractal dimension smoothly
goes to the ergodic value. We use as generic examples a one-dimensional dynamical system and the three-
dimensional Anderson model at the metal-insulator transition. Based on our results, we conjecture that the
sensitivity of quantum multifractality to perturbation is universal in the sense that it follows one of these two
scenarios depending on the perturbation. We also discuss the experimental implications.
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The notion of multifractality is associated to scale-invariant
fluctuations which cannot be described by a single fractal di-
mension but instead by an infinite number of dimensions. This
property characterizes several important systems in classical
physics, e.g. turbulence [1], the stock market [2] or cloud im-
ages [3]. It is only recently that multifractality has been recog-
nized in quantummechanics or other wave systems. Examples
include electrons at the Anderson metal-insulator transition
[4–7], quantum Hall transitions [8], Random Matrix models
[9, 10] and others [11–13]. These properties are also visible
in the wave functions in certain types of dynamical systems
(so-called pseudointegrable systems) [14–22].
Although many theoretical studies have been devoted to

quantum multifractality [4–21], in particular to its dynamical
consequences which seem accessible to experiments [22–25],
it has been difficult to observe it in a real setting. Hints of
such properties were seen in disordered conductors [26] and
cold atoms [27, 28]. An interesting experiment enabled to
observe multifractal distributions at the Anderson transition
with acoustic waves [29]. However, experimental character-
ization of multifractality in a quantum context has remained
elusive. There are technical questions related to the high reso-
lution needed to explore different scales in the wave function,
but fundamentally it is of critical importance to assess to what
extent multifractality survives in a real experimental setting.
In this Letter, we study the effects of different imperfec-

tions and perturbations on the properties of two paradigmatic
models with quantum multifractality, a one-dimensional (1D)
dynamical system and the three-dimensional (3D) Anderson
model at the metal-insulator transition. We find that a suffi-
ciently large perturbation always destroys multifractality, but
in two different ways. In the first scenario, the perturba-
tion defines a new scale of the quantum fluctuations below
which multifractality survives. In the second scenario, the
fluctuations of the wave functions are changed at every scale

and each multifractal dimension smoothly goes to the ergodic
value. Our results show that both scenarios are found in the
two models, depending on the type of perturbation.
Multifractality of quantum wave functions |ψ〉 can be char-

acterized by the box-counting method (see [7, 20] for com-
parison with other methods). A system of linear size L is
divided into L/" boxes of size ", and a measure for each box
k is µk =

∑

i |ψi|2 where the indices run over the sites inside
box k. The moments are defined by Pq =

∑

k µ
q
k. Multi-

fractality is characterized by a power-law behavior of the mo-
ments Pq ∼ ("/L)Dq(q−1), in the limit of small "/L. In the
ergodic limit all Dq equal the dimensionality of the system,
whereas for a localized system Dq = 0 for q > 0. In systems
where an average is made over several wave functions and
different disorder realizations, two sets of multifractal dimen-
sions can be defined [5, 6]. The first set uses average moments
〈Pq〉 giving dimensions Dq , and the second uses typical mo-
ments exp〈lnPq〉, giving dimensions Dtyp

q . We have checked
that our results are the same for both sets of dimensions, and
we present results only for Dq , mainly for q = 2; we have
checked that the conclusions we draw apply equally to other
values of q.
Our first model consists in a system periodically kicked by

a discontinuous linear potential [16]. Its Hamiltonian, defined
on a phase space corresponding to the unit torus, with p the
momentum and q the space coordinate, is:

H(p, q, t) =
p2

2
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δ(t− n) , (1)

where {q}means the fractional part of q, γ is a real parameter,
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dynamics is ergodic. For rational γ, it can be described as
pseudointegrable. In such systems, the iterates of one point
accumulate inside surfaces which are of arbitrarily high genus,
different from the integrable case where the dynamics takes
place on tori of genus one.
The corresponding quantum discrete dynamics transforms

the wave function at time n noted ψn to the one at time n+ 1
through the formula ψn+1 = Uψn. In an N -dimensional
Hilbert space, U corresponds to an N × N matrix with co-
efficients [16]

Ukl =
e−2πik2/N

N

1− e2iπγN

1− e2iπ(k−l+γN)/N
, (2)

where k, l are quantum numbers associated to momentum,
with an effective h̄ equal to 1/(2πN). In the results shown be-
low a random version of the model is considered [17, 18, 20]:
e−2πik2/N is replaced by e−iφk where φk is a random variable
uniformly distributed in [0; 2π]. This allows for more stable
results and we have checked that the results are the same as
with the usual kinetic term, but with less fluctuations. For ir-
rational γ, the eigenvectors of (2) are ergodic in phase space.
In contrast, for rational γ = a/b, they are multifractal in the
momentum basis (2), consisting in b strongly fluctuating struc-
tures. This multifractality is weaker and weaker when b in-
creases. In parallel, spectral statistics follow predictions of
Random Matrix Theory for irrational γ, while for rational γ
they are intermediate between distributions typical of either
chaotic or integrable systems [16, 17, 19]. Thus (2) is often
called the intermediate map.
Our second model is the 3D Anderson model [30], a tight-

binding model of electrons with on-site disorder uniformly
distributed in [−W/2,W/2]. For this model, it is known
that a metal-insulator transition takes place at a disorder value
Wc ≈ 16.5 in the band center. At this critical value, wave
functions are known to display multifractality [6].
We now turn to our results. The first model (1) has a discon-

tinuous potential. In many experimental situations, the singu-
larity will be smoothed over a certain length. We model the
smoothing by replacing the discontinuous potential by a C1

function coinciding with −γ{q} over [0, 1− ε] and equal to a
cubic interpolating polynomial over the interval [1− ε, 1]. We
have studied how the multifractality depends on the scale & of
the coarse-graining in the box-counting method for different
values of ε. Indeed, in physics one must always be concerned
with the ranges in which the scaling Pq ∼ (&/L)Dq(q−1)

holds. For a fixed value of the moment order q we define
a local multifractal dimension D̃q(&, ε) = 1

q−1
d lnPq

d lnλ , where
λ = &/L with L = N the linear size of the system. We
find that there exists a characteristic length ξ(ε) below which
the local dimensions D̃q do not vary with &, indicating a true
multifractal behaviour. On the other hand, the local dimen-
sions converge to the ergodic value D̃q = 1 for & % ξ(ε)
(see Fig. 1, top left). Moreover, we have observed that all the
curves for different smoothings ε collapse onto a single one
when & is scaled with the suitable length ξ(ε), see an example

in Fig. 1 (top) for q = 2. This shows that the data follow the
scaling behavior:

D̃q(&, ε) = Gq

(

&

ξ(ε)

)

, (3)

withGq a scaling function independent of ε, and with the scal-
ing parameter ξ(ε) ∝ ε−1. We have checked that this scaling
is valid in the range 1 % ε% 1/N .
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FIG. 1: (Color online) Top: Local dimensions D̃2 (see text) for
eigenvectors of (2) with N = 213 and γ = 1/5 for smoothing
lengths resp. ε = 0 (black full curve), 0.01 (red circles), 0.02 (green
squares), 0.03 (blue diamonds), 0.04 (brown triangles up), 0.05 (pur-
ple triangles down), 0.1 (orange stars). Left: raw data for D̃2 vs the
boxsize (arrow indicates the value # = N ); right: D̃2 vs the rescaled
boxsize #/ξ(ε), with ξ normalized as ξ(ε = 1/N) = N/5, its known
value for ε → 0 (see text). Inset: Numerically obtained scaling
length ξ(ε) (circles), black dashed line is the relation ξ(ε) ∝ ε−1.
Bottom: correlation functionR2(r), same parameters and color code
as for top. Left: raw data; right: rescaled data using the relation
ξ(ε) ∝ ε−1.

Another way to illustrate our results consists in considering
the 2−point correlation function R2(r) = N2〈|ψi|2|ψi+r|2〉,
where the average is performed over both i and the random
phases φk. This correlation function is expected to be re-
lated to the multifractal dimension D2, via R2(r) ∼ rη with
η = D2 − 1 for r

L → 0 , see e.g. [6]. It is clear that the
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We expose two scenarios for the breakdown of quantum multifractality under the effect of perturbations. In
the first scenario, multifractality survives below a certain scale of the quantum fluctuations. In the other one,
the fluctuations of the wave functions are changed at every scale and each multifractal dimension smoothly
goes to the ergodic value. We use as generic examples a one-dimensional dynamical system and the three-
dimensional Anderson model at the metal-insulator transition. Based on our results, we conjecture that the
sensitivity of quantum multifractality to perturbation is universal in the sense that it follows one of these two
scenarios depending on the perturbation. We also discuss the experimental implications.

PACS numbers: 05.45.Df, 05.45.Mt, 71.30.+h, 05.40.-a

The notion of multifractality is associated to scale-invariant
fluctuations which cannot be described by a single fractal di-
mension but instead by an infinite number of dimensions. This
property characterizes several important systems in classical
physics, e.g. turbulence [1], the stock market [2] or cloud im-
ages [3]. It is only recently that multifractality has been recog-
nized in quantummechanics or other wave systems. Examples
include electrons at the Anderson metal-insulator transition
[4–7], quantum Hall transitions [8], Random Matrix models
[9, 10] and others [11–13]. These properties are also visible
in the wave functions in certain types of dynamical systems
(so-called pseudointegrable systems) [14–22].
Although many theoretical studies have been devoted to

quantum multifractality [4–21], in particular to its dynamical
consequences which seem accessible to experiments [22–25],
it has been difficult to observe it in a real setting. Hints of
such properties were seen in disordered conductors [26] and
cold atoms [27, 28]. An interesting experiment enabled to
observe multifractal distributions at the Anderson transition
with acoustic waves [29]. However, experimental character-
ization of multifractality in a quantum context has remained
elusive. There are technical questions related to the high reso-
lution needed to explore different scales in the wave function,
but fundamentally it is of critical importance to assess to what
extent multifractality survives in a real experimental setting.
In this Letter, we study the effects of different imperfec-

tions and perturbations on the properties of two paradigmatic
models with quantum multifractality, a one-dimensional (1D)
dynamical system and the three-dimensional (3D) Anderson
model at the metal-insulator transition. We find that a suffi-
ciently large perturbation always destroys multifractality, but
in two different ways. In the first scenario, the perturba-
tion defines a new scale of the quantum fluctuations below
which multifractality survives. In the second scenario, the
fluctuations of the wave functions are changed at every scale

and each multifractal dimension smoothly goes to the ergodic
value. Our results show that both scenarios are found in the
two models, depending on the type of perturbation.
Multifractality of quantum wave functions |ψ〉 can be char-

acterized by the box-counting method (see [7, 20] for com-
parison with other methods). A system of linear size L is
divided into L/" boxes of size ", and a measure for each box
k is µk =

∑

i |ψi|2 where the indices run over the sites inside
box k. The moments are defined by Pq =

∑

k µ
q
k. Multi-

fractality is characterized by a power-law behavior of the mo-
ments Pq ∼ ("/L)Dq(q−1), in the limit of small "/L. In the
ergodic limit all Dq equal the dimensionality of the system,
whereas for a localized system Dq = 0 for q > 0. In systems
where an average is made over several wave functions and
different disorder realizations, two sets of multifractal dimen-
sions can be defined [5, 6]. The first set uses average moments
〈Pq〉 giving dimensions Dq , and the second uses typical mo-
ments exp〈lnPq〉, giving dimensions Dtyp

q . We have checked
that our results are the same for both sets of dimensions, and
we present results only for Dq , mainly for q = 2; we have
checked that the conclusions we draw apply equally to other
values of q.
Our first model consists in a system periodically kicked by

a discontinuous linear potential [16]. Its Hamiltonian, defined
on a phase space corresponding to the unit torus, with p the
momentum and q the space coordinate, is:

H(p, q, t) =
p2

2
− γ{q}

∑

n

δ(t− n) , (1)

where {q}means the fractional part of q, γ is a real parameter,
and the sum runs over all integers.
The classical dynamics over one period is given by the map

pn+1 = pn + γ mod 1 , qn+1 = qn + 2pn+1 mod 1 ,
where n denotes the number of periods. For irrational γ, the
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II. MULTIFRACTALITY VS POTENTIAL SMOOTHING

It is clear in (3) that the potential is discontinuous. Then it is interesting to study the link of the potential jump and the
multifractality. In this section the propagator matrix is rather written:

Ukl =
e−iφk

N

N−1
∑

q=0

e2πi[−NVq+q(k−l)/N ] (14)

The intermediate map is recovered for Vq = −γq/N .
Three possible ways of smoothing the potential are considered below.

A. Polynomial smoothing

This is a more realistic version of the model for photonics experiments. The potential entering (14) is now:

Vq =

{

−γq/N, 0 ≤ q/N < 1− ε
a3q3 + a2q2 + a1q + a0, 1− ε < q/N ≤ 1

, (15)

where the ai are chosen to make the potential and its first derivative continuous at q/N = 1− ε and q/N = 1. Practically these
coefficients and the potential are calculated beforehands using Maple. Typical examples of the resulting potential are shown in
Fig. 3a.
Typical results for the moments Pq,# are shown in Fig. 3b for N = 212. It is worth noticing that the power law fit following
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For this reason it is more instructive to consider local quantities. In Fig. 4 the local multifractal exponent D̃q(#) is plotted as
a function of # for several smooting widths ε. One can clearly see that the local multifractal quantities obey a scaling relation:
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, with ξ(ε) ∝
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In words it means that the non trivial fluctuations of the particle density |ψi|2 are bounded by a certain length ξ(ε), which comes
from the smoothing. It is remarkable that taking this length into account makes all the curves for different ε collapse, see Fig. 4
right. Similar results have already been obtained for the Anderson model at the neighbourhood of the critical point [6–8].
This behaviour has been observed as a very robust one. First it was originally shown that the spectral statitics depends also

on the arithmetical properties of N . In Fig. 5 it is shown that the scaling behaviour is also valid for N of the form 3n. Notice
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Scale-dependent multifractality 

-> 2-point correlation 
function R2  is related to the 
multifractal exponent D2  
for r/L ->0 
 (L is system size) 
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dynamics is ergodic. For rational γ, it can be described as
pseudointegrable. In such systems, the iterates of one point
accumulate inside surfaces which are of arbitrarily high genus,
different from the integrable case where the dynamics takes
place on tori of genus one.
The corresponding quantum discrete dynamics transforms

the wave function at time n noted ψn to the one at time n+ 1
through the formula ψn+1 = Uψn. In an N -dimensional
Hilbert space, U corresponds to an N × N matrix with co-
efficients [16]

Ukl =
e−2πik2/N

N

1− e2iπγN

1− e2iπ(k−l+γN)/N
, (2)

where k, l are quantum numbers associated to momentum,
with an effective h̄ equal to 1/(2πN). In the results shown be-
low a random version of the model is considered [17, 18, 20]:
e−2πik2/N is replaced by e−iφk where φk is a random variable
uniformly distributed in [0; 2π]. This allows for more stable
results and we have checked that the results are the same as
with the usual kinetic term, but with less fluctuations. For ir-
rational γ, the eigenvectors of (2) are ergodic in phase space.
In contrast, for rational γ = a/b, they are multifractal in the
momentum basis (2), consisting in b strongly fluctuating struc-
tures. This multifractality is weaker and weaker when b in-
creases. In parallel, spectral statistics follow predictions of
Random Matrix Theory for irrational γ, while for rational γ
they are intermediate between distributions typical of either
chaotic or integrable systems [16, 17, 19]. Thus (2) is often
called the intermediate map.
Our second model is the 3D Anderson model [30], a tight-

binding model of electrons with on-site disorder uniformly
distributed in [−W/2,W/2]. For this model, it is known
that a metal-insulator transition takes place at a disorder value
Wc ≈ 16.5 in the band center. At this critical value, wave
functions are known to display multifractality [6].
We now turn to our results. The first model (1) has a discon-

tinuous potential. In many experimental situations, the singu-
larity will be smoothed over a certain length. We model the
smoothing by replacing the discontinuous potential by a C1

function coinciding with −γ{q} over [0, 1− ε] and equal to a
cubic interpolating polynomial over the interval [1− ε, 1]. We
have studied how the multifractality depends on the scale & of
the coarse-graining in the box-counting method for different
values of ε. Indeed, in physics one must always be concerned
with the ranges in which the scaling Pq ∼ (&/L)Dq(q−1)

holds. For a fixed value of the moment order q we define
a local multifractal dimension D̃q(&, ε) = 1

q−1
d lnPq

d lnλ , where
λ = &/L with L = N the linear size of the system. We
find that there exists a characteristic length ξ(ε) below which
the local dimensions D̃q do not vary with &, indicating a true
multifractal behaviour. On the other hand, the local dimen-
sions converge to the ergodic value D̃q = 1 for & % ξ(ε)
(see Fig. 1, top left). Moreover, we have observed that all the
curves for different smoothings ε collapse onto a single one
when & is scaled with the suitable length ξ(ε), see an example

in Fig. 1 (top) for q = 2. This shows that the data follow the
scaling behavior:

D̃q(&, ε) = Gq

(

&

ξ(ε)

)

, (3)

withGq a scaling function independent of ε, and with the scal-
ing parameter ξ(ε) ∝ ε−1. We have checked that this scaling
is valid in the range 1 % ε% 1/N .
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FIG. 1: (Color online) Top: Local dimensions D̃2 (see text) for
eigenvectors of (2) with N = 213 and γ = 1/5 for smoothing
lengths resp. ε = 0 (black full curve), 0.01 (red circles), 0.02 (green
squares), 0.03 (blue diamonds), 0.04 (brown triangles up), 0.05 (pur-
ple triangles down), 0.1 (orange stars). Left: raw data for D̃2 vs the
boxsize (arrow indicates the value # = N ); right: D̃2 vs the rescaled
boxsize #/ξ(ε), with ξ normalized as ξ(ε = 1/N) = N/5, its known
value for ε → 0 (see text). Inset: Numerically obtained scaling
length ξ(ε) (circles), black dashed line is the relation ξ(ε) ∝ ε−1.
Bottom: correlation functionR2(r), same parameters and color code
as for top. Left: raw data; right: rescaled data using the relation
ξ(ε) ∝ ε−1.

Another way to illustrate our results consists in considering
the 2−point correlation function R2(r) = N2〈|ψi|2|ψi+r|2〉,
where the average is performed over both i and the random
phases φk. This correlation function is expected to be re-
lated to the multifractal dimension D2, via R2(r) ∼ rη with
η = D2 − 1 for r

L → 0 , see e.g. [6]. It is clear that the

-> Again, finite-size scaling defines a perturbation-
dependent scale below which multifractality survives 
unchanged 
->This scale varies as inverse of the smoothing length  
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power-law behavior survives for ε > 0 (see Fig. 1 bottom).
The main effect of the smoothing is again the emergence of a
characteristic length ξ(ε), above which R2(r) is not algebraic
anymore. When it is algebraic, we find for both ε = 0 and
ε > 0 an exponent η ≈ −0.36 in very good agreement with
the value D2 extracted from Fig. 1 top for $ → 0. Thus the
multifractal fluctuations are left unchanged below the char-
acteristic length ξ(ε). We have checked that other ways of
smoothing the potential lead to the same conclusions [31].
A physical interpretation of ξ(ε) for our model is related to

the initial shape of the potential in (1). For ε = 0 the dis-
continuity of the potential is resolved at a scale 1/N , and the
multifractality appears below a scale of order N/b (b com-
ing from the fact that classical structures have b components),
which explains why D̃2 → 1 when $$ N/b. The smoothing
introduces a new effective width ε for the singularity. Hence
multifractality in the momentum basis survives below a scale
of order ξ(ε) ∝ 1/ε for ε$ 1/N .
This scenario of a characteristic length bounding the scale

of the multifractal structure is similar to the one found in
Anderson-like transitions when the system is close to the tran-
sition point [7, 32, 33]. In this case the relevant characteris-
tic length coincides with the localization length in the insu-
lating phase and with the correlation length in the metallic
phase. The case of the intermediate map can be seen as a mul-
tifractal metal described in [33]. We emphasize that in this
scenario, multifractality always survives the perturbation at a
sufficiently small scale.
We now turn to the second scenario. A natural perturbation

of (1), when γ is a rational value, is to slightly change this
value, at fixed N . A striking observation that we made is the
absence of any characteristic length in the fluctuations of the
wave functions. Indeed, Fig. 2 shows the variation of D2 and
R2(r) close to a rational point. For different γ values close to
γ = 1/3, the correlation function R2(r) behaves as a power
law in the same range of r: hence there is no characteristic
length here. In contrast with the first scenario, the perturbation
now induces a change of the algebraic decay of R2, hence a
change of D2. The same conclusions can be drawn from P2

(data not shown).
For N → ∞ one has Dq = 1 for all irrational values of γ,

but for finite N the curve will be smoothed out over a certain
scale, as shown for D2 in Fig. 2. We found that the vicinity
of rational values is related to a mathematical model called
the Ruijsenaars-Schneider model [34]. Using a perturbative
approach similar to the one used in [21], we can predict ana-
lytically the behavior of Dq near its local extrema. Technical
details will be published elsewhere [31] but the results can be
summarized as follows. Around γ = 1/b, local extrema ofDq

are located at γk = 1/b+ (k− s/b)/N , where s = N mod b,
and k = 0,±1,±2, . . . . Around those extrema the intermedi-
ate map shows weak multifractality and for |γ − γk| ' 1/N
the multifractal dimension is :

Dq ' 1− qb

[

N(γ − γk)

(kb− s)

]2

. (4)
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FIG. 2: (Color online) Dimension D2(γ) for the model (2) in the
vicinity of γ = 1/3 for N = 37 (red dashed line), N = 211 (blue
full line). Black dotted parabolas correspond to Eq. (4). Inset: cor-
relation function R2(r) for N = 212. The curves correspond to
γ = 1/3 + ε/(3N) for resp. ε = 0 (light blue dotted-dashed line),
0.25 (orange dotted line), 0.5 (green dashed line), 0.75 (red long-
dashed line), 0.95 (blue solid line).

Note that this theory, in very good agreement with our nu-
merics (see Fig. 2), again does not contain any characteristic
length.
A similar phenomenon can be seen when the basis is

slightly deformed. Indeed multifractal properties depend on
the basis choice, and in experimental implementations the
measurement basis cannot be chosen at will.
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FIG. 3: (Color online) Moments P2 vs boxsize for different basis
deformation strengths ε. Left: map (2) for N = 212, γ = 1/5
and for resp. ε = 0.0013 (black circles), 0.013 (red squares), 0.02
(green diamonds), 0.1 (blue triangles); right: 3D Anderson model
at the transition point, of size N = L3 with L = 120 for resp.
ε = t/τTh = 0 (black circles), 8.9 10−11 (red squares), 1.1 10−9

(green diamonds), 2.8 10−7 (blue triangles up), 8.7 10−6 (purple
triangles tilted), 2.3 (pink triangles down).
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-> Our results show that changing basis destroys  
multifractality at all scales (second scenario)  
for both Anderson model and quantum maps 

Figure: moments for quantum map and Anderson 
(size=1203), for different perturbations 
 



 Two-parameter scaling 
-> In some systems, 
changing basis leads to 
a variant of the second 
scenario with presence 
of a characteristic length 
 
->Two-parameter scaling 
collapses the curves into 
one curve, with uniform 
destruction of 
multifractality below the 
characteristic length 
 

Graphs for the double rescaling in the generic basis change of the
intermediate map

Here are shown the results obtained for the generic change of map of the intermediate map. The data
analysed following the double rescaling idea for two values of N : N = 38 and N = 213 and two values of q.

In the graphs of the local multifractal exponent D̃2, the following color code has been used:

• ε = 0.00125893: black

• ε = 0.00251189: red

• ε = 0.00501187: green

• ε = 0.00630957: blue

• ε = 0.00794328: yellow

• ε = 0.01: brown

• ε = 0.0125893: grey

• ε = 0.0158489: purple

• ε = 0.0199526: cyan
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Figure 1: Local multifractal exponent for the intermediate map, γ = 1/5, N = 38, q = 2 under a generic
change of basis. Left: unscaled. Right: rescaled

In Fig. 1 the points corresponding to # = N/3 and N/9 have been dropped.
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Figure 2: Generic change of basis for the intermediate map, γ = 1/5, N = 38, q = 2. Left: the rescaling
length ξ(ε) in semi-log. Right: the renormalised multifractal exponent D2(ε)
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Figure 3: Local multifractal exponent for the intermediate map, γ = 1/5, N = 213, q = 2 under a generic
change of basis. Left: unscaled. Right: rescaled

In Fig. 3 the points corresponding to $ = N/2, N/4 and N/8 have been dropped. Furthermore the points
for the smallest $ ($ = 4) have been dropped for the smallest value of ε and the two highest.

In Fig. 5 the points corresponding to $ = N/2, N/4, N/8 and $ = 4, 8, 16 have been dropped. The points
which look off the scaling curve, correspond to $ = N/16.

It is important to note that for N = 213 the same scaling length was used for q = 1 and q = 2, and
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 Changing basis: system size scaling, 
quantum map 

->Multifractality destruction 
depends on perturbation 
strength ε and system size N 
 
->Quantum map: perturbation 
is  
with H Random GOE Matrix 
 
->Analytical theory predicts 
scaling in  
confirmed by numerics 

Figure: D2 for quantum 
map, for different 
perturbations 
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We thus investigate the behavior of multifractality for the
map (2) under a generic change of basis. The unitary ma-
trix defining the basis change is taken to be Ũ = exp(iεH),
where ε is the deformation parameter and H an element of
the GOE ensemble of Random Matrices. Moments averaged
over the GOE ensemble are plotted for several values of ε in
Fig. 3 (left), showing that the slope changes with ε at all scales,
which corresponds to our second scenario.
This is confirmed by a perturbation theory that we have

developed (see [31] for more details). Upon basis change,
a state |ψ〉 is changed into some state |ψ̃〉 = Ũ |ψ〉. At
second order, it reads |ψ̃〉 = |ψ〉 + iεH|ψ〉 − ε2

2 H
2|ψ〉.

Upon averaging over the GOE ensemble, terms linear in H
will vanish in the moments P2, while by independence of
GOE matrix entries only quadratic terms of the form H2

mn

will survive. Thus the moments of |ψ̃〉 read
∑

n |ψ̃n|4 =
∑

n |ψn|4 + 2ε2v2
(

1− 1
2 |
∑

n ψ
2
n|2 − N

2

∑

n |ψn|4
)

, where
v2 denotes the variance of the GOE matrix elements (here
v = 1). Moments are multiplied by an effective factor
1 − ε2v2N (assuming that the term in |

∑

n ψ
2
n|2 is negligi-

ble), so that multifractality is destroyed for ε of order 1/
√
N .

This theory, confirmed by our numerics (see Fig. 4, top), does
not single out any scale where the behavior will change, con-
firming that indeed the moments are modified at all scales by
the perturbation.
Remarkably enough, the same behavior appears at the An-

derson transition when the basis is deformed. Using large-
scale numerical simulations [35], we have computed the mo-
ments of the wave functions (eigenvectors) of the 3D Ander-
son model for sizes up to N = L3 with L = 120. As it
was impossible to implement the change of basis as above,
given the size of our matrices, we used instead the evolu-
tion operator corresponding to the quasiperiodic kicked rotor
H̃ = p2/2 +K cos θ(1 + η cos(ω2t) cos(ω3t))

∑

n δ(t− n),
with η = 0.8, ω2 = 2π

√
5, ω3 = 2π

√
13 and h̄ = 2.89.

This 1D system is known to display an Anderson transition
for K = Kc ≈ 4.7 [27, 36]. Here we used large values of
K % Kc to ensure a diffusive dynamics where statistics are
known to be close to Random Matrix results.
In Fig. 3 (right) we show the moments P2 for various val-

ues of the perturbation ε of the basis. The curves are similar
at all scales, but with a slope which varies with the perturba-
tion strength. This indicates that the multifractality is affected
in the same way at all scales. This leads to a disappearance
of multifractality as shown in Fig. 4 (bottom). The perturba-
tion here corresponding to the evolution operator of a diffu-
sive system, a natural scale is the Thouless time τTh, defined
as the ratio L2/D, where D is the diffusion constant. τTh is
the characteristic time where ergodicity sets in. Fig. 4 (bot-
tom) shows that indeed this is the relevant scale, the variation
of the parameter K of the model enabling us to probe sev-
eral orders of magnitude of τTh. In addition, we checked that
the results presented for both models are representative of a
real experimental situation where a single basis is imposed by
the setup, i. e. without averaging over basis change (data not
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shown).
In this Letter, we have investigated how the quantum mul-

tifractality is modified by various generic perturbations. We
have identified two different scenarios. In the first scenario,
a characteristic length appears, which bounds the scale of the
multifractal fluctuations of the wave functions. In the sec-
ond scenario, multifractality is destroyed equally at all scales.
Both scenarios are found in the two models we have investi-
gated, which represent the two main classes of systems dis-
playing quantum multifractality: pseudointegrable systems
and Anderson-type models at criticality. From an experimen-
tal point of view, in the first scenario one can compensate a
finite perturbation by using high resolution to resolve very
small scales. On the contrary, in the second scenario one defi-
nitely needs to control the perturbation below a critical value.
These results give a theoretical understanding which should
provide guidance towards the observation of quantum multi-

4

We thus investigate the behavior of multifractality for the
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trix defining the basis change is taken to be Ũ = exp(iεH),
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2 H
2|ψ〉.
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GOE matrix entries only quadratic terms of the form H2

mn

will survive. Thus the moments of |ψ̃〉 read
∑

n |ψ̃n|4 =
∑

n |ψn|4 + 2ε2v2
(

1− 1
2 |
∑

n ψ
2
n|2 − N

2

∑

n |ψn|4
)
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v2 denotes the variance of the GOE matrix elements (here
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ble), so that multifractality is destroyed for ε of order 1/
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This theory, confirmed by our numerics (see Fig. 4, top), does
not single out any scale where the behavior will change, con-
firming that indeed the moments are modified at all scales by
the perturbation.
Remarkably enough, the same behavior appears at the An-

derson transition when the basis is deformed. Using large-
scale numerical simulations [35], we have computed the mo-
ments of the wave functions (eigenvectors) of the 3D Ander-
son model for sizes up to N = L3 with L = 120. As it
was impossible to implement the change of basis as above,
given the size of our matrices, we used instead the evolu-
tion operator corresponding to the quasiperiodic kicked rotor
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This 1D system is known to display an Anderson transition
for K = Kc ≈ 4.7 [27, 36]. Here we used large values of
K % Kc to ensure a diffusive dynamics where statistics are
known to be close to Random Matrix results.
In Fig. 3 (right) we show the moments P2 for various val-

ues of the perturbation ε of the basis. The curves are similar
at all scales, but with a slope which varies with the perturba-
tion strength. This indicates that the multifractality is affected
in the same way at all scales. This leads to a disappearance
of multifractality as shown in Fig. 4 (bottom). The perturba-
tion here corresponding to the evolution operator of a diffu-
sive system, a natural scale is the Thouless time τTh, defined
as the ratio L2/D, where D is the diffusion constant. τTh is
the characteristic time where ergodicity sets in. Fig. 4 (bot-
tom) shows that indeed this is the relevant scale, the variation
of the parameter K of the model enabling us to probe sev-
eral orders of magnitude of τTh. In addition, we checked that
the results presented for both models are representative of a
real experimental situation where a single basis is imposed by
the setup, i. e. without averaging over basis change (data not
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shown).
In this Letter, we have investigated how the quantum mul-

tifractality is modified by various generic perturbations. We
have identified two different scenarios. In the first scenario,
a characteristic length appears, which bounds the scale of the
multifractal fluctuations of the wave functions. In the sec-
ond scenario, multifractality is destroyed equally at all scales.
Both scenarios are found in the two models we have investi-
gated, which represent the two main classes of systems dis-
playing quantum multifractality: pseudointegrable systems
and Anderson-type models at criticality. From an experimen-
tal point of view, in the first scenario one can compensate a
finite perturbation by using high resolution to resolve very
small scales. On the contrary, in the second scenario one defi-
nitely needs to control the perturbation below a critical value.
These results give a theoretical understanding which should
provide guidance towards the observation of quantum multi-



 Changing basis: Anderson model 
->In Anderson model, due to 
enormous system size  (N=L3 
with L=120)  the basis 
changes was modeled by a  
diffusive system 
(quasiperiodic kicked rotor) 
 
->Different theory for system 
size scaling than for map 
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->Relevant parameter is now the Thouless time L2 /D 
 
->Confirmed by numerical simulations over many  
    orders of magnitude 



 Conclusion 
->we have studied how multifractality of wave functions 
is destroyed when a perturbation is applied. 
->We have studied different perturbations of two 
representative models 
-> We find that multifractality can be destroyed in two 
ways.  
->In the first scenario, multifractality survives below a 
perturbation-dependent scale. 
-> In the second scenario, it is destroyed at all scales  
-> Both scenarios have implications for experimental 
observation of quantum multifractality. 
-> In addition, our results imply that Anderson model 
remains critical when basis is changed at Wc 


