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Fractals and multifractals

->Fractal behaviour : well-known in many areas

->Multifractal systems cannot be
described by a single fractal
dimension

->0bserved in many fields of
classical physics,
from turbulence to stock market

->Much more recently predicted to occur
In quantum mechanics




Different quantum states

-> Ergodic states: wave functions
spread over the system
with random-like fluctuations

->|_ocalized states: wave functions
exponentially localized

->Multifractal states: large fluctuations
all over the system

These different states give rise to
specific spectral statistics



Localized vs multifractal states
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Systems with quantum
multifractality

->3D Anderson model at metal-insulator transition:
disordered system form solid-state physics

->Pseudo integrable systems, dynamical systems
In between integrable and chaotic systems:
classical motion takes place not on tori as for integrabillity,
but on surfaces of higher genus:




How to observe multifractality?

->Multifractal states are difficult to observe
experimentally

-> Multifractality has been seen with acoustic waves

(S. Faez, A. Strybulevych, J. H. Page, A. Lagendijk
and B. A. van Tiggelen, Phys. Rev. Lett. 103,155703 (2009))

but in a quantum context, only indirect evidences
up to now

->|mportant to assess how multifractality
resists perturbation




Anderson model

particles on a lattice of sites
H = Z ali) (i + Z i)

where the random on-site energies u; are uniformly dis-
tributed in |[—W/2, W /2] and (i, j) denote nearest neighbors

->classically: diffusion

->In 1D or 2D: quantum particles localized

-> In 3D metal-insulator transition at W, =~ 16.53
-> At the transition point, multifractal states



Quantum map

->0One-dimensional quantum map
Hamiltonian H(p,q,t)= p%/2 -y { q} =, 6(t-n) ,
periodically kicked by a discontinuous linear potential
p is momentum and g the space coordinate;{q} is
fractional part of q, y is a real parameter, and the sum
runs over all integers.
Classical system integrated over one period:

Pntl = Ppn+ 7 mod 1, guni1 = ¢n + 2ppy1 mod 1
For vy irrational, ergodic dynamics
For vy rational=a/b with a,b integers
iterates cover b circles=pseudo-integrable system



Quantum map

+1
Quantum dynamics: (Ul = Uy"

With U NxN matrix such that
—2mik? /N 1 — e2imyN

N 1 — eQiﬂ'(k—l—l—ny)/N

€

Uk =

->For y irrational, Random Matrix Theory

->For v rational=a/b with a,b integers, eigenstates
are multifractal, the more so if b is small



The box-counting method

->A system of linear size L is divided
into L/¢ boxes of size ¢

_ 2
->A measure for each box kis Uk =— Zz ‘wz‘
where the indices run over sites mside box k

. q
-> Moments are defined by Pq — Zk: luk

-> Multifractality=power-law behaviour of moments

Pq ~ (K/L)Dq(q—l)



Smoothing the singular potential

-> First perturbation:
smoothing the singularity of
the quantum map

->\We replace the potential
jump by a smooth
interpolation of width ¢

—> Moments have different
scaling laws depending on
scale
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Scale-dependent multifractality

->We define scale-dependent
multifractal exponent D, (¢)

with ¢ denoting the scale

->Numerical result; finite-size P2

scaling theory collapses
different perturbations
strength onto one curve
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Scale-dependent multifractality

8
6,
. . 4
-> 2-point correlation R.()
function R, is related to the * 2f
multifractal exponent D,
for r/L ->0

(L is system size) TSI TR T
r/L e r/L

-> Again, finite-size scaling defines a perturbation-
dependent scale below which multifractality survives
unchanged

->This scale varies as inverse of the smoothing length



First scenario: multifractality
unchanged at small scale

-> First scenario for multifractality breakdown

-> Same scenario known to hold for Anderson model
away from critical point :

E. Cuevas, V. E. Kravtsov, Phys. Rev. B 76, 235 119
(2007): “multifractal metal”, “multifractal
iInsulator”->multifractality survives below a certain
scale

-> in this scenario, experimental imperfections can be
compensated by looking at smaller scales.



Changing the slope of the potential
for the quantum map

->Multifractality depends LS

on the slope y of the
potential

->For infinite size, no
multifractality for all
irrational values of y
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-> For finite size system, multifractality remains visible
outside rational points: how does it disappear?



The second scenario

->Analytical and numericalj- —
results show that

. o 10 |
multifractality is now _
destroyed in the same way_> =
at all scales. o

2 |
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->In this scenario, experimental imperfections cannot
be compensated by looking at smaller scales



Changing basis

->Multifractality T T z*
depends on the basis of 107; Vam m‘?‘”
" i 25 1107 o0 i 1
observation ; R Rt
P2 I ‘);// : ; .//‘;:/::/)(
. . 10_2? )//'//;// é10-4; :/‘/42( b
-> In experiments, basis i JOT 4
v, 1 |
of measurement cannot o ¥ :
be chosen at will 1078 0
/L (/L

Figure: moments for quantum map and Anderson
(size=1203), for different perturbations

> Qur results show that changing basis destroys
multifractality at all scales (second scenario)
for both Anderson model and quantum maps



Two-parameter scaling

-> |n some systems,

changing basis leads to 09

a variant of the second
scenario with presence
of a characteristic length o~

s

->Two-parameter scaling
collapses the curves into
one curve, with uniform

destruction of £

multifractality below the
characteristic length
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Changing basis: system size scaling,
quantum map

->Multifractality destruction [ iErEEasissaaeg
depends on perturbation 0.9

strength € and system size N
Dyt

->Quantum map: perturbation,; . 1.
is U = exp(ieH) : N
with H Random GOE Matrix 5° 102 . 100 10’

_ . Figure: D, for quantum
-> ;
Analytical theory predicts map, for different

scalingin er/ N perturbations
confirmed by numerics



Changing basis: Anderson model

->In Anderson model, due to
enormous system size (N=L3

with L=120) the basis 2.5

changes was modeled by a
diffusive system
(quasiperiodic kicked rotor)

->Different theory for system

size scaling than for map

>Relevant parameter is now the Thouless time L2 /D

->Confirmed by numerical simulations over many

orders of magnitude
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Conclusion

->we have studied how multifractality of wave functions
IS destroyed when a perturbation is applied.

->\We have studied different perturbations of two
representative models

-> \We find that multifractality can be destroyed in two
ways.

->In the first scenario, multifractality survives below a
perturbation-dependent scale.

-> |n the second scenario, it is destroyed at all scales
-> Both scenarios have implications for experimental
observation of quantum multifractality.

-> |n addition, our results imply that Anderson model
remains critical when basis is changed at W/



