Chaotic scattering of matter waves David Guéry-Odelin

P. Cheiney, Ch. Fabre, F. Vermersch, G. Condon, F. Damon, A. Couvert, G. Reinaudi
G. L. Gattobigio, T. Lahaye, R. Mathevet

Collaboration with B. Georgeot (LPT Toulouse)
http://www.coldatomsintoulouse.com/
Laboratoire Collisions Agrégats Réactivité (LCAR)
Université Paul Sabatier, Toulouse, France

Luchon, 18th january

Outline

1D scattering on periodic potential
Bragg mirror
Scattering on time-modulated potential
Chaotic scattering
Transition to chaotic scattering
Guided matter wave beam splitter

Matter wave scattering on a localized defect

Launching a Bose-Einstein condensate in an optical guide

Guided atom laser (outcoupled from a trapped Bose-Einstein condensate)

This method gives access to the «trajectory»

Outline

1D scattering on periodic potential
Bragg mirror
Scattering on time-modulated potential
Chaotic scattering
Transition to chaotic scattering
Guided matter wave beam splitter

Bragg mirror in optics

Bragg interference condition
$\bar{k} n_{1} a=\bar{k} n_{2} b=\frac{\pi}{2} \quad[\pi]$
Reflection > 99,99 \%

Is it possible to develop «dieletric » atom optics elements? Iacopo Carusotto - Luis Santos (1998-2002)

Particle in an infinite periodic potential

Bragg reflection (the small potential depth limit)

Red : allowed; blue : forbidden

$$
\begin{aligned}
& d \quad \text { lattice spacing } \\
& 2 d=n \lambda \sin \Theta \\
& \lambda=h /(m v) \\
& \Theta=\pi / 2 \\
& v=n v_{\mathrm{R}} / 2
\end{aligned}
$$

Simple picture of the scattering

Before

After

Red : transmitted; blue : reflected

Experimental setup

Probing an optical lattice with an envelope

The response of the system contains a fingerprint of the band structure of the lattice

Probing an optical lattice (the real system)

Probing an optical lattice (the real system)

$$
U_{0} \simeq 11 E_{\mathrm{R}} \quad \text { Experiment: example of result }
$$

Bragg mirror results

Experiment

Numerical simulation

Scattering experiment enables to probe directly the band structure
Tunable velocity filter: low pass / high pass / notch / band pass filter
Ch. Fabre et al. PRL 107, 230401 (2011)

Cavity with imaginary walls

The envelope «projects » the band gap in position space Spatial gaps

Tunable tunnel barriers

A Landau Zener transition projected in position space corresponds to a tunnel event through the barrier provided by the local band gap.

Spatial gaps: a new method to design Matter wave cavities

F. Damon in preparation

Reflection induced by driving interband transitions

Scattering on time-dependent barriers

$$
\begin{aligned}
& \mathrm{v}_{0}=11.25 \mathrm{~mm} \cdot \mathrm{~s}^{-1} \\
& \Delta \mathrm{v}=6 \mathrm{~mm} \cdot \mathrm{~s}^{-1} \\
& \mathrm{U}_{0}=2 \mathrm{E}_{\mathrm{R}}
\end{aligned}
$$

(a)

P. Cheiney et al. PRA 87, 013623 (2013)

Outline

1D scattering on periodic potential
Bragg mirror
Scattering on time-modulated potential
Chaotic scattering
Transition to chaotic scattering
Guided matter wave beam splitter

Attractive potential $\left(90^{\circ}\right)$

Local attractive potential (LAP) at 90°

Weak coupling
(between longitudinal and Transverse degrees of freedom)

Strong coupling
G. L. Gattobigio et al. PRL 107, 254104 (2011)

LAP at 90° : classical mechanics analysis

Experimental results

G. L. Gattobigio et al. PRL 107, 254104 (2011)

Outline

1D scattering on periodic potential
Bragg mirror
Scattering on time-modulated potential
Chaotic scattering
Transition to chaotic scattering
Guided matter wave beam splitter

Previous studies on the splitting of a matter beam

PRL 85, 5483 (2000) Schmiedmayer (Innsbruk)

PRL 85, 5543 (2000) Pruvost (Orsay)

PRL 89, 220402 (2002)
Birkl (Hannover)

Beam splitter configuration

Experimental observation

Regime (II) dominated by chaos

A splitter as a result of a chaotic dynamics
The zone overwhich the chaotic behavior takes place decreases with the angle between the two arms of the beam splitter

Magnifying quantum effects (I)

Confinement : the LAP breaks the mapping between classical and quantum predictions since the harmonicity of the guide is destroyed by the LAP

$$
\vec{F}=-\langle\vec{\nabla} V\rangle \neq-\vec{\nabla}_{\langle x\rangle} \dot{V}(\langle x\rangle)
$$

1) Tunnel effect (small size defect)
2) Diffraction
3) Interference (long time)

Magnifying quantum effects (II)

Guide + a lattice at 45° degrees

Influence of the confinement (numerical results)

Spatial gaps: a new method to design Matter wave cavities

-> development of guided atom optics 1 D realization of a Bragg mirror, of a Bragg cavity, selective filter by amplitude modulation
-> design new kind of tunnel barriers by shaping the lattice envelope

2D emergence of chaotic behavior, realization of a beam splitter assisted by chaos, influence of the confinement on the scattering
-> new system in which one can study quantum chaos

