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Motivation

Resonance-assisted tunneling in a normal form system

tunneling splitting vs１/hbar
with a island chain

without island chains
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J. Le Deun↵, A. Mouchet, and P. Schlagheck, Phys. Rev. E 88, 042927 (2013).
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Motivation

�E = |AT |2�E

J. Le Deun↵, A. Mouchet, and P. Schlagheck, Phys. Rev. E 88, 042927 (2013).

A semiclassical formula for 
tunneling splitting:

Necessary to know the topology and the imaginary action of  
complex trajectories.

Resonance-assisted tunneling in a normal form system
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Divide connected wells into two separated wells and focus on 
a single well case first.

＋
＝

Simpler model

doublet system
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Phase space with ✏ = ⌘ = �2.

Hamiltonian :
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Exact analysis of  a normal form system

H =
p2

2
+

q2

2
+ ✏
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+
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◆2

+ ⌘p2q2.



where     is an integration constant.
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Q̇+ Ṗ

4⌘(Q� P )
=

p
PQ =

Q̇� Ṗ

4 + 4✏(Q+ P ) + 4⌘(Q+ P )
.

4(Q+ P ) + (2✏+ 2⌘)(Q+ P )2 = 2⌘(Q� P )2 + C,

C

This yields

New coordinate : P := p2,Q := q2,

Hamilton’s equations : Q̇ = (2 + 2✏(Q+ P ) + 4⌘Q)
p

PQ,

Ṗ = (�2� 2✏(P +Q)� 4⌘P )
p

PQ.

Exact analysis of  a normal form system
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The form of  solution :

Exact analysis of  a normal form system

✓(t) = arcsin

✓
↵+ �sn2(t, k)

�sn2(t, k)� �
� ⌘

✏A1/2

◆
.

A := 1 + (✏+ ⌘)C

q = ±

vuut1

2
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✏ + ⌘
sin ✓(t) +

✓
A

�⌘(✏ + ⌘)

◆1/2

cos ✓(t)� 1

✏ + ⌘

!
,

p = ±

vuut1

2

 
A1/2

✏ + ⌘
sin ✓(t)�

✓
A
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!
.

sn(t, k) : Jacobi elliptic sn function



K and K’ are the periods of  sn function. 
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Singularity structure(Riemann sheet)
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Phase space with ✏ = ⌘ = �2.
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Topology of  trajectory (single island chain case)
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Phase space with ✏ = ⌘ = �2.
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Topology of  trajectory (single island chain case)
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Phase space with ✏ = ⌘ = �2.

Topology of  trajectory (single island chain case)

×,×: divergence point of
●: zero point of

: cutIm T

Re T

××

q(t)

0

Time plane of  q(t)

●

q(t)

●

× ×

T

iK’

2iK’

0 2K 4K



q

p

12

Topology of  trajectory (single island chain case)

Phase space with ✏ = ⌘ = �2.

Imaginary actions for these topologically distinct 
paths are different.
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Topology of  trajectory (single island chain case)

Phase space with ✏ = ⌘ = �2.
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Topology of  trajectory(double island chain case)

Phase space with ✏ = �2, ⌘ = �2.7,� = 0.9,! = 1.8.
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Topology of  trajectory(double island chain case)
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Topology of  trajectory(double island chain case)
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3 possible imaginary actions.
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If  we glue two simple systems to form a doublet, the divergence 
points for a simple system may merge, and then a direct 
tunneling path must be created.

＋＝

Relation to the doublet case
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Looks different but the same topology, so 
the same imaginary action.

Topology of  trajectory(double island chain case)
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Conclusion
- We obtained the exact solution of  a simple normal form 
Hamiltonian system, which allows us to examine the Riemann 
sheet structure and singularities in the complex plane analytically.

- We numerically studied complex singularity structures in 
more general cases, and explored how the paths with 
different imaginary actions appear. 

1. paths with different topology 

 orbit on a torus can go to either to nearest neighboring tori or to 
infinity. 
   (take either "local train" or "plane", no "express", "Shinkansen" 
… )

Two origins of  the paths with different imaginary actions: 

2. resolution of  degenerated paths due to symmetry breaking.


