Boundary-induced phenomena in mesoscopic systems

Martina Hentschel

Georg Röder, Pia Stockschläder, Jakob Kreismann, Philipp Müller, Lucia Baldauf

TU Ilmenau, Germany

Outline

I. Optical mesoscopic systems

Semiclassical effects at planar vs. curved interfaces

II. Electronic mesoscopic systems

X-ray edge problem: Boundary signal determines photoabsorption cross section Graphene: edge-state effect on photoabsorption

III. Summary and Outlook

Research started at TU Ilmenau

Outline

I. Optical mesoscopic systems

Semiclassical effects at planar vs. curved interfaces

II. Electronic mesoscopic systems

X-ray edge problem: Boundary signal determines photoabsorption cross section Graphene: edge-state effect on photoabsorption

III. Summary and Outlook

Research started at TU Ilmenau

Motivation: microdisk laser

- destroy rotational symmetry to achieve farfield directionality
 - \rightarrow "deformed microdisk lasers"

side-view

Harayama Lab (Kyoto) Zyss Lab (Paris) Capasso Lab (Harvard) Bell Labs (New Jersey) Cao Lab (Yale)

• Limaçon shape $r(\phi) = R (1 + \varepsilon \cos \phi)$ with directional emission:

J. Wiersig and M. Hentschel, PRL 100, 2008

Harayama Lab (Kyoto)

Goos-Hänchen shift (GHS) and Fresnel filtering (FF)

→ ray picture works very well in many cases

> Goos and Hänchen, Ann. Phys. 1947 Artmann, Ann. Phys. 1948

H. Tureci, D. Stone, Opt. Lett. 2002

 \rightarrow semiclassical corrections ~ λ

Curvature dependence: effective angle of incidence and Fresnel laws

Results: Dependence on curvature $\kappa = 1/R$

Effects due to FF and GHS

- → GHS explains Fresnel laws at curved boundaries
- → GHS can be implemented via an effective system boundary (depending on both λ and κ)
- → FF corrects far field emission, λ and κ dependent
 → FF destroys ray-path reversibility
 → FF brings chirality in asymmetric cavities
- → FF introduces non-Hamiltonian dynamics
 → FF tends to regularize classically chaotic orbits

s $\pi/4$

 $\pi/8$

Lee et al., PRL 93,2004

E. Altmann, G. Del Magno, and **M.H.**, EPL **84**, 2008

Outline

I. Optical mesoscopic systems

Semiclassical effects at planar vs. curved interfaces

II. Electronic mesoscopic systems

X-ray edge problem: Boundary signal determines photoabsorption cross section

Graphene: edge-state effect on photoabsorption

III. Summary and Outlook

Research started at TU Ilmenau

Many-body effects: An example

• rectangular quantum dot under localized perturbation

Importance of • mesoscopic fluctuations?

- finite particle number?
- boundary effects?

Example: Anderson Orthogonality Catastrophe

- Fermi sea of electrons: apply sudden and localized perturbation \rightarrow many-body ground state $|\Psi\rangle$ changed
- look at the Anderson overlap $|\Delta|^2 = |\langle \Psi_{pert} | \Psi_{unpert} \rangle|^2$

Example: Anderson Orthogonality catastrophe in the mesoscopic case

- Fermi sea of electrons: apply sudden and localized perturbation \rightarrow many-body ground state $|\Psi\rangle$ changed
- look at the Anderson overlap $|\Delta|^2 = |\langle \Psi_{pert} | \Psi_{unpert} \rangle|^2$

Mesoscopic systems

M.H. , D. Ullmo, H. Baranger, PRL **93**, 2004 M.H. , D. Ullmo, H. Baranger., PRB **72**, 2005

Georg Röder and **M.H.**, PRB **82**, 2010 S. Bandopadhyay and **M.H.**, PRB **83**, 2011

Boundary signatures in the photoabsorption

The mesoscopic x-ray edge problem:

- \rightarrow experimentally accessible
- \rightarrow example for "physics beyond RMT"
- \rightarrow system boundary dominates photoabsorption

M.H., D. Ullmo, H. Baranger, PRL 2004, PRB 2007 Georg Röder and M.H., EPJB 2014

Graphene: Anderson catastrophe

Comparison of different perturbation strengths:

- ➔ AOC suppressed at Dirac point
- The presence or absence of zero-energy states significantly influences AOC as well as Kondo physics.
 M H and F Guinea, PRR 7

M. H. and F. Guinea, PRB **76**, 2007 G`. Röder, G.Tkachov, and M.H.,, EPL 2011

Graphene: Photoabsorption, no edge states

Graphene: Photoabsorption bulk vs. edge states

Outline

I. Optical mesoscopic systems

Semiclassical effects at planar vs. curved interfaces

II. Electronic mesoscopic systems

X-ray edge problem: Boundary signal determines photoabsorption cross section

Graphene: edge-state effect on photoabsorption

III. Summary and Outlook

Research started at TU Ilmenau

Summary of past years:

- GHS and FF at curved interfaces understood, including formula
- boundary contribution dominates photoabsorption signal via dipol matrix el. or presence of edge states
- + directional emission from optical microcavities (Limaçon, composite systems) + quasiattractor in coupled cavities + lasing cavities

J.-W. Ryu and M.H., Opt. Lett. 36, 2011

Friederike, 2009 Wiebke, 2010

Ilmenau, April 2012 Imke, Dec. 2012

Work in progress

• 3d modelling of optical microcavity systems (meep, Jakob Kreismann)

• edge states in photonic graphene (Pia Stockschläder, Lucia Baldauf)

- Formation of edge states under symmetry breaking

- graphene on iridium [111] (DFT calculation, VASP, **Philipp Müller**)
 - Experiments : Moiré superlattice

A. T. N'Diaye, J. Coraux, T. N. Plasa,B. New. J. Phys. **10** (2008)

Modelling

- Experiments : Vacancies (Kröger group, Ilmenau): triangular structure reproduced

• mesoscopic transport in disordered potentials (Kazuhiro Kubo)

Summary

- GHS and FF at curved interfaces understood, including analytical formulae (convex microcavities).
 Only FF matters in small cavities.
- Photoabsorption signal and Anderson overlap show features of quantum-chaos like (RMT) universality away from system boundary, but boundary contribution dominates absorption spectrum via dipole matrix element or presence of edge states

