Landau-Stark states and the kicked-rotor problem

Andrey R. Kolovsky

Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
Siberian Federal University, 660036 Krasnoyarsk, Russia

Luchon, March 2014

Quantum particle in a 2D lattice

The Hamiltonian

$$
\widehat{H}=\frac{(\hat{\mathbf{p}}-\mathbf{A})^{2}}{2 M}+V(\mathbf{r})+\mathbf{F} \cdot \mathbf{r}, \quad V(x+a, y)=V(x, y+a)=V(x, y)
$$

- Bloch states $(A=0, F=0)$
- Landau-states $(A \neq 0, F=0)$
- Wannier-Stark states $(A=0, F \neq 0)$
- Landau-Stark states $(A \neq 0, F \neq 0)$

Applications of the Landau-Stark states:

- Cold atoms in parabolic lattices subject to a synthetic magnetic field.
- Alternative approach to Hall physics (integer quantum Hall effect, etc.)

Tight-binding approximation $(|\alpha| \ll 1 / 2)$

Hamiltonian for the Landau gauge $\mathbf{A}=B(0, x, 0)$

$$
\begin{array}{r}
(\widehat{H} \psi)_{l, m}=-\frac{J_{x}}{2}\left(\psi_{I+1, m}+\psi_{I-1, m}\right) \\
-\frac{J_{y}}{2}\left(\psi_{l, m+1} e^{i 2 \pi \alpha I}+\psi_{l, m-1} e^{-i 2 \pi \alpha l}\right)+a\left(F_{x} I+F_{y} m\right) \psi_{l, m}
\end{array}
$$

The spectrum:

- $E\left(\kappa_{x}, \kappa_{y}\right)=-J_{x} \cos \left(a \kappa_{x}\right)-J_{y} \cos \left(a \kappa_{y}\right)$ (Bloch states)
- $-0.5 J_{x}\left(b_{l+1}+b_{l-1}\right)-J_{y} \cos (2 \pi \alpha l+a \kappa) b_{l}=E_{n}(\kappa) b_{l}$ (Landau states)
- $E_{n, k}=a F_{x} n+a F_{y} k$ (Wannier-Stark states, $F_{x}, F_{y} \neq 0$)
- What is the spectrum of the Landau-Stark states? The answer: The spectrum is either continuous or discrete depending on the rationality of the parameter $\beta=F_{x} / F_{y}$.

The proof

- Consider Schrödinger equation $i \dot{\psi}_{l, m}=(\widehat{H} \psi)_{l, m}$
- Use the ansatz $\psi_{l, m}(t) \sim e^{i\left(\kappa-F_{y} t\right) m} b_{l}(t)$
- We have

$$
\left.i \dot{b}_{l}=-\frac{J_{x}}{2}\left(b_{l+1}+b_{l-1}\right)-J_{y} \cos \left(2 \pi \alpha l+\kappa-F_{y} t\right) b_{l}+F_{x} \right\rvert\, b_{l} \equiv\left(\widehat{H}_{1 D}(t) \mathbf{b}\right)
$$

- Construct evolution operator $\widehat{U}^{(k)}=\widehat{\exp }\left[-i \int_{0}^{2 \pi / F_{y}} \widehat{H}_{1 D}(t) \mathrm{d} t\right]$
- Find eigenvectors $\widehat{U}^{(\kappa)} \mathbf{b}=\lambda \mathbf{b}$
- Construct Landau-Stark states $\Psi_{I, m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b_{l}^{(n)}(\kappa) e^{-i \kappa(m-k)} \mathrm{d} \kappa$

If $J_{x}=0$ the evolution operator is a diagonal matrix $U_{l, I}^{(\kappa)}=\exp (-i 2 \pi \beta I)$ where $\beta=F_{x} / F_{y}$.

Analogy with the kicked rotor problem: for vanishing kick strength $U_{l, I}=\exp \left(-i 2 \pi \eta I^{2}\right)$.

Localized Landau-Stark states (irrational β)

Figure: Examples of the localized Landau-Stark states for $F=0.5$ (left) and $F=0.4$ (right). The other parameters are $\beta=(\sqrt{5}-1) / 4 \approx 1 / 3$ and $\alpha \approx 1 / 6$. The occupation probabilities $\left|\psi_{l, m}\right|^{2}$ are shown as a color map.

Spectrum of the localized Landau-Stark states

If $\Psi_{l, m}$ is an eigenstate with the energy E, then the state

$$
\tilde{\Psi}_{l, m}=\Psi_{l-n, m-k} e^{-i 2 \pi \alpha n m}
$$

is also eigenstate with the energy

$$
\tilde{E}=E+a\left(F_{x} n+F_{y} k\right)
$$

Localization lengths

- $\xi_{\|} \sim J / a F$
- $\xi_{\perp}=\infty$ if $\beta=F_{x} / F_{y}$ is a rational number
- $\xi_{\perp}<\infty$ if β is an irrational number
- Scaling law for ξ_{\perp} ?

Semiclassical approach (driven Harper model)

The classical Hamiltonian (quantization rule $[\hat{x}, \hat{p}]=i 2 \pi \alpha$)

$$
H_{1 D}(t)=-J_{x}^{\prime} \cos \left(p-F_{x} t\right)-J_{y}^{\prime} \cos \left(x+F_{y} t\right), \quad J_{x, y}^{\prime}=2 \pi \alpha J_{x, y}
$$

This system can be studied:

- on the torus ($-\pi \leq p, x<\pi$)
- on the cylinder $(-\pi \leq p<\pi,-\infty<x<\infty)$
- in the plane $(-\infty<p, x<\infty)$

In the plane: using the canonical substitution $p^{\prime}=p-F_{x} t$ and $x^{\prime}=x+F_{y} t$ the Hamiltonian takes time-independent form:

$$
H_{1 D}^{\prime}=-J_{x}^{\prime} \cos \left(p^{\prime}\right)-J_{y}^{\prime} \cos \left(x^{\prime}\right)+F_{x} x^{\prime}+F_{y} p^{\prime}
$$

Phase portrait: transporting islands

Figure: Stroboscopic map of the classical driven Harper for rational $\beta=1 / 3$, left panel, and irrational $\beta=(\sqrt{5}-1) / 4 \approx 1 / 3$, right panel. Transporting islands disappear if $F>F_{c r}$.

Kicked Harper

[1] L. Hufnagel, R. Ketzmerick, M.-F. Otto, and H. Schanz, Eigenstates ignoring regular and chaotic phase-space structures, Phys. Rev. Lett. 89, 154101 (2002); [2] A. Bäcker, R. Ketzmerick, and A. G. Monastra, Flooding of chaotic eigenstates into regular phase space islands, Phys. Rev. Lett. 94, 054102 (2005)

Adopting reported results to the currently considered problem we have:

$$
\xi_{\perp} \sim \frac{F}{\alpha} \exp \left(C \frac{S(F)}{\alpha}\right)
$$

Spectrum of the extended Landau-Stark states (rational β)

Figure: Examples of the band energy spectrum of extended Landau-Stark states. Parameters are $\alpha=1 / 10, \beta=0$, and $F=1$ (left) and $F=0.3$ (right).

Localization length: numerical results

 Inverse participation ratio: $P=\left(\sum_{l, m}\left|\Psi_{l, m}\right|^{4}\right)^{-1}$

Figure: Localization length ξ_{\perp} as the function of $1 / F$. The other parameters are $\beta=(\sqrt{5}-1) / 4 \approx 1 / 3$, and $\alpha \approx 1 / 6$.

Conclusions

- The spectrum of the Landau-Stark states crucially depends on the rationality condition for the parameter $\beta=F_{x} / F_{y}$.
- If β is a rational number the spectrum is continuous (band structured) and Landau-Stark states are extended Bloch-like waves in the direction orthogonal to \mathbf{F}.
- If β is an irrational number the spectrum is discrete, $E=a\left(F_{x} n+F_{y} k\right)$, and Landau-Stark states are truly localized states, i.e., the localization lengths $\xi_{\|}, \xi_{\perp}<\infty$.
- Nontrivial scaling law for the localization length: ξ_{\perp} blows up exponentially when F decreases below critical $F_{c r} \sim \alpha$.
- In practice this is seen as a localization-delocalization transition.

Cold atoms in parabolic lattices

The system

$$
\begin{gathered}
(\widehat{H} \psi)_{l, m}=-\frac{J}{2}\left(\psi_{l+1, m} e^{-i \pi \alpha m}+\psi_{l-1, m} e^{i \pi \alpha m}\right) \\
-\frac{J}{2}\left(\psi_{l, m+1} e^{i \pi \alpha l}+\psi_{l, m-1} e^{-i \pi \alpha l}\right)+\frac{\gamma}{2}\left(l^{2}+m^{2}\right) \psi_{l, m}
\end{gathered}
$$

where $\gamma \sim \omega_{\text {trap }}^{2}$ is the harmonic confinement.
Locally, at (I, m) near $\left(I_{0}, m_{0}\right)$, we have

$$
\frac{\gamma}{2}\left(l^{2}+m^{2}\right) \psi_{l, m} \approx F_{x} l+F_{y} m
$$

where $\left(F_{x}, F_{y}\right)=-\gamma\left(I_{0}, m_{0}\right)$ is the gradient force pointing the lattice origin.

Semiclassical approach $(\alpha \ll 1)$

Classical counterpart of the tight-binding Hamiltonian

$$
H_{c l}=-J_{x} \cos \left(p_{x}-\pi \alpha y\right)-J_{y} \cos \left(p_{y}+\pi \alpha x\right)+\frac{\gamma}{2}\left(x^{2}+y^{2}\right)
$$

Figure: Poincare cross-section of the energy shell $E=2.5$ (left panel) and examples of classical trajectories in the coordinate space (right panel). Encircling frequency is $\Omega=\gamma / 2 \pi \alpha$.

Wave packet dynamics

Acknowledgments

(1) A.R.Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, Europhys. Lett. 93, 20003 (2011).
(2)
A.R.Kolovsky and G.Mantica, Cyclotron-Bloch dynamics of a quantum particle in a $2 D$ lattice, Phys. Rev. E 83, 041123 (2011).
(3)
A.R.Kolovsky, Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices, Front. Phys. 7, 3 (2012).
(4) A.R.Kolovsky and G.Mantica, Driven Harper model, Phys. Rev. B 86, 054306 (2012).
(5) A.R.Kolovsky, I.Chesnokov, and G.Mantica, Cyclotron-Bloch dynamics of a quantum particle in a two-dimensional lattice II: Arbitrary electric field directions, Phys. Rev. E 86, 041146 (2012).
(6)
A.R.Kolovsky, Landau-Zener tunneling in 2D periodic structures in the presence of a gauge field I: Tunneling rates, J. Phys. B: At. Mol. Opt. Phys. 46, 145301 (2013).
(7) D.N.Maksimov, I.Yu.Chesnokov, D.V.Makarov, and A.R.Kolovsky, Landau-Zener tunneling in 2D periodic structures in the presence of a gauge field II: Electric breakdown, J. Phys. B: At. Mol. Opt. Phys. 46, 145302 (2013).
(8) A.R.Kolovsky, F.Grusdt, and M. Fleischhauer, Eigenstates of the quantum particle in a parabolic lattice in the presence of a gauge eld, Phys. Rev.A 89, 033607 (2014).
(9) I.Yu.Chesnokov and A.R.Kolovsky, Landau-Stark states in finite lattice and edge-induced Bloch oscillations, Europhys. Lett. 106, 50001 (2014).
(0) A.R.Kolovsky and G.Mantica, Landau-Stark states and cyclotron-Bloch oscillations of a quantum particle in 2D lattices, submitted to Phys. Rep. 2015.

Forthcoming conference

NDES $23^{\text {rd }}$ edition will be hosted in Como by the University of Insubria Dept. of Science and Technology, Center for Non-linear and Complex Systems, in coincidence with the Universal Exposition Milano 2015, from Sept. 7 to $11^{\text {th }}, 2015$.

