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Pistes (more or less complex trails with fluctuations in altitudes)

• Definition
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• Chaotic tunnelling

School for advanced sciences of Luchon (quantum chaos, 2015) – p.2/14



Pistes (more or less complex trails with fluctuations in altitudes)

• Definition

• The double-well

• Chaotic tunnelling

• Resonance of what?

• The challenge of complexification

School for advanced sciences of Luchon (quantum chaos, 2015) – p.2/14



Pistes (more or less complex trails with fluctuations in altitudes)

• Definition

• The double-well

• Chaotic tunnelling

• Resonance of what?

• The challenge of complexification

• Instantons revisited: incomplete WICK rotation

• TAYLOR-made integrable resonant Hamiltonians

School for advanced sciences of Luchon (quantum chaos, 2015) – p.2/14



Pistes (more or less complex trails with fluctuations in altitudes)

• Definition

• The double-well

• Chaotic tunnelling

• Resonance of what?

• The challenge of complexification

• Instantons revisited: incomplete WICK rotation

• TAYLOR-made integrable resonant Hamiltonians

• Perspective: things to do and open questions
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Definition

Tunnelling stands for any wave process that is forbidden by real

classical solutions

MILLER () ; HELLER & DAVIS ()

q
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Definition

Tunnelling stands for any wave process that is forbidden by real

classical solutions

MILLER () ; HELLER & DAVIS ()

p
q

typically a crossing of (KAM) tori
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The double-well

?E
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The double-well

?E
∆E =

2π~

T
∼
~→0

α~ eiA/~
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The double-well

?E
∆E =

2π~

T
∼
~→0

α~ eiA/~

A = i

∫

below the barrier

√

2m
(

V (q)− E
)

dq
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The double-well

?E ∆E =
2π~

T
∼
~→0

α~ eiA/~

A = i

∫

below the barrier

√

2m
(

V (q)− E
)

dq

complex momentum p
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Chaotic tunnelling

POINCARÉ surface of section for cold atoms (θ ≃ 1.7):

h(p, q; t) =
1

2
p2 − γ(θ + cos t) cos q
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Chaotic tunnelling
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b:  = 0:58

f:  = 0:70

d:  = 0:63

:  = 0:61

e:  = 0:65

a:  = 0:55
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Chaotic tunnelling
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γ=.63  1/h=13
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Chaotic tunnelling

γ=.63  1/h=13
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Resonance of what?

Quantum resonance: the tunnelling doublet is crossed by an

intermediate level.
−

+ −
ǫ

− +

∆ǫ

(log scale)

∆ǫ ∆ǫ

+

classical (γ) or

quantum (~eff) parameter
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Resonance of what?

Quantum resonance: the tunnelling doublet is crossed by an

intermediate level. The simplest case: 1d three-well potential
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Resonance of what?

☞ Perturbative arguments (semiclassical I): Resonance Assisted

Tunnelling (RAT) [BRODIER, SCHLAGHECK, ULLMO, ]

perturbation terms ∝
Vw,i

Ewell − Eintermediate

Semiclassical I: in the (quasi-)integrable regions, Ew ∼ nw~ωw,

Ei ∼ ni~ωi, with (nw, ni) integers.
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Tunnelling (RAT) [BRODIER, SCHLAGHECK, ULLMO, ]

perturbation terms ∝
Vw,i

Ewell − Eintermediate

Semiclassical I: in the (quasi-)integrable regions, Ew ∼ nw~ωw,

Ei ∼ ni~ωi, with (nw, ni) integers.

Quantum resonance Ei ≃ Ew ←→
ωw

ωi

∈ Q classical resonance.
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Resonance of what?

☞ Perturbative arguments (semiclassical I): Resonance Assisted

Tunnelling (RAT) [BRODIER, SCHLAGHECK, ULLMO, ]

perturbation terms ∝
Vw,i

Ewell − Eintermediate

Semiclassical I: in the (quasi-)integrable regions, Ew ∼ nw~ωw,

Ei ∼ ni~ωi, with (nw, ni) integers.

Quantum resonance Ei ≃ Ew ←→
ωw

ωi

∈ Q classical resonance.

−→ need for a local integrable approximation.

~
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Resonance of what?

~

ℓ = 7

BIRKHOFF-GUSTAVSON normal forms in action-angle variables

I = 1
2
(p2 + q2) ; θ = arctan

q

p
Hexact ≃ ω(ǫ)I + a2I

2 + · · · + a[ℓ/2]I
[ℓ/2] + bIℓ/2 cos(ℓθ)
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Resonance of what?

~

ℓ = 7

BIRKHOFF-GUSTAVSON normal forms in action-angle variables

I = 1
2
(p2 + q2) ; θ = arctan

q

p

Hexact ≃ ω(ǫ)I + a2I
2 + · · · + a[ℓ/2]I

[ℓ/2] + bIℓ/2 cos(ℓθ)

Semiclassics I: ω(ǫ), some of the a’s, and b are estimated (fitted).

I ∼ n~ and the resonant matrix elements can be computed for

the quasi-modes. School for advanced sciences of Luchon (quantum chaos, 2015) – p.6/14



Resonance of what?
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Kicked pendulum (Standard Map) 
γ=Κ/4=0.875

Kicked pendulum model (Standard Map γ = .875)

[SCHLAGHECK, MOUCHET, & ULLMO, ] [see also LÖCK, BÄCKER, KETZMERICK, &

Schlagheck, ]
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Resonance of what?

☞ Non-perturbative arguments (semiclassical II): In the energy

domain G(qf , qi, E) ∼
∑

p Ape
iSp/~. The intermediate states can

be seen as the result of a constructive interference between

classical paths (pôles of G).
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Resonance of what?

☞ Non-perturbative arguments (semiclassical II): In the energy

domain G(qf , qi, E) ∼
∑

p Ape
iSp/~. The intermediate states can

be seen as the result of a constructive interference between

classical paths (pôles of G).

In optics: FABRY-PÉROT interferometer ();

In quantum physics: (BOHM, ); resonant tunnelling diode. . .
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Resonance of what?

☞ Non-perturbative arguments (semiclassical II): In the energy

domain G(qf , qi, E) ∼
∑

p Ape
iSp/~. The intermediate states can

be seen as the result of a constructive interference between

classical paths (pôles of G).

Te =
1

1 + f sin2(πδ/λ)
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Resonance of what?

☞ Non-perturbative arguments (semiclassical II): In the energy

domain G(qf , qi, E) ∼
∑

p Ape
iSp/~. The intermediate states can

be seen as the result of a constructive interference between

classical paths (pôles of G).

Sc Sc

Sr Sm Sr = Sl

∆E ∼ e−Sc/~
∑

{wr,wm} pos. int. such that
wrTr+wmTm=T1

(· · · ) eiwrSr/~+iwmSm/~ ≃
T1e

−Sc/~

∣

∣ sin
(

(Sr − Sm)/2~
)
∣

∣

Spikes when Tr/Tm ∈ Q (classical resonance)

and Sr − Sm ∼ 2nπ~ (simultaneous EBK quantization).
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

c©A. SHUDO

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

Failure of HERRING’s formula (CREAGH; , ):

∆ǫ ≃ ~2
∫

dx⊥
[

ψL(x‖, x⊥)∂‖ψ
∗
R(x‖, x⊥)

−ψ∗
R(x‖, x⊥)∂‖ψL(x‖, x⊥)

]

∣

∣

∣

∣

x‖ = 0

beyond the natural boundaries

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

c©SHUDO, ISHII & IKEDA ()

→ problem of selection of the dominant contributions to path integrals.

q
h(p,q)

q q

School for advanced sciences of Luchon (quantum chaos, 2015) – p.7/14



The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

• A complete WICK rotation t 7→ −it (POLYAKOV et al.; , cf. also

COLEMAN; 1977)

p2

2m
+ V (q) →

p2

2m
− V (q)

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

• A complete WICK rotation t 7→ −it (POLYAKOV et al.; , cf. also

COLEMAN; 1977)

p2

2m
+ V (q) →

p2

2m
− V (q)

Captures the ground-state doublet only

q
h(p,q)

q

q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

• A complete WICK rotation t 7→ −it (POLYAKOV et al.; , cf. also

COLEMAN; 1977)

p2

2m
+ V (q) →

p2

2m
− V (q)
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

• A complete WICK rotation t 7→ −it (POLYAKOV et al.; , cf. also

COLEMAN; 1977)

Must also be adapted for dynamical tunnelling: pendulum rotation

h(p, q) = 1
2 p

2 − γ cos q

q
h(p,q)

q q
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The challenge of the complexification

• Quasi-integrable: natural boundaries appear when the KAM tori are

analytically continued (GREEN & PERCIVAL; )

• More chaos: the complex solutions of HAMILTON’s equations

agglomerate in JULIA set patterns

• A complete WICK rotation t 7→ −it (POLYAKOV et al.; , cf. also

COLEMAN; 1977)

Must also be adapted for dynamical tunnelling: pendulum rotation

h(p, q) = 1
2 p

2 − γ cos q

q
h(p,q)

p

q
p q

p
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

Symmetry operator: Ŝ |φ±
n 〉 = ± |φ

±
n 〉

Û(T )
def
= e−iĤT/~

=
∞
∑

n=0

(

|φ+
n 〉 〈φ

+
n | e

−iE+
n T/~ + |φ−

n 〉 〈φ
−
n | e

−iE−

n T/~
)
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

Symmetry operator: Ŝ |φ±
n 〉 = ± |φ

±
n 〉

Û(T )
def
= e−iĤT/~

=
∞
∑

n=0

(

|φ+
n 〉 〈φ

+
n | e

−iE+
n T/~ + |φ−

n 〉 〈φ
−
n | e

−iE−

n T/~
)

For large enough T2, only the ground-state doublet survives:

∆E0
def
= E−

0 − E+
0 ≃ ∆0(T )

def
=

2~

iT

tr
(

Ŝ Û(T )
)

tr
(

Û(T )
)
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

∆E0
def
= E−

0 − E+
0 ≃ ∆0(T )

def
=

2~

iT

tr
(

Ŝ Û(T )
)

tr
(

Û(T )
)

For excited states and almost real T (small θ):

∆En ≃ ∆n(T )
def
=

2~

iT

tr
(

Ŝ Π̂n Û(T )
)

tr
(

Π̂nÛ(T )
)

Semiclassically: Π̂n projects on one torus with energy E+
n ≃ E−

n
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

∆E0
def
= E−

0 − E+
0 ≃ ∆0(T )

def
=

2~

iT

tr
(

Ŝ Û(T )
)

tr
(

Û(T )
)

For excited states and almost real T (small θ):

∆En ≃ ∆n(T )
def
=

2~

iT

tr
(

Ŝ Π̂n Û(T )
)

tr
(

Π̂nÛ(T )
)

Semiclassically: Π̂n projects on one torus with energy E+
n ≃ E−

n

For a decay rate: Γn ≃ −
2

T2

Im
(

eiEnT/~ tr
(

Π̂nÛ(T )
)

)
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

∆E0
def
= E−

0 − E+
0 ≃ ∆0(T )

def
=

2~

iT

tr
(

Ŝ Û(T )
)

tr
(

Û(T )
)

2. Use the semiclassical expansion of the Green functions in

the (complex) time domain

tr
(

Ŝ Û(T )
)

=

∫

dq G(q,−q, T ) ∼
∑

o

Aoe
−iSo/~

complex trajectories connecting

(p, q) to (−p,−q) in time T .
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Instantons revisited: incomplete WICK rotation

[MOUCHET, 2007; LE DEUNFF & MOUCHET, 2010]

1. Introduce a complex time (incomplete WICK rotation):

T = |T |e−iθ = T1 − iT2

2. Use the semiclassical expansion of the Green functions in the

(complex) time domain

3. Take advantage of deforming the complex time path to retain

only the trajectories with real q:
∫

eiS[p(s),q(s),t(s)]/~ D[p]D[q]

is independent of the choice

of s 7→ t(s) provided Im tց

(MCLAUGHLIN; )

Im t T1 Re t

−θ

T

0

−T2
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The double well

qr

qr−a a0 qV(q)

maxV

E

−a 0 a q

a) b)

−E

−Vmax

−V(q)
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The double well

qr

qr−a a0 qV(q)

maxV

E

−a 0 a q

a) b)

−E

−Vmax

−V(q)
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The double well

Re p

Im t

Re q

Re tIm p

a

-a

q r

e)

T

0

l

r
c
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The double well

Re p

Im t

Re q

Re tIm p

a

-a

q r

e)

T

0

l

r
c

o is a concatenation of three trajectories: r ∪ c ∪ l

→ ∆n ∼
~→0

2~

Tr(En)
e−Sc(En)/(2~) .

(LANDAU & LIFSCHITZ; ).
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The double well

Re p

Im t

Re q

Re tIm p

a

-a

q r

e)

T

0

l

r
c

o is a concatenation of three trajectories: r ∪ c ∪ l

→ ∆n ∼
~→0

2~

Tr(En)
e−Sc(En)/(2~) .

(LANDAU & LIFSCHITZ; ). The correct prefactor is given by

×gn (GARG; ) with g0 ≃ 1.075, g1 ≃ 1.028, . . .
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The pendulum

Construct o to connect p to −p keeping p real:

p2

2
− γ cos q → (i)

p2

2
− γ cosh q or (ii)

p2

2
+ γ cosh q
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The pendulum

Construct o to connect p to −p keeping p real:

p2

2
− γ cos q → (i)

p2

2
− γ cosh q or (ii)

p2

2
+ γ cosh q
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The pendulum

→ ∆n ∼
~→0

1

πn4n−1

(e

2

)4n

~2
( γ

~2

)2n

Remark: furnishes an asymptotic expression for differences between

MATHIEU’s characteristic values.
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The pendulum

→ ∆n ∼
~→0

1

πn4n−1

(e

2

)4n

~2
( γ

~2

)2n

1/h

n=1

n=9

1/h

n

n
n n∆Εln

∆ln

ln ∆Ε  /∆
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Triple well
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Triple well

−θ

Re p

Re q

r
q

Im p

Im t
Re tT1

-T 2

a

-a

c r

m

l

T

0

T = wrTr(E) +

(

wm +
1

2

)

Tm(E)− iTc(E)
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Triple well

∆n(T ) ∼
~→0

∣

∣

∣

∣

2~F (T )

T

∣

∣

∣

∣

e−Sc(En)/~

F =
∑

{wr,wm} pos. int. such that
wrTr(En)+wmTm(En)=T1

(wr + 1) eiwr[Sr(En)/~−π]+iwm[Sm(En)/~−π]

≃
T1

∣

∣ sin
(

(Sr − Sm)/2~
)∣

∣

when T1 ≫ T2 (θ≪ 1)

S

2π~
−

1

2
integer ↔ EBK quantization
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Triple well

Diminution of θ: T = |T |e−iθ = KTm − iTc with K ր:

2 3 4 5 6 7-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

6.2 6.4 6.6 6.8 7
-26

-24

-22

-20

-18

K = 5

K = 30

K = 100

ln |∆En/∆n|

1/~
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TAYLOR-made integrable resonant Hamiltonians

[J. Le Deunff, A. Mouchet & P. Schlagheck, ]

Take a ℓ-normal form:

h(p,q)= 1
2
ω(p2+q2)+a2(p2+q2)2+···+a[ℓ/2](p

2+q2)[ℓ/2]+bRe[eiφ(p+iq)ℓ]

and consider the doubly periodic Hamiltonian

H(P,Q)
def
= h (cosP, cosQ)
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Take a ℓ-normal form:

h(p,q)= 1
2
ω(p2+q2)+a2(p2+q2)2+···+a[ℓ/2](p

2+q2)[ℓ/2]+bRe[eiφ(p+iq)ℓ]

and consider the doubly periodic Hamiltonian

H(P,Q)
def
= h (cosP, cosQ)

The phase space is then a 2d-torus. Quantization leads to a

finite dimensional Hilbert space whose dimension is

N =
volume

2π~
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TAYLOR-made integrable resonant Hamiltonians

Take a ℓ-normal form:

h(p,q)= 1
2
ω(p2+q2)+a2(p2+q2)2+···+a[ℓ/2](p

2+q2)[ℓ/2]+bRe[eiφ(p+iq)ℓ]

and consider the doubly periodic Hamiltonian

H(P,Q)
def
= h (cosP, cosQ)

The phase space is then a 2d-torus. Quantization leads to a

finite dimensional Hilbert space whose dimension is

N =
volume

2π~

Tunnelling between two adjacent cells (in Q or in P ) with

a resonance chain centered at (P,Q) ≡ (±π
2
,±π

2
) modulo 2π.
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TAYLOR-made integrable resonant Hamiltonians

ℓ = 4 H(P,Q)
def
= h (cosP, cosQ)

h(p,q)= 1
2
(p2+q2)+a1(p2+q2)2+b

[

(p4−6p2q2+q4)cosφ−4(p3q−q3p)sinφ
]
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TAYLOR-made integrable resonant Hamiltonians

ℓ = 4 H(P,Q)
def
= h (cosP, cosQ)

h(p,q)= 1
2
(p2+q2)+a1(p2+q2)2+b

[

(p4−6p2q2+q4)cosφ−4(p3q−q3p)sinφ
]

a1 = −.55

P
H(P,Q)

Q

b=0.05b=0
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def
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TAYLOR-made integrable resonant Hamiltonians
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TAYLOR-made integrable resonant Hamiltonians
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TAYLOR-made integrable resonant Hamiltonians
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Quasimode (JWKB): Ψn(θ) ≃
1

√

Tin(En)|θ̇|

[

eiSin(θ,En)/~ + Ane
iSout(θ,En)/~

]

avec An =
e−Sc(En)/(2~)

2 sin
[(

Sin(En)− Sout(En)
)

/(2ℓ~)
]

et δEn =
2~ωout

π
e−S

c̃
(En)/(2~)

∆En = |An|2δEn
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TAYLOR-made integrable resonant Hamiltonians
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?

☞ Does it open a window to chaotic tunnelling (quantum

overlap of resonances)? First step: multiresonance process.

Two resonances chains can be taylored

v(I, θ) = b1(I − I2)(2I)r1/2 cos(r1θ + φ1) + b2(I − I1)(2I)r2/2 cos(r2θ + φ2)

-2 0 2
0

1

2

3 r1 = 4

r2 = 6

LE DEUNFF,

MOUCHET,

SCHLAGHECK

work in progress.
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?

☞ Does it open a window to chaotic tunnelling (quantum

overlap of resonances)? First step: multiresonance process.
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?

☞ Does it open a window to chaotic tunnelling (quantum

overlap of resonances)? First step: multiresonance process.

☞ Connection with the work of the Japanese/Dresden school

on complex structures (e.g. [MERTIG et al., ])?

−→ see also AKIRA SHUDO, YASUTAKA HANADA and

HIROMITSU HARADA’s talks.
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?

☞ Does it open a window to chaotic tunnelling (quantum

overlap of resonances)? First step: multiresonance process.

☞ Connection with the work of the Japanese/Dresden school

on complex structures (e.g. [MERTIG et al., ])?

☞ Recover multidimensionnal (non resonant)

WILKINSON-CREAGH’s formulae ()?

∆E ≃
~3/2

√

τR{IL, IR}τL
e−K(I)/~
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Perspective: things to do and open questions

☞ Selection of the class of dominating complex orbits?

☞ Does it open a window to chaotic tunnelling (quantum

overlap of resonances)? First step: multiresonance process.

☞ Connection with the work of the Japanese/Dresden school

on complex structures (e.g. [MERTIG et al., ])?

☞ Recover multidimensionnal (non resonant)

WILKINSON-CREAGH’s formulae ()?

∆E ≃
~3/2

√

τR{IL, IR}τL
e−K(I)/~

☞ Can ImT be interpreted as a dissipation which destroys

tunnelling as in the CALDEIRA-LEGGETT () model?
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PROPAGANDA

☞ ()

☞ Semiclassical description of resonance-assisted tunneling in one-dimensional integrable

models J. LE DEUNFF, A. MOUCHET & P. SCHLAGHECK Phys. Rev. E 88, 04292 ()

☞ Instantons revisited: dynamical tunnelling and resonant tunnelling J. LE DEUNFF &

A. MOUCHET Phys. Rev. E 81, 046205 () School for advanced sciences of Luchon (quantum chaos, 2015) – p.14/14
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