Recent advances on tunnelling in complex systems

Amaury MOUCHET

Kinship: D. Delande, J. Le Deunff, P. Schlagheck, A. Shudo, D. Ullmo.. . mouchet@phys.univ-tours.fr

Laboratoire de Mathématiques et de Physique Théorique (Tours) Fédération Denis Poisson

Pistes (more or less complex trails with fluctuations in altitudes)

- Definition
- The double-well
- Chaotic tunnelling

Pistes (more or less complex trails with fluctuations in altitudes)

- Definition
- The double-well
- Chaotic tunnelling

Resonance of what?
The challenge of complexification

Pistes (more or less complex trails with fluctuations in altitudes)

- Definition
- The double-well
- Chaotic tunnelling

Resonance of what?
The challenge of complexification

- Instantons revisited: incomplete WICK rotation
- TAYLOR-made integrable resonant Hamiltonians

Pistes (more or less complex trails with fluctuations in altitudes)

- Definition
- The double-well
- Chaotic tunnelling

Resonance of what?
The challenge of complexification

- Instantons revisited: incomplete WICK rotation
- TAYLOR-made integrable resonant Hamiltonians

Perspective: things to do and open questions

Definition

Tunnelling stands for any wave process that is forbidden by real classical solutions

MilLER (1974) ; HELLER \& DAVIS (1981)

Definition

Tunnelling stands for any wave process that is forbidden by real classical solutions

Miller (1974) ; HELLER \& DAVIS (1981)

typically a crossing of (KAM) tori

The double-well

The double-well

The double-well

$$
\Delta E=\frac{2 \pi \hbar}{T} \underset{\hbar \rightarrow 0}{\sim} \alpha \hbar \mathrm{e}^{\mathrm{i} A / \hbar}
$$

The double-well

$$
\begin{gathered}
\Delta E=\frac{2 \pi \hbar}{T} \underset{\hbar \rightarrow 0}{\sim} \alpha \hbar \mathrm{e}^{\mathrm{i} A / \hbar} \\
A=\mathrm{i} \int_{\text {below the barrier }} \sqrt{2 m(V(q)-E)} \mathrm{d} q
\end{gathered}
$$

The double-well

$$
\begin{gathered}
\Delta E=\frac{2 \pi \hbar}{T} \underset{\hbar \rightarrow 0}{\sim} \alpha \hbar \mathrm{e}^{\mathrm{i} A / \hbar} \\
A=\mathrm{i} \int_{\text {below the barrier }} \sqrt{2 m(V(q)-E)} \mathrm{d} q
\end{gathered}
$$

Chaotic tunnelling

Poincaré surface of section for cold atoms $(\theta \simeq 1.7)$:

$$
h(p, q ; t)=\frac{1}{2} p^{2}-\gamma(\theta+\cos t) \cos q
$$

Chaotic tunnelling

Chaotic tunnelling

Chaotic tunnelling

Resonance of what?

Quantum resonance: the tunnelling doublet is crossed by an intermediate level.

Resonance of what?

Quantum resonance: the tunnelling doublet is crossed by an intermediate level. The simplest case: $1 d$ three-well potential

Resonance of what?

Perturbative arguments (semiclassical I): Resonance Assisted Tunnelling (RAT) [BRODIER, Schlagheck, Ullmo, 2001]
perturbation terms $\propto \frac{V_{w, i}}{E_{w e l l}-E_{i \text { intermediate }}}$
Semiclassical I: in the (quasi-)integrable regions, $E_{w} \sim n_{w} \hbar \omega_{w}$, $E_{i} \sim n_{i} \hbar \omega_{i}$, with $\left(n_{w}, n_{i}\right)$ integers.

Resonance of what?

Perturbative arguments (semiclassical I): Resonance Assisted Tunnelling (RAT) [BRODIER, Schlagheck, Ullmo, 2001]
perturbation terms $\propto \frac{V_{w, i}}{E_{w e l l}-E_{i \text { intermediate }}}$
Semiclassical I: in the (quasi-)integrable regions, $E_{w} \sim n_{w} \hbar \omega_{w}$, $E_{i} \sim n_{i} \hbar \omega_{i}$, with $\left(n_{w}, n_{i}\right)$ integers.
Quantum resonance $E_{i} \simeq E_{w} \longleftrightarrow \frac{\omega_{w}}{\omega_{i}} \in \mathbb{Q}$ classical resonance.

Resonance of what?

Ler Perturbative arguments (semiclassical I): Resonance Assisted Tunnelling (RAT) [BRODIER, SCHLAGHECK, ULLMO, 2001] perturbation terms $\propto \frac{V_{w, i}}{E_{w e l l}-E_{i \text { intermediate }}}$
Semiclassical I: in the (quasi-)integrable regions, $E_{w} \sim n_{w} \hbar \omega_{w}$, $E_{i} \sim n_{i} \hbar \omega_{i}$, with $\left(n_{w}, n_{i}\right)$ integers.
Quantum resonance $E_{i} \simeq E_{w} \longleftrightarrow \frac{\omega_{w}}{\omega_{i}} \in \mathbb{Q}$ classical resonance.
\longrightarrow need for a local integrable approximation.

Resonance of what?

BIRKHOFF-GUSTAVSON normal forms in action-angle variables $I=\frac{1}{2}\left(p^{2}+q^{2}\right) ; \theta=\arctan \frac{q}{p}$

$$
H_{\text {exact }} \simeq \omega(\epsilon) I+a_{2} I^{2}+\cdots+a_{[\ell / 2]} I^{[\ell / 2]}+b I^{\ell / 2} \cos (\ell \theta)
$$

Resonance of what?

BIRKHOFF-GUSTAVSON normal forms in action-angle variables $I=\frac{1}{2}\left(p^{2}+q^{2}\right) ; \theta=\arctan \frac{q}{p}$
$H_{\text {exact }} \simeq \omega(\epsilon) I+a_{2} I^{2}+\cdots+a_{[\ell / 2]} I^{[\ell / 2]}+b I^{\ell / 2} \cos (\ell \theta)$
Semiclassics I: $\omega(\epsilon)$, some of the a 's, and b are estirnated (fitted).
$I \sim n \hbar$ and the resonant matrix elements can be computed for the quasi-modes.

Resonance of what?

Kicked pendulum model (Standard Map $\gamma=.875$)

[Schlagheck, Mouchet, \& Ullmo, 2011] [see also Löck, BÄcker, KetZmerick, \&

Resonance of what?

Les Non-perturbative arguments (semiclassical II): In the energy domain $G\left(q_{f}, q_{i}, E\right) \sim \sum_{\mathfrak{p}} A_{\mathfrak{p}} \mathrm{e}^{\mathrm{i} S_{\mathfrak{p}} / \hbar}$. The intermediate states can be seen as the result of a constructive interference between classical paths (pôles of G).

Resonance of what?

Les Non-perturbative arguments (semiclassical II): In the energy domain $G\left(q_{f}, q_{i}, E\right) \sim \sum_{p} A_{p} \mathrm{e}^{\mathrm{i} S_{\mathfrak{p}} / \hbar}$. The intermediate states can be seen as the result of a constructive interference between classical paths (pôles of G).

In optics: FABRY-PÉROT interferometer (1899);
In quantum physics: (BOHM, 1951); resonant tunnelling diode...

Resonance of what?

Les Non-perturbative arguments (semiclassical II): In the energy domain $G\left(q_{f}, q_{i}, E\right) \sim \sum_{p} A_{p} \mathrm{e}^{\mathrm{i} S_{\mathfrak{p}} / \hbar}$. The intermediate states can be seen as the result of a constructive interference between classical paths (pôles of G).

$$
T_{e}=\frac{1}{1+f \sin ^{2}(\pi \delta / \lambda)}
$$

Resonance of what?

Les Non-perturbative arguments (semiclassical II): In the energy domain $G\left(q_{f}, q_{i}, E\right) \sim \sum_{\mathfrak{p}} A_{\mathfrak{p}} \mathrm{e}^{\mathrm{i} S_{\mathfrak{p}} / \hbar}$. The intermediate states can be seen as the result of a constructive interference between classical paths (pôles of G).

$$
\Delta E \sim \mathrm{e}^{-S_{\mathfrak{c}} / \hbar} \sum_{\substack{ \\\left\{w_{\mathfrak{r}}, w_{\mathfrak{m}}\right\} \\ w_{\mathfrak{r}} T_{\mathfrak{r}}+w_{\mathfrak{m}} T_{\mathfrak{m}}=T_{1}}}(\cdots) \mathrm{e}^{\mathrm{i} w_{\mathfrak{r}} S_{\mathfrak{r}} / \hbar+\mathrm{i} w_{\mathfrak{m}} S_{\mathfrak{m}} / \hbar} \simeq \frac{T_{1} \mathrm{e}^{-S_{\mathrm{c}} / \hbar}}{\left|\sin \left(\left(S_{\mathfrak{r}}-S_{\mathfrak{m}}\right) / 2 \hbar\right)\right|}
$$

Spikes when $T_{\mathfrak{r}} / T_{\mathfrak{m}} \in \mathbb{Q}$ (classical resonance) and $S_{\mathfrak{r}}-S_{\mathfrak{m}} \sim 2 n \pi \hbar$ (simultaneous EBK quantization).

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (Green \& Percival; 1981)

(๐) A. SHUDO

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)

Failure of HERRING's formula (CREAGH; 1994, 1997):

$$
\begin{aligned}
& \Delta \epsilon \simeq \hbar^{2} \int \mathrm{~d} x_{\perp}\left[\psi_{L}\left(x_{\|}, x_{\perp}\right) \partial_{\|} \psi_{R}^{*}\left(x_{\|}, x_{\perp}\right)\right. \\
&\left.-\psi_{R}^{*}\left(x_{\|}, x_{\perp}\right) \partial_{\|} \psi_{L}\left(x_{\|}, x_{\perp}\right)\right]\left.\right|_{x_{\|}=0}
\end{aligned}
$$

beyond the natural boundaries

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns

(〕) SHUDO, ISHII \& IKEDA (2002)
\rightarrow problem of selection of the dominant contributions to path integrals.

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns
- A complete WICK rotation $t \mapsto-\mathrm{it}$ (POLYAKOV et al.; 1975, cf. also Coleman; 1977)

$$
\frac{p^{2}}{2 m}+V(q) \rightarrow \frac{p^{2}}{2 m}-V(q)
$$

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (Green \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns
- A complete WICK rotation $t \mapsto-\mathrm{it}$ (POLYAKOV et al.; 1975, cf. also Coleman; 1977)

$$
\frac{p^{2}}{2 m}+V(q) \rightarrow \frac{p^{2}}{2 m}-V(q)
$$

Captures the ground-state doublet only

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns
- A complete WICK rotation $t \mapsto-\mathrm{it}$ (POLYAKOV et al.; 1975, cf. also Coleman; 1977)

$$
\frac{p^{2}}{2 m}+V(q) \rightarrow \frac{p^{2}}{2 m}-V(q)
$$

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (GREEN \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns
- A complete WICK rotation $t \mapsto-\mathrm{it}$ (POLYAKOV et al.; 1975, cf. also Coleman; 1977)
Must also be adapted for dynamical tunnelling: pendulum rotation $h(p, q)=\frac{1}{2} p^{2}-\gamma \cos q$

The challenge of the complexification

- Quasi-integrable: natural boundaries appear when the KAM tori are analytically continued (Green \& PERCIVAL; 1981)
- More chaos: the complex solutions of HAMILTON's equations agglomerate in JULIA set patterns
- A complete WICK rotation $t \mapsto-\mathrm{it}$ (POLYAKOV et al.; 1975, cf. also Coleman; 1977)
Must also be adapted for dynamical tunnelling: pendulum rotation $h(p, q)=\frac{1}{2} p^{2}-\gamma \cos q$

Instantons revisited: incomplete WICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

Instantons revisited: incomplete WiCK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2}
$$

Instantons revisited: incomplete W ICK rotation

[Mouchet, 2007; Le DeunfF \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2}
$$

Symmetry operator: $\hat{S}\left|\phi_{n}^{ \pm}\right\rangle= \pm\left|\phi_{n}^{ \pm}\right\rangle$

$$
\begin{aligned}
\hat{U}(T) & \stackrel{\text { def }}{=} \mathrm{e}^{-\mathrm{i} \hat{H} T / \hbar} \\
& =\sum_{n=0}^{\infty}\left(\left|\phi_{n}^{+}\right\rangle\left\langle\phi_{n}^{+}\right| \mathrm{e}^{-\mathrm{i} E_{n}^{+} T / \hbar}+\left|\phi_{n}^{-}\right\rangle\left\langle\phi_{n}^{-}\right| \mathrm{e}^{-\mathrm{i} E_{n}^{-} T / \hbar}\right)
\end{aligned}
$$

Instantons revisited: incomplete W ICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2}
$$

Symmetry operator: $\hat{S}\left|\phi_{n}^{ \pm}\right\rangle= \pm\left|\phi_{n}^{ \pm}\right\rangle$

$$
\begin{aligned}
\hat{U}(T) & \stackrel{\text { def }}{=} \mathrm{e}^{-\mathrm{i} \hat{H} T / \hbar} \\
& =\sum_{n=0}^{\infty}\left(\left|\phi_{n}^{+}\right\rangle\left\langle\phi_{n}^{+}\right| \mathrm{e}^{-\mathrm{i} E_{n}^{+} T / \hbar}+\left|\phi_{n}^{-}\right\rangle\left\langle\phi_{n}^{-}\right| \mathrm{e}^{-\mathrm{i} E_{n}^{-} T / \hbar}\right)
\end{aligned}
$$

For large enough T_{2}, only the ground-state doublet survives:

$$
\Delta E_{0} \stackrel{\text { def }}{=} E_{0}^{-}-E_{0}^{+} \simeq \Delta_{0}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{\mathrm{i} T} \frac{\operatorname{tr}(\hat{S} \hat{U}(T))}{\operatorname{tr}(\hat{U}(T))}
$$

Instantons revisited: incomplete W ICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
\begin{gathered}
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2} \\
\Delta E_{0} \stackrel{\text { def }}{=} E_{0}^{-}-E_{0}^{+} \simeq \Delta_{0}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{\mathrm{i} T} \frac{\operatorname{tr}(\hat{S} \hat{U}(T))}{\operatorname{tr}(\hat{U}(T))}
\end{gathered}
$$

For excited states and almost real T (small θ):

$$
\Delta E_{n} \simeq \Delta_{n}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{i T} \frac{\operatorname{tr}\left(\hat{S} \hat{\Pi}_{n} \hat{U}(T)\right)}{\operatorname{tr}\left(\hat{\Pi}_{n} \hat{U}(T)\right)}
$$

Semiclassically: $\hat{\Pi}_{n}$ projects on one torus with energy $E_{n}^{+} \simeq E_{n}^{-}$

Instantons revisited: incomplete W ICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
\begin{gathered}
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2} \\
\Delta E_{0} \stackrel{\text { def }}{=} E_{0}^{-}-E_{0}^{+} \simeq \Delta_{0}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{\mathrm{i} T} \frac{\operatorname{tr}(\hat{S} \hat{U}(T))}{\operatorname{tr}(\hat{U}(T))}
\end{gathered}
$$

For excited states and almost real T (small θ):

$$
\Delta E_{n} \simeq \Delta_{n}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{\mathrm{i} T} \frac{\operatorname{tr}\left(\hat{S} \hat{\Pi}_{n} \hat{U}(T)\right)}{\operatorname{tr}\left(\hat{\Pi}_{n} \hat{U}(T)\right)}
$$

Semiclassically: $\hat{\Pi}_{n}$ projects on one torus with energy $E_{n}^{+} \simeq E_{n}^{-}$ For a decay rate: $\Gamma_{n} \simeq-\frac{2}{T_{2}} \operatorname{Im}\left(\mathrm{e}_{\text {sthon }}^{\mathrm{i} E_{n} T / \hbar} \operatorname{tr}\left(\hat{\Pi}_{n} \hat{U}(T)\right)\right)$

Instantons revisited: incomplete W ICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
\begin{gathered}
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2} \\
\Delta E_{0} \stackrel{\text { def }}{=} E_{0}^{-}-E_{0}^{+} \simeq \Delta_{0}(T) \stackrel{\text { def }}{=} \frac{2 \hbar}{\mathrm{i} T} \frac{\operatorname{tr}(\hat{S} \hat{U}(T))}{\operatorname{tr}(\hat{U}(T))}
\end{gathered}
$$

2. Use the semiclassical expansion of the Green functions in the (complex) time domain

$$
\operatorname{tr}(\hat{S} \hat{U}(T))=\int \mathrm{d} q G(q,-q, T) \sim \sum_{0} A_{0} \mathrm{e}^{-\mathrm{i} S_{0} / \hbar}
$$

complex trajectories connecting
(p, q) to $(-p,-q)$ in time T.

Instantons revisited: incomplete WICK rotation

[Mouchet, 2007; Le Deunff \& Mouchet, 2010]

1. Introduce a complex time (incomplete WICK rotation):

$$
T=|T| \mathrm{e}^{-\mathrm{i} \theta}=T_{1}-\mathrm{i} T_{2}
$$

2. Use the semiclassical expansion of the Green functions in the (complex) time domain
3. Take advantage of deforming the complex time path to retain only the trajectories with real q :

$$
\int \mathrm{e}^{\mathrm{i} S[p(s), q(s), t(s)] / \hbar} \mathrm{D}[p] \mathrm{D}[q]
$$

is independent of the choice of $s \mapsto t(s)$ provided $\operatorname{Im} t \searrow$

The double well

The double well

The double well

The double well

\mathfrak{o} is a concatenation of three trajectories: $\mathfrak{r} \cup \mathfrak{c} \cup \mathfrak{l}$

$$
\rightarrow \quad \Delta_{n} \underset{\hbar \rightarrow 0}{\sim} \frac{2 \hbar}{T_{\mathrm{r}}\left(E_{n}\right)} \mathrm{e}^{-S_{\mathrm{c}}\left(E_{n}\right) /(2 \hbar)} .
$$

(LANDAU \& LIFSCHITZ; 1958).

The double well

\mathfrak{o} is a concatenation of three trajectories: $\mathfrak{r \cup c} \cup \mathfrak{l}$

$$
\rightarrow \quad \Delta_{n} \underset{\hbar \rightarrow 0}{\sim} \frac{2 \hbar}{T_{\mathfrak{r}}\left(E_{n}\right)} \mathrm{e}^{-S_{\mathrm{c}}\left(E_{n}\right) /(2 \hbar)} .
$$

(LANDAU \& LIFSCHITZ; 1958). The correct prefactor is given by $\times g_{n}($ GARG; 2000 $)$ with $g_{0} \simeq 1.075, g_{1} \simeq 1.028, \ldots$

The pendulum

Construct \mathfrak{o} to connect p to $-p$ keeping p real: $\frac{p^{2}}{2}-\gamma \cos q \quad \rightarrow \quad$ (i) $\frac{p^{2}}{2}-\gamma \cosh q \quad$ or \quad (ii) $\frac{p^{2}}{2}+\gamma \cosh q$

The pendulum

Construct \mathfrak{o} to connect p to $-p$ keeping p real: $\frac{p^{2}}{2}-\gamma \cos q \rightarrow$ or
(ii) $\frac{p^{2}}{2}+\gamma \cosh q$

The pendulum

Construct o to connect p to $-p$ keeping p real: $\frac{p^{2}}{2}-\gamma \cos q \rightarrow$ Or
(ii) $\frac{p^{2}}{2}+\gamma \cosh q$

The pendulum

Remark: furnishes an asymptotic expression for differences between MATHIEU's characteristic values.

The pendulum

$$
\rightarrow \quad \Delta_{n} \underset{n \rightarrow 0}{\sim} \frac{1}{\pi n^{4 n-1}}\left(\frac{\mathrm{e}}{2}\right)^{4 n} \hbar^{2}\left(\frac{\gamma}{\hbar^{2}}\right)^{2 n}
$$

Triple well

Triple well

Triple well

$$
\begin{gathered}
\Delta_{n}(T) \underset{\hbar \rightarrow 0}{\sim}\left|\frac{2 \hbar F(T)}{T}\right| \mathrm{e}^{-S_{\mathrm{c}}\left(E_{n}\right) / \hbar} \\
F=\sum_{\substack{\left\{w_{\mathrm{r}}, w_{\mathrm{m}}\right\} \\
w_{\mathrm{r}} T_{\mathrm{r}}\left(E_{n}\right)+w_{\mathrm{m}} \\
\text { pos. int. such } T_{\mathrm{m}}\left(E_{n}\right)=T_{1} \\
\sim}}\left(w_{\mathfrak{r}}+1\right) \mathrm{e}^{\mathrm{i} w_{\mathrm{r}}\left[S_{\mathrm{r}}\left(E_{n}\right) / \hbar-\pi\right]+\mathrm{i} w_{\mathrm{m}}\left[S_{\mathfrak{m}}\left(E_{n}\right) / \hbar-\pi\right]} \\
\simeq \frac{T_{1}}{\left|\sin \left(\left(S_{\mathrm{r}}-S_{\mathfrak{m}}\right) / 2 \hbar\right)\right|} \text { when } T_{1} \gg T_{2}(\theta \ll 1) \\
\frac{S}{2 \pi \hbar}-\frac{1}{2} \text { integer } \quad \leftrightarrow \quad \text { EBK quantization }
\end{gathered}
$$

Triple well

Diminution of $\theta: T=|T| \mathrm{e}^{-\mathrm{i} \theta}=K T_{\mathfrak{m}}-\mathrm{i} T_{\mathfrak{c}}$ with $K \nearrow$:

TAYLOR-made integrable resonant Hamiltonians

[J. Le Deunff, A. Mouchet \& P. Schlagheck, 2013]
Take a ℓ-normal form:

$$
h(p, q)=\frac{1}{2} \omega\left(p^{2}+q^{2}\right)+a_{2}\left(p^{2}+q^{2}\right)^{2}+\cdots+a_{[\ell / 2]}\left(p^{2}+q^{2}\right)^{[\ell / 2]}+6 \operatorname{Re}\left[\mathrm{e}^{\mathrm{i} \phi}(p+\mathrm{i} q)^{\ell}\right]
$$

and consider the doubly periodic Hamiltonian

$$
H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q)
$$

TAYLOR-made integrable resonant Hamiltonians

[J. Le Deunff, A. Mouchet \& P. Schlagheck, 2013]
Take a ℓ-normal form:

$$
h(p, q)=\frac{1}{2} \omega\left(p^{2}+q^{2}\right)+a_{2}\left(p^{2}+q^{2}\right)^{2}+\cdots+a_{[\ell / 2]}\left(p^{2}+q^{2}\right)^{[\ell / 2]}+6 \operatorname{Re}\left[\mathrm{e}^{\mathrm{i} \phi}(p+\mathrm{i} q)^{\ell}\right]
$$

and consider the doubly periodic Hamiltonian

$$
H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q)
$$

The phase space is then a $2 d$-torus. Quantization leads to a finite dimensional Hilbert space whose dimension is

$$
N=\frac{\text { volume }}{2 \pi \hbar}
$$

TAYLOR-made integrable resonant Hamiltonians

Take a ℓ-normal form:

$$
h(p, q)=\frac{1}{2} \omega\left(p^{2}+q^{2}\right)+a_{2}\left(p^{2}+q^{2}\right)^{2}+\cdots+a_{[\ell / 2]}\left(p^{2}+q^{2}\right)^{[\ell / 2]}+6 \operatorname{Re}\left[\mathrm{e}^{\mathrm{i} \phi}(p+\mathrm{i} q)^{\ell}\right]
$$

and consider the doubly periodic Hamiltonian

$$
H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q)
$$

The phase space is then a $2 d$-torus. Quantization leads to a finite dimensional Hilbert space whose dimension is

$$
N=\frac{\text { volume }}{2 \pi \hbar}
$$

Tunnelling between two adjacent cells (in Q or in P) with a resonance chain centered at $(P, Q) \equiv\left(\pm \frac{\pi}{2}, \pm \frac{\pi}{2}\right)$ modulo 2π.

TAYLOR-made integrable resonant Hamiltonians

$$
\begin{aligned}
\ell= & 4 \quad H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q) \\
& h(p, q)=\frac{1}{2}\left(p^{2}+q^{2}\right)+a_{1}\left(p^{2}+q^{2}\right)^{2}+b\left[\left(p^{4}-6 p^{2} q^{2}+q^{4}\right) \cos \phi-4\left(p^{3} q-q^{3} p\right) \sin \phi\right]
\end{aligned}
$$

TAYLOR-made integrable resonant Hamiltonians

$$
\begin{aligned}
& \ell=4 \quad H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q) \\
& h(p, q)=\frac{1}{2}\left(p^{2}+q^{2}\right)+a_{1}\left(p^{2}+q^{2}\right)^{2}+b\left[\left(p^{4}-6 p^{2} q^{2}+q^{4}\right) \cos \phi-4\left(p^{3} q-q^{3} p\right) \sin \phi\right] \\
& a_{1}=-.55
\end{aligned}
$$

TAYLOR-made integrable resonant Hamiltonians
$\ell=4 \quad H(P, Q) \stackrel{\text { def }}{=} h(\cos P, \cos Q)$
$h(p, q)=\frac{1}{2}\left(p^{2}+q^{2}\right)+a_{1}\left(p^{2}+q^{2}\right)^{2}+b\left[\left(p^{4}-6 p^{2} q^{2}+q^{4}\right) \cos \phi-4\left(p^{3} q-q^{3} p\right) \sin \phi\right]$
$a_{1}=-.55$
a) $\phi=0$

b) $\phi=\pi / 2$

c) $\phi=3 \pi / 4$

TAYLOR-made integrable resonant Hamiltonians

TAYLOR-made integrable resonant Hamiltonians

c)

TAYLOR-made integrable resonant Hamiltonians

Quasimode $(\mathrm{JWKB}): \Psi_{n}(\theta) \simeq \frac{1}{\sqrt{T_{\text {in }}\left(E_{n}\right)|\dot{\theta}|}}\left[\mathrm{e}^{\mathrm{i} S_{\text {in }}\left(\theta, E_{n}\right) / \hbar}+A_{n} \mathrm{e}^{\mathrm{i} S_{\text {out }}\left(\theta, E_{n}\right) / \hbar}\right]$
avec $\quad A_{n}=\frac{\mathrm{e}^{-S_{\mathrm{c}}\left(E_{n}\right) /(2 \hbar)}}{2 \sin \left[\left(S_{\text {in }}\left(E_{n}\right)-S_{\text {out }}\left(E_{n}\right)\right) /(2 \ell \hbar)\right]}$
et $\delta E_{n}=\frac{2 \hbar \omega_{\text {out }}}{\pi} \mathrm{e}^{-S_{\bar{c}}\left(E_{n}\right) /(2 \hbar)}$
$\Delta E_{n}=\left|A_{n}\right|^{2} \delta E_{n}$

TAYLOR-made integrable resonant Hamiltonians

Perspective: things to do and open questions

Selection of the class of dominating complex orbits?

Perspective: things to do and open questions

Selection of the class of dominating complex orbits?
Les Does it open a window to chaotic tunnelling (quantum overlap of resonances)? First step: multiresonance process.

Perspective: things to do and open questions

Selection of the class of dominating complex orbits?
res Does it open a window to chaotic tunnelling (quantum overlap of resonances)? First step: multiresonance process.

Two resonances chains can be taylored

$$
v(I, \theta)=b_{1}\left(I-I_{2}\right)(2 I)^{r_{1} / 2} \cos \left(r_{1} \theta+\phi_{1}\right)+b_{2}\left(I-I_{1}\right)(2 I)^{r_{2} / 2} \cos \left(r_{2} \theta+\phi_{2}\right)
$$

$r_{1}=4$
$r_{2}=6$
LE DEUNFF,
Mouchet, SCHLAGHECK work in progress.

Perspective: things to do and open questions

Lelection of the class of dominating complex orbits?
res Does it open a window to chaotic tunnelling (quantum overlap of resonances)? First step: multiresonance process. $\mathrm{a} 0=1, \mathrm{I} 1=0.09, \mathrm{I} 2=0.32, \mathrm{r} 1=4, \mathrm{r} 2=4$

Perspective: things to do and open questions

Lelection of the class of dominating complex orbits?
 overlap of resonances)? First step: multiresonance process.

Lex Connection with the work of the Japanese/Dresden school on complex structures (e.g. [MERTIG et al., 2013])? \longrightarrow see also Akira Shudo, Yasutaka Hanada and Hiromitsu Harada's talks.

Perspective: things to do and open questions

นе Selection of the class of dominating complex orbits?
 overlap of resonances)? First step: multiresonance process.

เย Connection with the work of the Japanese/Dresden school on complex structures (e.g. [MERTIG et al., 2013])?
 WILKINSON-CREAGH's formulae (1998)?

$$
\Delta E \simeq \frac{\hbar^{3 / 2}}{\sqrt{\tau_{R}\left\{I_{L}, I_{R}\right\} \tau_{L}}} \mathrm{e}^{-K(I) / \hbar}
$$

Perspective: things to do and open questions

นе Selection of the class of dominating complex orbits?
 overlap of resonances)? First step: multiresonance process.

Le Connection with the work of the Japanese/Dresden school on complex structures (e.g. [MERTIG et al., 2013])?

Res Recover multidimensionnal (non resonant) WILKINSON-CREAGH's formulae (1998)?

$$
\Delta E \simeq \frac{\hbar^{3 / 2}}{\sqrt{\tau_{R}\left\{I_{L}, I_{R}\right\} \tau_{L}}} \mathrm{e}^{-K(I) / \hbar}
$$

Can $\operatorname{Im} T$ be interpreted as a dissipation which destroys tunnelling as in the CALDEIRA-LEGGETT (1981) model?

PROPAGANDA

120 (2011)

Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models J. Le Deunff, A. Mouchet \& P. Schlagheck Phys. Rev. E 88, 04292 (2013)

Les Instantons revisited: dynamical tunnelling and resonant tunnelling J. LE DEUNFF \&
A. Mouchet Phys. Rev. E 81, 046205 (2010)

