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e.g. for two-point correlation function
R(e) = (d(E + ¢/2)d(E — €/2))
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explanation based on: Gutzwiller trace formula

_ 1 )
d(E) ~ d(E) + — Re > A eh

per. orbits p
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Many-particle systems

e.g. Bose-Hubbard model

jumps interaction

more general:
H=>" hjké}rék +) Ujklmé;ré};é/ém
Jk Jkim

1 imit: 9. oot *
classical limit: & — vy, & — ¢
Hamilton equations give discrete nonlinear Schrédinger equation
OH
—=J

- = J(W1 + 1) — Ul Py

iy = — 5
I
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Limit

@ hh—0

@ or particle number N — oo

recall Bose-Hubbard model: H = —4 37,(8f, & + 8/&,1) + § 3,(8])28?

o we have Y, 48 = N but want to keep Y, ||? fixed
= better scale & — VN, & — VN

o for agreement with 7 — 0 need U ~ §
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Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation, ]2 = 1

@ canonical transformation with P =3, |1j|? as a new generalised
momentum

@ H independent of Q, and P can be replaced by 1

@ system with less dimensions and no conservation law

Trace formula

- 1 .
d(E) = d(E)+ —Re Z A, e'5/h
per. solutions p
Tlgrim e,mp%
|det(Mp — 1)

M), = stability matrix relating initial and final deviations in reduced phase
space
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Spectral statistics

Two point correlation function:  R(e) = (d (E+ 5)d (E—5))

insert trace formula:

RO ~ 14 ReY (AplylSHEo/-5,(E/am)
p.p’

= need pairs of orbits with small action difference

@ identical and time-reversed orbits (diagonal approximation)
Berry 1985; Hannay & Ozorio de Almeida 1985

@ pairs of orbits differing in encounters

Sieber & Richter 2001; S.M., Heusler, Braun, Haake Altland 2004 & 2005
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Spectral statistics

@ these explain non-oscillatory terms in

RO Re( 1.l + 2(7:—6)262“"5 ) no time rev. inv. (GUE)
€)= .
Re(> , cn (1) +3,dn (1) €2™¢)  with time rev. inv. (GOE)

£Lan

@ for oscillatory terms: improved semiclassical approximation, via spectral
determinant det(E — H)

Berry & Keating 1990; Heusler et al 2007; Keating & S.M. 2007; S.M., Heusler, Altiand, Braun, Haake 2009
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Discrete symmetries

using Robbins 89; Keating, Robbins 97; Joyner, S.M., Sieber 12

discrete translation symmetry reflection symmetry
/—-———'\
e—>0>0—>0—>0—>0 ‘/’__‘\
T2 L e o o o o o

@ consider statistics in subspectra associated to symmetries

@ here all subspectra have GOE statistics
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@ for full agreement with RMT:
e ergodicity
e hyperbolicity
e for sums over orbits: need spectral gap

i.e. Frobenius Perron operator P; for phase space densities p(x)

pt(X) = (Pt po)(x)

has eigenvalues e~ %! with e=*1! = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

@ in practice: small stability islands
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Conclusions

@ properties of many-body quantum systems approximated as sum over
solutions of nonlinear Schédinger equation

can study interference between solutions

@ chaotic many-body systems e.g. Bose Hubbard model have spectral
statistics in line with RMT (under certain conditions)



