


Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics,
in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)

e.g. for two-point correlation function

R(ε) = 〈d(E + ε/2)d(E − ε/2)〉

where d(E) =
∑

j δ(E − Ej ), E measured in units of mean level spacing

explanation based on: Gutzwiller trace formula

d(E) ∼ d̄(E) +
1
π~

Re
∑
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Many-particle systems

e.g. Bose-Hubbard model

Ĥ = −J
2

∑
j

(â†j+1âj + â†j âj+1)

︸ ︷︷ ︸
jumps

+
U
2

∑
j

(â†j )2â2
j︸ ︷︷ ︸

interaction

more general:
Ĥ =

∑
jk

hjk â†j âk +
∑
jklm

Ujklmâ†j â†k âl âm

classical limit: âj → ψj , â†j → ψ∗j

Hamilton equations give discrete nonlinear Schrödinger equation

i~ψ̇j = − ∂H
∂ψ∗j

= J(ψj+1 + ψj−1)− U|ψj |2ψj
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Ĥ =

∑
jk
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Ĥ = −J
2

∑
j
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Ĥ =

∑
jk
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classical limit: âj → ψj , â†j → ψ∗j
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Bose-Hubbard model

numerical observations:
e.g. Kolovsky & Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

discrete nonlinear Schrödinger equation is chaotic
(for several sites, hopping and interaction term comparable,
apart from stability islands)

spectral statistics agrees with RMT under the same conditions

Why?



Bose-Hubbard model

numerical observations:
e.g. Kolovsky & Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

discrete nonlinear Schrödinger equation is chaotic
(for several sites, hopping and interaction term comparable,
apart from stability islands)

spectral statistics agrees with RMT under the same conditions

Why?



Bose-Hubbard model

numerical observations:
e.g. Kolovsky & Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

discrete nonlinear Schrödinger equation is chaotic
(for several sites, hopping and interaction term comparable,
apart from stability islands)

spectral statistics agrees with RMT under the same conditions

Why?



Bose-Hubbard model

numerical observations:
e.g. Kolovsky & Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

discrete nonlinear Schrödinger equation is chaotic
(for several sites, hopping and interaction term comparable,
apart from stability islands)

spectral statistics agrees with RMT under the same conditions

Why?



Bose-Hubbard model

numerical observations:
e.g. Kolovsky & Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

discrete nonlinear Schrödinger equation is chaotic
(for several sites, hopping and interaction term comparable,
apart from stability islands)

spectral statistics agrees with RMT under the same conditions

Why?



Semiclassical approach

path integral over all ψ(t ′),ψ(t ′)∗ with ψ(0) = ψ(i), ψ∗(t) = ψ(f )∗〈
ψ(f )∣∣e− i

~ Ĥt ∣∣ψ(i)
〉
=

∫
D[ψ,ψ∗]e

i
~ R[ψ,ψ∗]

i
~R[ψ,ψ∗] =

∫ t

0
dt ′
[
ψ̇
∗
(t ′) ·ψ(t ′)−ψ∗(t ′) · ψ̇(t ′)

2
−H(ψ(t ′),ψ∗(t ′))

]

+
ψ(f )∗ ·ψ(t) +ψ∗(0) ·ψ(i)

2︸ ︷︷ ︸
due to coherent states approach

Baranger et. al. 2001

stationary phase approximation leads to van Vleck propagator〈
ψ(f )∣∣e− i

~ Ĥt ∣∣ψ(i)
〉
≈
∑
γ

∣∣∣∣∣ i
~

∂2Rγ
∂ψ(f )∗∂ψ(i)

∣∣∣∣∣
1/2

exp
( i
~Rγ − iνγ

π

2
+

i
2~

∫ t

0
dt ′ tr ∂2H

∂ψ∂ψ∗
− |ψ

(i)|2 + |ψ(f )|2

2︸ ︷︷ ︸
due to coherent states approach

)

sum over solutions of nonlinear Schrödinger equation
see also Engl, Dujardin, Argülles, Schlagheck, Richter, Urbina 2014
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Limit

~→ 0

or particle number N →∞

recall Bose-Hubbard model: H = − J
2

∑
j (â
†
j+1âj + â†j âj+1) + U

2

∑
j (â
†
j )2â2

j

we have
∑

j â†j âj = N̂ but want to keep
∑

j |ψj |2 fixed
⇒ better scale âj →

√
Nψj , â†j →

√
Nψ∗j

for agreement with ~→ 0 need U ∼ u
N
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j

we have
∑
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√

Nψ∗j

for agreement with ~→ 0 need U ∼ u
N



Limit

~→ 0

or particle number N →∞

recall Bose-Hubbard model: H = − J
2

∑
j (â
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√
Nψj , â†j →
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Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Trace formula

accessed from van Vleck propagator as for single-particle systems

but: particle number conservation,
∑

j |ψj |2 = 1

canonical transformation with P =
∑

j |ψj |2 as a new generalised
momentum

H independent of Q, and P can be replaced by 1

system with less dimensions and no conservation law

Trace formula

d(E) = d̄(E) +
1
π~

Re
∑

per. solutions p

Ap eiSp/~

Ap =
T prim

p e−iµp
π
2√

|det(Mp − 1)|

Mp = stability matrix relating initial and final deviations in reduced phase
space



Spectral statistics

Two point correlation function: R(ε) =
〈
d
(
E + ε

2

)
d
(
E − ε

2

)〉
insert trace formula:

R(ε) ∼ 1 + Re
∑
p,p′

〈
ApA∗p′e

i(Sp(E+ε/2)−Sp′ (E−ε/2))/~
〉

⇒ need pairs of orbits with small action difference

identical and time-reversed orbits (diagonal approximation)
Berry 1985; Hannay & Ozorio de Almeida 1985

pairs of orbits differing in encounters

Sieber & Richter 2001; S.M., Heusler, Braun, Haake Altland 2004 & 2005
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Spectral statistics

these explain non-oscillatory terms in

R(ε) =

{
Re
(

1− 1
2(πε)2 + 1

2(πε)2 e2πiε
)

no time rev. inv. (GUE)

Re
(∑

n cn
( 1
ε

)n
+
∑

n dn
( 1
ε

)n
e2πiε

)
with time rev. inv. (GOE)

for oscillatory terms: improved semiclassical approximation, via spectral
determinant det(E − H)

Berry & Keating 1990; Heusler et al 2007; Keating & S.M. 2007; S.M., Heusler, Altland, Braun, Haake 2009
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Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conditions

for full agreement with RMT:

ergodicity

hyperbolicity

for sums over orbits: need spectral gap

i.e. Frobenius Perron operator Pt for phase space densities ρ(x)

ρt (x) = (Pt ρ0)(x)

has eigenvalues e−νj t with e−ν1t = 1 (ergodic mode) and other
eigenvalues bounded away from unit circle

in practice: small stability islands



Conclusions

properties of many-body quantum systems approximated as sum over
solutions of nonlinear Schödinger equation
can study interference between solutions

chaotic many-body systems e.g. Bose Hubbard model have spectral
statistics in line with RMT (under certain conditions)
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