Spectral statistics of chaotic many-body systems

Rémy Dubertrand (Liège) and Sebastian Müller (Bristol)

Luchon, March 2015

Single-particle systems

Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics, in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)

Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics, in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)
e.g. for two-point correlation function

$$
R(\epsilon)=\langle d(E+\epsilon / 2) d(E-\epsilon / 2)\rangle
$$

where $d(E)=\sum_{j} \delta\left(E-E_{j}\right), E$ measured in units of mean level spacing

Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics, in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)
e.g. for two-point correlation function

$$
R(\epsilon)=\langle d(E+\epsilon / 2) d(E-\epsilon / 2)\rangle
$$

where $d(E)=\sum_{j} \delta\left(E-E_{j}\right), E$ measured in units of mean level spacing

Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics, in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)
e.g. for two-point correlation function

$$
R(\epsilon)=\langle d(E+\epsilon / 2) d(E-\epsilon / 2)\rangle
$$

where $d(E)=\sum_{j} \delta\left(E-E_{j}\right), E$ measured in units of mean level spacing

explanation based on:

Single-particle systems

In the semiclassical limit chaotic systems display universal spectral statistics, in agreement with predictions from RMT.
(Bohigas, Giannoni, Schmit 84)
e.g. for two-point correlation function

$$
R(\epsilon)=\langle d(E+\epsilon / 2) d(E-\epsilon / 2)\rangle
$$

where $d(E)=\sum_{j} \delta\left(E-E_{j}\right), E$ measured in units of mean level spacing

explanation based on: Gutzwiller trace formula

$$
d(E) \sim \bar{d}(E)+\frac{1}{\pi \hbar} \operatorname{Re} \sum_{\text {per. orbits } p} A_{p} e^{i S_{p} / \hbar}
$$

Many-particle systems

Many-particle systems

e.g. Bose-Hubbard model

Many-particle systems

e.g. Bose-Hubbard model

$$
\hat{H}=\underbrace{-\frac{J}{2} \sum_{2}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)}_{\text {jumps }}+\underbrace{\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}}_{\text {interaction }}
$$

Many-particle systems

e.g. Bose-Hubbard model

$$
\begin{gathered}
\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
1 & 2 & \cdots & \bullet \\
\hat{H}= \\
-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)
\end{array}+\underbrace{\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}}_{\text {jumps }}
\end{gathered}
$$

more general:

$$
\hat{H}=\sum_{j k} h_{j k} \hat{a}_{j}^{\dagger} \hat{a}_{k}+\sum_{j k l m} U_{j k l m} \hat{a}_{j}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{l} \hat{a}_{m}
$$

Many-particle systems

e.g. Bose-Hubbard model

$$
\begin{gathered}
\begin{array}{ccccc}
1 & \bullet & \bullet & \bullet & \bullet \\
\hat{H}=\underbrace{-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)}_{\text {jumps }} & \bullet \\
\frac{\mathrm{L}}{2} \sum_{\text {interaction }}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}
\end{array}
\end{gathered}
$$

more general:

$$
\hat{H}=\sum_{j k} h_{j k} \hat{a}_{j}^{\dagger} \hat{a}_{k}+\sum_{j k l m} U_{j k l m} \hat{a}_{j}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{l} \hat{a}_{m}
$$

classical limit: $\hat{a}_{j} \rightarrow \psi_{j}, \hat{a}_{j}^{\dagger} \rightarrow \psi_{j}^{*}$

Many-particle systems

e.g. Bose-Hubbard model

$$
\begin{gathered}
\begin{array}{ccccc}
1 & \bullet & \bullet & \bullet & \bullet \\
\hat{H}=\underbrace{-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)}_{\text {jumps }} & \bullet \underbrace{\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}}_{\text {interaction }}
\end{array}
\end{gathered}
$$

more general:

$$
\hat{H}=\sum_{j k} h_{j k} \hat{a}_{j}^{\dagger} \hat{a}_{k}+\sum_{j k l m} U_{j k l m} \hat{a}_{j}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{l} \hat{a}_{m}
$$

classical limit: $\hat{a}_{j} \rightarrow \psi_{j}, \hat{a}_{j}^{\dagger} \rightarrow \psi_{j}^{*}$
Hamilton equations give discrete nonlinear Schrödinger equation

$$
i \hbar \dot{\psi}_{j}=-\frac{\partial H}{\partial \psi_{j}^{*}}=J\left(\psi_{j+1}+\psi_{j-1}\right)-U\left|\psi_{j}\right|^{2} \psi_{j}
$$

Bose-Hubbard model

Bose-Hubbard model

numerical observations:

e.g. Kolovsky \& Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

Bose-Hubbard model

numerical observations:

e.g. Kolovsky \& Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

- discrete nonlinear Schrödinger equation is chaotic (for several sites, hopping and interaction term comparable, apart from stability islands)

Bose-Hubbard model

numerical observations:

e.g. Kolovsky \& Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

- discrete nonlinear Schrödinger equation is chaotic (for several sites, hopping and interaction term comparable, apart from stability islands)
- spectral statistics agrees with RMT under the same conditions

Statistical properties of the spectrum of the extended Bose-Hubbard model

Bose-Hubbard model

numerical observations:

e.g. Kolovsky \& Buchleitner 2004, Kolovsky 2007, Kollath et al. 2010, ...

- discrete nonlinear Schrödinger equation is chaotic (for several sites, hopping and interaction term comparable, apart from stability islands)
- spectral statistics agrees with RMT under the same conditions

Statistical properties of the spectrum of the extended Bose-Hubbard model

Why?

Semiclassical approach

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\psi^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\psi^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

$$
\begin{aligned}
& \left\langle\psi^{(t)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle=\int D\left[\psi, \psi^{*}\right] e^{\frac{i}{\hbar} R\left[\psi, \psi^{*}\right]} \\
& \frac{i}{\hbar} R\left[\psi, \psi^{*}\right]=\int_{0}^{t} d t^{\prime}\left[\frac{\dot{\psi}^{*}\left(t^{\prime}\right) \cdot \psi\left(t^{\prime}\right)-\psi^{*}\left(t^{\prime}\right) \cdot \dot{\psi}\left(t^{\prime}\right)}{2}-H\left(\psi\left(t^{\prime}\right), \psi^{*}\left(t^{\prime}\right)\right)\right] \\
& +\underbrace{\frac{\psi^{(f)^{*}} \cdot \psi(t)+\psi^{*}(0) \cdot \psi^{(i)}}{2}}_{\text {due to coherent states approach }} \quad \text { Baranger et. al. 2001 }
\end{aligned}
$$

- stationary phase approximation leads to van Vleck propagator

$$
\begin{aligned}
& \left\langle\boldsymbol{\psi}^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\boldsymbol{\psi}^{(i)}\right\rangle \approx \sum_{\gamma}\left|\frac{i}{\hbar} \frac{\partial^{2} R_{\gamma}}{\partial \boldsymbol{\psi}^{(f)^{*}} \partial \boldsymbol{\psi}^{(i)}}\right|^{1 / 2} \\
& \quad \exp (\frac{i}{\hbar} R_{\gamma}-i \nu_{\gamma} \frac{\pi}{2}+\underbrace{\frac{i}{2 \hbar} \int_{0}^{t} d t^{\prime} \operatorname{tr} \frac{\partial^{2} H}{\partial \boldsymbol{\psi} \partial \boldsymbol{\psi}^{*}}-\frac{\left|\boldsymbol{\psi}^{(i)}\right|^{2}+\left|\boldsymbol{\psi}^{(f)}\right|^{2}}{2}}_{\text {due to coherent states approach }})
\end{aligned}
$$

sum over solutions of nonlinear Schrödinger equation
see also Engl, Dujardin, Argülles, Schlagheck, Richter, Urbina 2014

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\boldsymbol{\psi}^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

$$
\begin{aligned}
& \left\langle\psi^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle=\int D\left[\psi, \psi^{*}\right] e^{\frac{i}{\hbar} R\left[\psi, \psi^{*}\right]} \\
& \frac{i}{\hbar} R\left[\psi, \boldsymbol{\psi}^{*}\right]=\int_{0}^{t} d t^{\prime}\left[\frac{\dot{\psi}^{*}\left(t^{\prime}\right) \cdot \psi\left(t^{\prime}\right)-\psi^{*}\left(t^{\prime}\right) \cdot \dot{\psi}\left(t^{\prime}\right)}{2}-H\left(\psi\left(t^{\prime}\right), \psi^{*}\left(t^{\prime}\right)\right)\right] \\
& +\underbrace{\frac{\psi^{(f)^{*}} \cdot \psi(t)+\psi^{*}(0) \cdot \psi^{(i)}}{2}}_{\text {due to coherent states approach }} \quad \quad \text { Baranger et. al. } 2001
\end{aligned}
$$

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\boldsymbol{\psi}^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

$$
\begin{aligned}
& \left\langle\psi^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle=\int D\left[\psi, \boldsymbol{\psi}^{*}\right] e^{\frac{i}{\hbar} R\left[\boldsymbol{\psi}, \boldsymbol{\psi}^{*}\right]} \\
& \frac{i}{\hbar} R\left[\psi, \boldsymbol{\psi}^{*}\right]=\int_{0}^{t} d t^{\prime}\left[\frac{\dot{\psi}^{*}\left(t^{\prime}\right) \cdot \psi\left(t^{\prime}\right)-\psi^{*}\left(t^{\prime}\right) \cdot \dot{\psi}\left(t^{\prime}\right)}{2}-H\left(\psi\left(t^{\prime}\right), \psi^{*}\left(t^{\prime}\right)\right)\right] \\
& +\underbrace{\frac{\psi^{(f)^{*}} \cdot \psi(t)+\psi^{*}(0) \cdot \psi^{(i)}}{2}}_{\text {due to coherent states approach }} \quad \text { Baranger et. al. } 2001
\end{aligned}
$$

- stationary phase approximation leads to van Vleck propagator

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\psi^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

$$
\begin{aligned}
& \left\langle\psi^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle=\int D\left[\psi, \psi^{*}\right] e^{\frac{i}{\hbar} R\left[\psi, \psi^{*}\right]} \\
& \frac{i}{\hbar} R\left[\psi, \psi^{*}\right]=\int_{0}^{t} d t^{\prime}\left[\frac{\dot{\psi}^{*}\left(t^{\prime}\right) \cdot \psi\left(t^{\prime}\right)-\psi^{*}\left(t^{\prime}\right) \cdot \dot{\psi}\left(t^{\prime}\right)}{2}-H\left(\psi\left(t^{\prime}\right), \psi^{*}\left(t^{\prime}\right)\right)\right] \\
& +\underbrace{\frac{\psi^{(f)^{*}} \cdot \psi(t)+\psi^{*}(0) \cdot \psi^{(i)}}{2}}_{\text {due to coherent states approach }} \quad \text { Baranger et. al. 2001 }
\end{aligned}
$$

- stationary phase approximation leads to van Vleck propagator

$$
\begin{aligned}
& \left\langle\psi^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle \approx \sum_{\gamma}\left|\frac{i}{\hbar} \frac{\partial^{2} R_{\gamma}}{\partial \boldsymbol{\psi}^{(f)^{*}} \partial \boldsymbol{\psi}^{(i)}}\right|^{1 / 2} \\
& \quad \exp (\frac{i}{\hbar} R_{\gamma}-i \nu_{\gamma} \frac{\pi}{2}+\underbrace{\frac{i}{2 \hbar} \int_{0}^{t} d t^{\prime} \operatorname{tr} \frac{\partial^{2} H}{\partial \boldsymbol{\psi} \partial \boldsymbol{\psi}^{*}}-\frac{\left|\boldsymbol{\psi}^{(i)}\right|^{2}+\left|\boldsymbol{\psi}^{(f)}\right|^{2}}{2}}_{\text {due to coherent states approach }})
\end{aligned}
$$

Semiclassical approach

- path integral over all $\psi\left(t^{\prime}\right), \psi\left(t^{\prime}\right)^{*}$ with $\psi(0)=\psi^{(i)}, \psi^{*}(t)=\psi^{(f)^{*}}$

$$
\begin{aligned}
& \left\langle\psi^{(t)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\psi^{(i)}\right\rangle=\int D\left[\psi, \psi^{*}\right] e^{\frac{i}{\hbar} R\left[\psi, \psi^{*}\right]} \\
& \frac{i}{\hbar} R\left[\psi, \psi^{*}\right]=\int_{0}^{t} d t^{\prime}\left[\frac{\dot{\psi}^{*}\left(t^{\prime}\right) \cdot \psi\left(t^{\prime}\right)-\psi^{*}\left(t^{\prime}\right) \cdot \dot{\psi}\left(t^{\prime}\right)}{2}-H\left(\psi\left(t^{\prime}\right), \psi^{*}\left(t^{\prime}\right)\right)\right] \\
& +\underbrace{\frac{\psi^{(f)^{*}} \cdot \psi(t)+\psi^{*}(0) \cdot \psi^{(i)}}{2}}_{\text {due to coherent states approach }} \quad \text { Baranger et. al. 2001 }
\end{aligned}
$$

- stationary phase approximation leads to van Vleck propagator

$$
\begin{aligned}
& \left\langle\boldsymbol{\psi}^{(f)}\right| e^{-\frac{i}{\hbar} \hat{H} t}\left|\boldsymbol{\psi}^{(i)}\right\rangle \approx \sum_{\gamma}\left|\frac{i}{\hbar} \frac{\partial^{2} R_{\gamma}}{\partial \boldsymbol{\psi}^{(f)^{*}} \partial \boldsymbol{\psi}^{(i)}}\right|^{1 / 2} \\
& \quad \exp (\frac{i}{\hbar} R_{\gamma}-i \nu_{\gamma} \frac{\pi}{2}+\underbrace{\frac{i}{2 \hbar} \int_{0}^{t} d t^{\prime} \operatorname{tr} \frac{\partial^{2} H}{\partial \boldsymbol{\psi} \partial \boldsymbol{\psi}^{*}}-\frac{\left|\boldsymbol{\psi}^{(i)}\right|^{2}+\left|\boldsymbol{\psi}^{(f)}\right|^{2}}{2}}_{\text {due to coherent states approach }})
\end{aligned}
$$

sum over solutions of nonlinear Schrödinger equation
see also Engl, Dujardin, Argülles, Schlagheck, Richter, Urbina 2014

Limit

Limit

- $\hbar \rightarrow 0$

Limit

- $\hbar \rightarrow 0$
- or particle number $N \rightarrow \infty$

Limit

- $\hbar \rightarrow 0$
- or particle number $N \rightarrow \infty$
recall Bose-Hubbard model: $H=-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)+\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}$

Limit

- $\hbar \rightarrow 0$
- or particle number $N \rightarrow \infty$
recall Bose-Hubbard model: $H=-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)+\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}$
- we have $\sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j}=\hat{N}$ but want to keep $\sum_{j}\left|\psi_{j}\right|^{2}$ fixed

Limit

- $\hbar \rightarrow 0$
- or particle number $N \rightarrow \infty$
recall Bose-Hubbard model: $H=-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)+\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}$
- we have $\sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j}=\hat{N}$ but want to keep $\sum_{j}\left|\psi_{j}\right|^{2}$ fixed \Rightarrow better scale $\hat{a}_{j} \rightarrow \sqrt{N} \psi_{j}, \hat{a}_{j}^{\dagger} \rightarrow \sqrt{N} \psi_{j}^{*}$

Limit

- $\hbar \rightarrow 0$
- or particle number $N \rightarrow \infty$
recall Bose-Hubbard model: $H=-\frac{J}{2} \sum_{j}\left(\hat{a}_{j+1}^{\dagger} \hat{a}_{j}+\hat{a}_{j}^{\dagger} \hat{a}_{j+1}\right)+\frac{U}{2} \sum_{j}\left(\hat{a}_{j}^{\dagger}\right)^{2} \hat{a}_{j}^{2}$
- we have $\sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j}=\hat{N}$ but want to keep $\sum_{j}\left|\psi_{j}\right|^{2}$ fixed \Rightarrow better scale $\hat{a}_{j} \rightarrow \sqrt{N} \psi_{j}, \hat{a}_{j}^{\dagger} \rightarrow \sqrt{N} \psi_{j}^{*}$
- for agreement with $\hbar \rightarrow 0$ need $U \sim \frac{U}{N}$

Trace formula

accessed from van Vleck propagator as for single-particle systems

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum
- H independent of Q, and P can be replaced by 1

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum
- H independent of Q, and P can be replaced by 1
- system with less dimensions and no conservation law

Trace formula

accessed from van Vleck propagator as for single-particle systems
but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum
- H independent of Q, and P can be replaced by 1
- system with less dimensions and no conservation law

Trace formula

$$
d(E)=\bar{d}(E)+\frac{1}{\pi \hbar} \operatorname{Re} \sum_{\text {per. solutions } \mathrm{p}} A_{p} e^{i S_{p} / \hbar}
$$

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum
- H independent of Q, and P can be replaced by 1
- system with less dimensions and no conservation law

Trace formula

$$
\begin{aligned}
d(E) & =\bar{d}(E)+\frac{1}{\pi \hbar} \operatorname{Re} \sum_{\text {per. solutions p }} A_{p} e^{i S_{p} / \hbar} \\
A_{p} & =\frac{T_{p}^{\text {prim }} e^{-i \mu_{p} \frac{\pi}{2}}}{\sqrt{\left|\operatorname{det}\left(M_{p}-1\right)\right|}}
\end{aligned}
$$

Trace formula

accessed from van Vleck propagator as for single-particle systems but: particle number conservation, $\sum_{j}\left|\psi_{j}\right|^{2}=1$

- canonical transformation with $P=\sum_{j}\left|\psi_{j}\right|^{2}$ as a new generalised momentum
- H independent of Q, and P can be replaced by 1
- system with less dimensions and no conservation law

Trace formula

$$
\begin{aligned}
d(E) & =\bar{d}(E)+\frac{1}{\pi \hbar} \operatorname{Re} \sum_{\text {per. solutions p }} A_{p} e^{i S_{\rho} / \hbar} \\
A_{p} & =\frac{T_{p}^{\text {prim }} e^{-i \mu_{p} \frac{\pi}{2}}}{\sqrt{\left|\operatorname{det}\left(M_{p}-1\right)\right|}}
\end{aligned}
$$

$M_{p}=$ stability matrix relating initial and final deviations in reduced phase space

Spectral statistics

Spectral statistics

Two point correlation function: $R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$

Spectral statistics

Two point correlation function: $R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$
insert trace formula:

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$
insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

- identical and time-reversed orbits (diagonal approximation)

[^0]
Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

- identical and time-reversed orbits (diagonal approximation)

Berry 1985; Hannay \& Ozorio de Almeida 1985

- pairs of orbits differing in encounters

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

- identical and time-reversed orbits (diagonal approximation)

Berry 1985; Hannay \& Ozorio de Almeida 1985

- pairs of orbits differing in encounters

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{\rho}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

- identical and time-reversed orbits (diagonal approximation)

Berry 1985; Hannay \& Ozorio de Almeida 1985

- pairs of orbits differing in encounters

Spectral statistics

Two point correlation function: $\quad R(\epsilon)=\left\langle d\left(E+\frac{\epsilon}{2}\right) d\left(E-\frac{\epsilon}{2}\right)\right\rangle$ insert trace formula:

$$
R(\epsilon) \sim 1+\operatorname{Re} \sum_{p, p^{\prime}}\left\langle A_{p} A_{p^{\prime}}^{*} e^{i\left(S_{p}(E+\epsilon / 2)-S_{p^{\prime}}(E-\epsilon / 2)\right) / \hbar}\right\rangle
$$

\Rightarrow need pairs of orbits with small action difference

- identical and time-reversed orbits (diagonal approximation)

Berry 1985; Hannay \& Ozorio de Almeida 1985

- pairs of orbits differing in encounters

Sieber \& Richter 2001; S.M., Heusler, Braun, Haake Altland 2004 \& 2005

Spectral statistics

Spectral statistics

- these explain non-oscillatory terms in

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

- for oscillatory terms:

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

- for oscillatory terms: improved semiclassical approximation,

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

- for oscillatory terms: improved semiclassical approximation, via spectral determinant $\operatorname{det}(E-H)$

Spectral statistics

- these explain non-oscillatory terms in

$$
R(\epsilon)= \begin{cases}\operatorname{Re}\left(1-\frac{1}{2(\pi \epsilon)^{2}}+\frac{1}{2(\pi \epsilon)^{2}} e^{2 \pi i \epsilon}\right) & \text { no time rev. inv. (GUE) } \\ \operatorname{Re}\left(\sum_{n} c_{n}\left(\frac{1}{\epsilon}\right)^{n}+\sum_{n} d_{n}\left(\frac{1}{\epsilon}\right)^{n} e^{2 \pi i \epsilon}\right) & \text { with time rev. inv. (GOE) }\end{cases}
$$

- for oscillatory terms: improved semiclassical approximation, via spectral determinant $\operatorname{det}(E-H)$

Berry \& Keating 1990; Heusler et al 2007; Keating \& S.M. 2007; S.M., Heusler, Altland, Braun, Haake 2009

Discrete symmetries

Discrete symmetries

using Robbins 89; Keating, Robbins 97; Joyner, S.M., Sieber 12

Discrete symmetries

using Robbins 89; Keating, Robbins 97; Joyner, S.M., Sieber 12
discrete translation symmetry
reflection symmetry

Discrete symmetries

using Robbins 89; Keating, Robbins 97; Joyner, S.M., Sieber 12
discrete translation symmetry
reflection symmetry

- consider statistics in subspectra associated to symmetries

Discrete symmetries

using Robbins 89; Keating, Robbins 97; Joyner, S.M., Sieber 12
discrete translation symmetry
reflection symmetry

- consider statistics in subspectra associated to symmetries
- here all subspectra have GOE statistics

Conditions

Conditions

- for full agreement with RMT:

Conditions

- for full agreement with RMT:
- ergodicity

Conditions

- for full agreement with RMT:
- ergodicity
- hyperbolicity

Conditions

- for full agreement with RMT:
- ergodicity
- hyperbolicity
- for sums over orbits: need spectral gap

Conditions

- for full agreement with RMT:
- ergodicity
- hyperbolicity
- for sums over orbits: need spectral gap
i.e. Frobenius Perron operator P_{t} for phase space densities $\rho(\boldsymbol{x})$

$$
\rho_{t}(\boldsymbol{x})=\left(P_{t} \rho_{0}\right)(\boldsymbol{x})
$$

has eigenvalues $e^{-\nu_{j} t}$ with $e^{-\nu_{1} t}=1$ (ergodic mode) and other eigenvalues bounded away from unit circle

Conditions

- for full agreement with RMT:
- ergodicity
- hyperbolicity
- for sums over orbits: need spectral gap
i.e. Frobenius Perron operator P_{t} for phase space densities $\rho(\boldsymbol{x})$

$$
\rho_{t}(\boldsymbol{x})=\left(P_{t} \rho_{0}\right)(\boldsymbol{x})
$$

has eigenvalues $e^{-\nu_{j} t}$ with $e^{-\nu_{1} t}=1$ (ergodic mode) and other eigenvalues bounded away from unit circle

- in practice: small stability islands

Conclusions

Conclusions

- properties of many-body quantum systems approximated as sum over solutions of nonlinear Schödinger equation

Conclusions

- properties of many-body quantum systems approximated as sum over solutions of nonlinear Schödinger equation can study interference between solutions

Conclusions

- properties of many-body quantum systems approximated as sum over solutions of nonlinear Schödinger equation can study interference between solutions
- chaotic many-body systems e.g. Bose Hubbard model have spectral statistics in line with RMT (under certain conditions)

[^0]: Berry 1985; Hannay \& Ozorio de Almeida 1985

