Normally hyperbolic trapping: from quantum dispersion to classical mixing

S. Nonnenmacher (CEA-Saclay) + M. Zworski (Berkeley)

Quantum chaos: fundamentals and applications, Luchon, March 2015

Outline

- reminder on quantum (/wave) scattering, resonance spectrum.
- semiclassical distribution of long-living resonances near energy E \longleftrightarrow structure of set K_{E} of classical trapped trajectories
- focus: K_{E} normally hyperbolic symplectic submanifold
- Normal hyperbolicity \Longrightarrow explicit resonance gap
- Application to classical chaos: quantitative exponential mixing for Anosov geodesic flows

Classical and quantum scattering

(X, g) of infinite volume, Euclidean outside of a bounded region \rightarrow scattering by geometry / potential / obstacles

Classical scattering: particles follow the geodesic / Hamiltonian flow (with reflection on obstacles).

Quantum scattering: wave propagation. Two types of situations:

- Schrödinger equation: $i \hbar \partial_{t} \psi=H_{\hbar} \psi$, with the Hamiltonian operator $H_{\hbar} \stackrel{\text { def }}{=}-\frac{\hbar^{2} \Delta}{2}+V(x)$, or $H_{\hbar}=-\frac{\hbar^{2} \Delta_{\text {Dir }}}{2}$
- wave equation $\left(\partial_{t}^{2}-\Delta\right) \psi(x, t)=0\left(\Leftrightarrow\right.$ Schrödinger with $\left.H_{\hbar}=\sqrt{-\hbar^{2} \Delta}\right)$

High frequency régime: fix $E>0$, take the semiclassical limit $\hbar \rightarrow 0$.

Quantum resonances

X Euclidean near infinity $\Longrightarrow \operatorname{Spec}\left(H_{\hbar}\right)$ purely abs. continuous on \mathbb{R}^{+}.
\Longrightarrow the resolvent $\left(H_{\hbar}-z\right)^{-1}$ diverges when $\operatorname{Im} z \rightarrow 0$.

- however, the Green's function $G(y, x ; z)=\langle y|\left(H_{\hbar}-z\right)^{-1}|x\rangle$ can be meromorphically continued from $\{\operatorname{Im} z>0\}$ to $\{\operatorname{Im} z<0\}$. Poles (of finite multiplicity) $=$ resonances $\left\{z_{j}(\hbar)\right\}$ (indep. of x, y)
- each $z_{j} \longleftrightarrow$ lifetime $\tau_{j}(\hbar)=\frac{\hbar}{2\left|\ln z_{i}\right|}$

Long-living resonance: $\left|\operatorname{lm} z_{j}(\hbar)\right| \leq C \hbar$

- A way to uncover resonances: complex deformation of H_{\hbar} [Aguilar-Balslev-Combes,Simon,Helffer-Sjöstrand..]
H_{\hbar} on $\Gamma_{\theta} \Longleftrightarrow H_{\hbar, \theta}$ on $X, H_{\hbar, \theta}=-e^{-2 i \theta} \hbar^{2} \frac{\Delta}{2}$ for $|x|>R$

Questions in the semiclassical régime $h \ll 1$

- For $E>0$ fixed, what is the semiclassical distribution of the long-living resonances $z_{j}(\hbar)$ near E ? Resonance-free strip?
- bounds on $G(x, y ; z)$ (or on the cutoff resolvent operator) for z in the resonance free strip?
- Gap + good resolvent bound \Longrightarrow fast decays as $t \rightarrow \infty$
- Schrödinger "correlations" $\left\langle e^{-i t H_{h} / \hbar} \psi_{1}, \psi_{2}\right\rangle$
- wave eq.: local energy $\varepsilon_{\Omega}(\psi(t)) \xlongequal{\text { def }} \frac{1}{2} \int_{\Omega}\left(\left|\partial_{t} \psi(t, x)\right|^{2}+|\nabla \psi(t, x)|^{2}\right) d x$
- correlations for Anosov geodesic flow $\int f(x) g\left(\varphi^{t} x\right) d x-\int f(x) d x \int g(x) d x$

Semiclassical distribution of resonances - Trapped set

Main idea: the distribution of long-living resonances near E is guided by the set of trapped classical trajectories for the Hamiltonian flow Φ^{t},

$$
K_{E}=\left\{(x, p) \in T^{*} X, H(x, p)=E, \Phi^{t}(x, p) \nrightarrow \infty, t \rightarrow \pm \infty\right\}
$$

K_{E} compact subset of $\{H(x, p)=E\}$, invariant through Φ^{t}.

- $K_{E}=\emptyset \Longrightarrow \operatorname{Im} z_{j} \leq-C \hbar \log \hbar^{-1}$.

No long-living resonances
[LAX-Phillips'69... Martinez'02].

- K_{E} contains a stable periodic orbit.
Resonances $\operatorname{Im} z_{j}(\hbar)=\mathcal{O}\left(\hbar^{\infty}\right)$: very long lifetimes
[Popov,Vodev,TANG-
Zworski,Stefanov]

Normally hyperbolic trapped set

Focus on the case where $K=\cup_{\left|E^{\prime}-E\right| \leq \delta} K_{E^{\prime}}$ is a (smooth) $2 d_{| |}$-dimensional symplectic submanifold of $T^{*} X$, and such that the transverse dynamics is hyperbolic. Normally Hyperbolic Invariant Manifold [WIGgins'94...]

$$
\text { forall } \rho \in K, \quad T_{\rho}\left(T^{*} X\right)=T_{\rho} K \oplus\left(T_{\rho} K\right)^{\perp}, \quad\left(T_{\rho} K\right)^{\perp}=E_{\rho}^{-} \oplus E_{\rho}^{+}, \quad \operatorname{dim} E_{\rho}^{ \pm}=d-d_{\|}
$$

$E_{\rho}^{-}, E_{\rho}^{+}$are the transverse stable and unstable subspaces:

$$
\forall \rho \in K, \quad \forall t>0, \quad\left\|d \Phi^{t} \upharpoonright_{E_{\rho}^{-}}\right\| \leq C e^{-\lambda t}, \quad\left\|d \Phi^{-t} \Gamma_{E_{\rho}^{+}}\right\| \leq C e^{-\lambda t}
$$

The subspaces $\left\{E_{\rho}^{\mp}, \rho \in K\right\}$ are Φ^{t}-invariant, and assumed continuous w.r.t. ρ.
E_{ρ}^{\mp} tangent to the stable/unstable manifolds Γ^{\mp}.

1st example: trapped set = 1 hyperbolic orbit

- $K_{E}=$ single hyperbolic periodic orbit $\left(d_{\|}=1\right)$ [IKawa'85,GÉrard-SJöstrand'87,GÉrard'88...]

Construct a Quantum Normal Form for H_{\hbar} near the orbit
Ex. (d=2): NF variables $\left(x_{1}, x_{2}\right) \in \mathbb{R} \times \mathbb{S}^{1}, K_{E}=\left\{x_{1}=p_{1}=p_{2}=0, x_{2} \in \mathbb{S}^{1}\right\}$
NF: $\quad H\left(x_{1}, p_{1}, x_{2}, p_{2}\right)=E+\lambda_{E} x_{1} p_{1}+\frac{p_{2}}{T_{E}}+\ldots$
QNF:

$$
U_{\hbar}^{*} H_{\hbar} U_{\hbar} \quad \equiv E+\lambda_{E} \underbrace{\frac{\hbar}{2 i}\left(x_{1} \partial_{x_{1}}+\partial_{x_{1}} x_{1}\right)}_{\text {dilation op. }}+\frac{\hbar \partial_{x_{2}}}{i T_{E}}+\ldots \text { on } L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)
$$

\leadsto explicit resonances near $z=E$: deformed half-lattice

$\operatorname{Im} z<-h \lambda / 2$

$$
z_{\ell, k}(\hbar)=E(\hbar)-i \hbar \lambda_{E}(1 / 2+\ell)+\frac{\hbar k}{T_{E}}+\mathcal{O}\left(\hbar^{2}\right), \quad \ell \in \mathbb{N}, k \in \mathbb{Z}
$$

Hyperbolicity \Longrightarrow resonance gap: hyperbolic dispersion

Another example from quantum chemistry

Chemical reaction dynamics [Goussev-Schubert-WaALKens-Wiggins'10]: Neighbourhood of a saddle-center-center fixed point ($d_{\|}=d-1$)

"Reaction" coordinates

"Bath" coordinates

Quadratic approximation near the fixed point:

$$
\begin{aligned}
H(x, p) & =E+\lambda x_{1} p_{1}+\sum_{k=2}^{d} \frac{\omega_{k}}{2}\left(x_{k}^{2}+\xi_{k}^{2}\right)+\ldots, \quad K=\left\{x_{1}=p_{1}=0\right\} \\
H_{\hbar} & =E+\lambda \frac{\hbar}{2 i}\left(x_{1} \partial_{x_{1}}+\partial_{x_{1}} x_{1}\right)+\sum_{k=2}^{d} \frac{\omega_{k}}{2}\left(-\hbar^{2} \partial_{x_{k}}^{2}+x_{k}^{2}\right)+\ldots
\end{aligned}
$$

Nonresonance condition on the $\omega_{2}, \ldots, \omega_{d} \Longrightarrow$ QNF
Explicit resonances : $z_{\ell, \boldsymbol{n}} \approx E-i \hbar \lambda(1 / 2+\ell)+\sum_{k=2}^{d} \hbar \omega_{k}\left(n_{k}+1 / 2\right)$.

Our main result: Normal hyperbolicity implies a resonance gap

If the dynamics on K is not integrable, NO normal forms, NO expression for resonances. Still, one can prove a resonance gap.

Normal hyperbolicity $\rightarrow\left|\operatorname{det} d \Phi^{t} \upharpoonright_{E_{\rho}^{+}}\right| \sim e^{\wedge(\rho) t}$ for $t \gg 1$
\leadsto minimal transverse expanding rate $\Lambda \stackrel{\text { def }}{=} \inf _{p \in K} \Lambda(\rho)$

Theorem (N-Zworski'14)

Assume the trapped set K is a normally hyperbolic symplectic manifold. Then, for $\delta, \epsilon>0$ and $\hbar>0$ small enough, the strip $\{|E-\operatorname{Re} z| \leq \delta, 0 \geq \operatorname{Im} z \geq-\hbar \Lambda / 2+\epsilon\}$ is free of resonances.
(+ polynomial bound for the resolvent in the strip)
Intuition: wavepackets localized on K disperse exponentially fast along Γ^{+}, due to transverse hyperbolicity.

Consequences: exponential decay for wave dynamics

A non-quantum application: exponential mixing for Anosov flows

(Y, g) compact Riemannian manifold of negative curvature. $X=S^{*} Y$ (unit cotangent bundle) carries the geodesic flow φ^{t}, generated by $v(x) \in T_{x} X$

Negative curvature \Longrightarrow the flow φ^{t} is Anosov (uniformly hyperbolic):

$$
T_{x} X=\mathbb{R} v(x) \oplus \tilde{E}_{x}^{+} \oplus \tilde{E}_{x}^{-}, \quad\left\|d \varphi^{\mp t} \Gamma_{\tilde{E}_{x}^{ \pm}}\right\| \leq C e^{-\nu t}, t>0 .
$$

$\Longrightarrow \varphi^{t}$ ergodic and mixing w.r.t. Liouville measure: decay of correlations $C_{f g}(t) \stackrel{\text { def }}{=} \int f(x) g\left(\varphi^{t}(x)\right) d x-\int f(x) d x \int g(x) d x \xrightarrow{t \rightarrow \infty} 0$
[Dogopyat'98,Liverani'04]: the mixing is exponential : $\left|C_{t g}(t)\right| \leq e^{-\gamma t}$
The decay is controlled by Ruelle-Pollicott resonances $\left\{Z_{j}\right\}\left(\operatorname{lm} Z_{j}<0\right)$.
Question: how are the R-P resonances distributed?

Anosov flow \equiv scattering problem with K Normal. Hyp.

Original idea [Faure-Sjöstrand'10]: analyze $\varphi^{t}: X \rightarrow X$ as a quantum scattering propagator

Fact: the transfer operator $\mathcal{L}^{t} f=f \circ \varphi^{-t}$ is identical to the quantum propagator $\mathcal{L}^{t}=e^{-i t H_{\hbar} / \hbar}$, for the Hamiltonian $H_{\hbar}=\frac{\hbar}{i} v(x) \cdot \partial_{x}$
\leadsto resonances of $H_{\hbar} \equiv$ R-P resonances : $z_{j}(\hbar)=\hbar Z_{j}$
The corresponding classical Hamiltonian $H(x, p)=v(x) \cdot p$ on $T^{*} X$ generates the Hamiltonian
 flow $\Phi^{t}: T^{*} X \rightarrow T^{*} X$, lift of $\varphi^{t}: X \rightarrow X$.

- $\forall E$, the energy shell $\{H(x, p)=E\}$ is unbounded in the momentum direction (\simeq scattering system)
- φ^{t} preserves the Liouville 1-form α on X \Longrightarrow trapped set $K_{E}=\left\{\left(x, p=E \alpha_{x}\right), x \in X\right\}$.
$K=\cup_{E} K_{E}$ normally hyperb. smooth submanifold, $E_{\rho}^{ \pm}=$lift of $\tilde{E}_{\chi}^{ \pm}$,
$\Lambda=\tilde{\Lambda}$ minimal expanding rate along \tilde{E}^{+}

Applying our gap result to the Ruelle-Pollicott resonances

Theorem
Consider the geodesic flow on (Y, g) compact of negative sectional curvature.
Then there can be at most finitely many Ruelle-Pollicott resonances Z_{j} in the strip $\left\{0 \geq \operatorname{Im} Z_{j} \geq-\tilde{\Lambda} / 2+\epsilon\right\}$.
As a consequence, the correlations $C_{t g}(t)$ decay as

$$
\Longrightarrow C_{f g}(t)=\sum_{\mid m Z_{j}>-\tilde{\Lambda} / 2} e^{-i Z_{j} t} M_{j}(f, g)+\mathcal{O}\left(e^{-t \tilde{\pi} / 2}\right)
$$

$\left(\tilde{\Lambda}=\inf _{x \in x} \lim \inf _{t \rightarrow \infty} \frac{1}{t} \log \left|\operatorname{det} d \varphi^{t}{ }_{E^{+}(x)}\right|\right)$
Same result by [TsuJil' 10, '12], by studying the action of \mathcal{L}_{t} on anisotropic Sobolev spaces adapted to the dynamics.

Beyond this resonance gap: resonances in strips

[FAURE-TsuJII'13]

- wave propagation on Kerr(-de Sitter) metrics. Assuming pinching condition $\Lambda_{\max }<2 \Lambda_{\text {min }}$, resonances in isolated strip $\left\{-\frac{\nu_{\max }}{2} \leq \operatorname{Im} z / \hbar \leq-\frac{\nu_{\min }}{2}\right\}$. Counting satisfies a Weyl's law. [Dyatlov'13]
- Anosov flow: same type of result for Ruelle-Pollicott resonances [Faure-TsuJII'13].

Thank you for your attention, and good appetite!

Applications to wave decay

- Schrödinger eq.: $\psi_{1}, \psi_{2} \in L^{2}(B(0, R)), \chi \in C^{\infty}((E-\delta, E+\delta))$. Exponential decay of "correlations":

$$
\left\langle\psi_{2}, e^{-i t H_{\hbar} / \hbar} \chi\left(H_{\hbar}\right) \psi_{1}\right\rangle \leq C_{R} \hbar^{-\beta} e^{-\Lambda t / 2}+C_{R, N} \hbar^{N}, \text { for all } t>0 .
$$

- X odd-dimensional. $\left(\partial_{t}^{2}-\Delta_{X}\right) \psi=0$, with $\left(\psi(0), \partial_{t} \psi(0)\right) \in C_{c}^{\infty}(X)$. For $\Omega \subset X$ bounded, exponential decay of the local energy:

$$
\varepsilon_{\Omega}(\psi(t)) \leq C_{\epsilon} e^{-\nu_{\epsilon} t}\left(\|\psi(0)\|_{H^{1+\epsilon}}^{2}+\left\|\partial_{t} \psi(0)\right\|_{H^{\epsilon}}^{2}\right) .
$$

- wave propagation in certain stationary Lorentzian metrics: perturbations of slowly-rotating Kerr (-de Sitter) metrics $\Longrightarrow K$ normally hyperbolic.
\leadsto resonance gap [Wunsch-Zworski'10, Dyatlov'13,'14] (resonances = Quasinormal modes)
\leadsto local energy decay for $\psi_{\lambda}(0)$ concentrated near frequency λ :

$$
\mathcal{E}_{\Omega}\left(\psi_{\lambda}(t)\right) \leq C \lambda^{1 / 2} e^{-\Lambda t / 2}\left(\left\|\psi_{\lambda}(0)\right\|_{H^{1}}^{2}+\left\|\partial_{t} \psi_{\lambda}(0)\right\|_{L^{2}}^{2}\right), \quad t \leq T \log \lambda
$$

Normal hyperbolicity implies a resonance gap

Theorem (N -Zworskl'13)

Assume K is a normally hyperbolic smooth symplectic manifold, with C^{0} invariant distributions.
Then, for any $\Lambda^{\prime}<\Lambda$, the cutoff resolvent $\left\|R_{\chi}(z ; \hbar)\right\| \leq C|\log \hbar| \hbar^{-1+c_{0} \operatorname{lm} z / h}$ in the strip $\left\{|E-\operatorname{Re} z| \leq \delta, 0 \geq \operatorname{Im} z \geq-\hbar \Lambda^{\prime} / 2\right\}$.
[GÉrard-Sjöstrand'88]: same gap for $P(x, h D)$ analytic differential op. on \mathbb{R}^{d}, weaker dynamical conditions: $K \subset \Sigma$ a C^{1} symplectic submanifold, normally hyperbolic, C^{0} invariant distributions.
Exponentially large resolvent estimate.
[Wunsch-Zworski'10]: C^{∞} setting, K smooth symplectic, $\Gamma^{ \pm}$smooth of codimension $1 \Longrightarrow$ (non-explicit) gap, resolvent estimates.
[DYatLov'13,'14]: same assumptions as in [Wunsch-Zworskl'10], + orientability of $\Gamma^{ \pm} \Longrightarrow$ gap $\Lambda / 2$, sharper resolvent estimates. (Much) simpler proof: no need for a refined escape function.
[TsuJil' 12 , Faure-Tsujil'13], Anosov flow: explicitly use the transverse hyperbolic dispersion to compute the gap (and more..).

Proof (1): making H_{\hbar}) absorbing away from K

1. Complex-deform H_{\hbar} outside the "interaction region" $\Omega_{\text {int }} \stackrel{\text { def }}{=}\left\{|x| \leq R_{0}\right\}$, with angle $\theta=C \hbar|\log \hbar| . \leadsto$ nonselfadjoint op. $H_{\hbar, \theta}$.
In the energy shell $\varepsilon_{E}^{\delta}=\{|H(x, p)-E| \leq \delta\}$, its symbol $H_{\theta}(\rho)$ satisfies

$$
\operatorname{Im} H_{\theta}(\rho) \leq-c \hbar|\log \hbar| \quad \text { for } \quad \rho \in \varepsilon_{E}^{\delta} \backslash \Omega_{\text {int }}
$$

$\Longrightarrow H_{\hbar, \theta}$ is absorbing outside $\Omega_{\text {int }}$:
for any ψ microlocalized in $\varepsilon_{E}^{\delta} \backslash \Omega_{\text {int }}, \quad\left\|e^{-i H_{\hbar, \theta} / \hbar} \psi\right\| \leq e^{-c|\log \hbar|}\|\psi\|$.
2. Extend absorption outside a thin neighbourhood $K\left(\hbar^{1 / 2}\right)$. Strategy: using normal hyperbolicity, construct an adapted escape function $g(x, p i ; h)$:

$$
\rho \in \varepsilon_{E}^{\delta} \backslash K\left(\hbar^{1 / 2}\right) \Longrightarrow\{H, g\}(\rho) \geq C>0 .
$$

Take $G=\mathrm{Op}_{\hbar}(g) \Longrightarrow H_{G}$ def $=e^{-G} H_{\hbar, \theta} e^{G}=H_{\hbar, \theta}-i \hbar \mathrm{Op}_{\hbar}(\{H, g\})+\ldots$ absorbing outside $K\left(\hbar^{1 / 2}\right)$:
for any ψ microlocalized in $\varepsilon_{E}^{\delta} \backslash K\left(\hbar^{1 / 2}\right), \quad\left\|e^{-i H_{G} / \hbar} \psi\right\| \leq e^{-C}\|\psi\|$.

Proof (2): transverse hyperbolic dispersion on $K\left(h^{1 / 2}\right)$

3. Use local adapted Darboux coordinates ($x, x^{\prime} ; p, p^{\prime}$) near
$K=\{x=p=0\}: K\left(\hbar^{1 / 2}\right) \equiv\left\{|x|^{2}+|p|^{2} \leq \hbar\right\}$,
Take $\chi(x, p ; h)$ a transverse cutoff supported in $K\left(2 \hbar^{1 / 2}\right), \chi=1$ in $K\left(\hbar^{1 / 2}\right)$.
Near K, write the propagator $e^{-i t H_{\hbar} / \hbar}$ as the product of

- a unitary propagator on $L^{2}\left(\mathbb{R}_{x}^{d_{\|}}\right)$, quantizing $\left.\Phi^{t}{ }^{\kappa}: K \rightarrow K\right)$
- an operator $\mathrm{Op}_{\hbar}\left(M_{t}\right)$ on $L^{2}\left(\mathbb{R}_{x}^{d_{\|}}\right)$, with symbol $M_{t}\left(x^{\prime}, p^{\prime}\right)$ taking values in the metaplectic operators on $L^{2}\left(\mathbb{R}_{x^{\prime}}^{d_{\perp}}\right) . M_{t}\left(x^{\prime}, p^{\prime}\right)$ quantizes the linearised (hyperbolic) transverse map $d \Phi^{t}{ }_{(T K)^{\perp}}\left(x^{\prime}, p^{\prime}\right)$
\Longrightarrow hyperbolic dispersion estimate from the linearized transverse dynamics:

$$
\begin{aligned}
\forall\left(x^{\prime}, p^{\prime}\right) \in K, \forall t & >0, \quad\left\|\operatorname{Op}_{h}(\chi) M_{t}\left(x^{\prime}, p^{\prime}\right) \operatorname{Op}_{h}(\chi)\right\|_{L_{x}^{2} \rightarrow L_{x}^{2}} \leq C J_{t}^{+}(\rho)^{-1 / 2} \\
& \Longrightarrow\left\|\operatorname{Op}_{h}(\chi) \operatorname{Op}_{h}\left(M_{t}\right) \operatorname{Op}_{h}(\chi)\right\|_{L_{x, x^{\prime}}^{2} \rightarrow L_{x, x^{\prime}}^{2}} \leq C e^{-t \Lambda / 2} \\
& \Longrightarrow\left\|\operatorname{Op}_{h}(\chi) e^{-i t P(h) / h} \operatorname{Op}_{h}(\chi)\right\|_{L_{x, x^{\prime}}^{2} \rightarrow L_{x, x^{\prime}}^{2}} \leq C e^{-t \Lambda / 2} .
\end{aligned}
$$

4. Combine the estimates near and away from $K \leadsto$ for any $\psi \in L^{2}$ microlocalized inside \mathcal{E}_{E}^{δ}, in particular for ψ an eigenstate of H_{G} :

$$
\left\|e^{-i t H_{G} / \hbar} \psi\right\| \leq C e^{-t \Lambda / 2}\|\psi\|, \quad t>0 \quad \text { (indep. of } \hbar \text {) }
$$

Proof (3): from propagator to resolvent estimate

5. Take $a \in C^{\infty}\left(T^{*} X\right)$ with supp $a \subset \mathcal{E}_{E}^{\delta}, a \equiv 1$ in $\varepsilon_{E}^{\delta / 2}:$:

$$
\left\|e^{-i t P_{G} / h} \mathrm{Op}_{\hbar}(a)\right\|_{L^{2} \rightarrow L^{2}} \leq C e^{-t \Lambda / 2}, \quad t>0 \quad \text { indep. of } h
$$

- For $\operatorname{Im} z>-\Lambda^{\prime} / 2$, construct a parametrix for $\left(P_{G}-z\right)^{-1}$ on supp a:

Take $Q_{a} \stackrel{\text { def }}{h} \frac{i}{h} \int_{0}^{T} e^{-i t\left(P_{G}-z\right) / h} \mathrm{Op}_{\hbar}(a)=\mathcal{O}\left(h^{-1}\right)$.
Then $\left(P_{G}-z\right) Q_{a}=\left(I-e^{-i T\left(P_{G}-z\right) / h}\right) \mathrm{Op}_{\hbar}(a)=\mathrm{Op}_{\hbar}(a)+s m a l l$ if $T \gg 1$

- $\left(P_{G}-z\right)$ semiclassically elliptic on $\operatorname{supp}(1-a)$
\leadsto construct $Q_{1-a}=\mathcal{O}(1)$ s.t. $\left(P_{G}-z\right) Q_{1-a}=\left(I-\mathrm{Op}_{\hbar}(a)\right)+$ small

$$
\begin{gathered}
\Longrightarrow\left(P_{G}-z\right)\left(Q_{a}+Q_{1-a}\right)=l d+\text { small } \\
\Longrightarrow\left\|\left(P_{G}-z\right)^{-1}\right\|=\mathcal{O}\left(h^{-1}\right) .
\end{gathered}
$$

- by construction $\left\|e^{ \pm G}\right\|_{L^{2} \rightarrow L^{2}}=\mathcal{O}\left(h^{-M}\right)$

$$
\begin{aligned}
\Longrightarrow\left\|\left(P_{\theta}-z\right)^{-1}\right\| & =\mathcal{O}\left(h^{-1-2 M}\right) \quad \text { in the strip } \\
\Longrightarrow\left\|\chi(P-z)^{-1} \chi\right\| & =\left\|\chi\left(P_{\theta}-z\right)^{-1} \chi\right\|=\mathcal{O}\left(h^{-1-2 M}\right) .
\end{aligned}
$$

