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reminder on quantum (/wave) scattering, resonance spectrum.

semiclassical distribution of long-living resonances near energy E
«— structure of set K of classical trapped trajectories

focus: Ke normally hyperbolic symplectic submanifold
Normal hyperbolicity = explicit resonance gap

Application to classical chaos: quantitative exponential mixing for
Anosov geodesic flows



Classical and quantum scattering
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(X, g) of infinite volume, Euclidean outside of a bounded region
— scattering by geometry / potential / obstacles

Classical scattering: particles follow the geodesic / Hamiltonian flow (with
reflection on obstacles).
Quantum scattering: wave propagation. Two types of situations:
@ Schrédinger equation: ihdwp = Hxv, with the Hamiltonian operator
H, & 7”22A + V(x), or Hp = 7@
@ wave equation (82 — A)y(x, t) = 0 (< Schrddinger with H, = —h2A)
High frequency régime: fix E > 0, take the semiclassical limit 7 — 0.




Quantum resonances
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X Euclidean near infinity => Spec(H};) purely abs. continuous on R*.
— the resolvent (H;, — z)~' diverges when Im z — 0.

@ however, the Green’s function G(y, x; z) = (y|(Hr — 2)~"|x) can be
meromorphically continued from {Imz > 0} to {Imz < 0}.
Poles (of finite multiplicity) = resonances {z;(%)} (indep. of x, y)

@ each z «— lifetime 7;(h) = 2‘#’4'
Long-living resonance: | Im z(h)| < Ch

@ A way to uncover resonances: complex deformation of Hj,
[AGUILAR-BALSLEV-COMBES,SIMON,HELFFER-SJOSTRAND..]

Hy on Tg <= Hyoon X, Hyo = —e 21?5 for [x| > R



Questions in the semiclassical régime h < 1

@ For E > 0 fixed, what is the semiclassical distribution of the long-living
resonances z;(h) near E? Resonance-free strip?

@ bounds on G(x, y; z) (or on the cutoff resolvent operator) for z in the
resonance free strip?

@ Gap + good resolvent bound —> fast decays as t — oo
e Schradinger "correlations" (e~ i/ Tiqpy 4y
def 4

* wave eq.: local energy £q (¥ (1) = 5 [o(10r(t, X)I12 + [Va(t, x)[2)ax

o correlations for Anosov geodesic flow [ f(x)g(p'x) dx — [ f(x)dx [ g(x)adx



Semiclassical distribution of resonances - Trapped set

Main idea: the distribution of long-living resonances near E is guided by the
set of trapped classical trajectories for the Hamiltonian flow ¢,

Ke = {(x,p) € T X, H(x,p) = E, ®(x,p) # o0, t — *o0}
Ke compact subset of {H(x, p) = E}, invariant through &'

Ke =0 = Imz < —Chlogh'.
No long-living resonances
[LAX-PHILLIPS'69. .. MARTINEZ'02].

Ke contains a stable periodic
orbit.

Resonances Im z;(h) = O(h*°):
very long lifetimes

[PoOPOV,VODEV, TANG-
ZWORSKI,STEFANOV]




Normally hyperbolic trapped set

Focus on the case where K = Uje/_g|<5Kg/ is a (smooth) 2d)-dimensional
symplectic submanifold of T* X, and such that the transverse dynamics is
hyperbolic. Normally Hyperbolic Invariant Manifold [WiGGINS'94...]

forallp € K, T,(T*X) = T,K&(T,K)*", (T,K)" =E, @E;, dmE, =d—d|
E,, E, are the transverse stable and unstable subspaces:

Vpe K, Vt>0, |dof ey Il < Ce™, |do "I [ <Ce™

The subspaces {E;, p € K}
are ¢'-invariant, and assumed
continuous w.r.t. p.

E] tangent to the
stable/unstable manifolds I'T.




1st example: trapped set = 1 hyperbolic orbit

e Ke = single hyperbolic periodic orbit (dj = 1)
[IkAWA’85,GERARD-SJOSTRAND’87,GERARD’88. . . | '<\>
Construct a Quantum Normal Form for H;; near the orbit

Ex. (d=2): NF variables (xi,%) € R xS, Ke = {xi =p1 =p2 = 0,x2 € S'}

NF: H(x1, p1, X2, P2) :E+)\Ex1p1+%+...

ho
QNF: Uy Hy U, _E+)\E—(x1 Oy + O X1) + 5 XZ = 4. on LA(R x S")
\—,_/
dilation op. ) .
~+ explicit resonances near z = E: 0 g

deformed half-lattice

Im o< ~hA/2 ",

Zux(h) = E(R)—iAe(1/2 + 0) + ’% +O(?), (€N, keZ

Hyperbolicity => resonance gap: hyperbolic dispersion



Another example from quantum chemistry

Chemical reaction dynamics [GOUSSEV-SCHUBERT-WAALKENS-WIGGINS'10]:
Neighbourhood of a saddle-center-center fixed point (d) = d — 1)

"Reaction" coordinates "Bath" coordinates

Quadratic approximation near the fixed point:

d
H(x,p):E+AX1p1+Z%(XE+£?)+..., K ={x =pi =0}
h J w
k 202 2
Hh7E+/\2 (X1 Ox, + O X1) +k§;2? — K205 + XK) + ...
Nonresonance condition on the wo, ..., wg = QNF

Explicit resonances : z;p = E—ifiA(1/2+ () + ZZZZ Twk(nk +1/2).



Our main result: Normal hyperbolicity implies a resonance gap

If the dynamics on K is not integrable, NO normal forms, NO expression for
resonances. Still, one can prove a resonance gap.

Normal hyperbolicity — | detd®* [z, | ~ NPt for t>1

~ minimal transverse expanding rate A o inf,ex A(p)

Theorem (N-ZwoRrski'14)

Assume the trapped set K is a normally hyperbolic symplectic manifold.
Then, for é,e > 0 and h > 0 small enough, the strip

{|E—Rez| <4, 0>Imz> —h\/2+ €} is free of resonances.

(+ polynomial bound for the resolvent in the strip)

Intuition: wavepackets localized on K disperse exponentially fast along ',
due to transverse hyperbolicity.

Consequences: exponential decay for wave dynamics



A non-quantum application: exponential mixing for Anosov flows

(Y, g) compact Riemannian manifold of negative curvature. X = S*Y (unit
cotangent bundle) carries the geodesic flow ¢, generated by v(x) € T, X

Negative curvature = the flow ¢’ is Anosov (uniformly hyperbolic):

TX=Rv(x)@Ef@E , |dp™ [z <Ce™, t>0.

= ¢! ergodic and mixing w.r.t. Liouville measure: decay of correlations
Co(t) < [ f(x)9('(x)) dx — [ f(x)ax [ g(x) dx—= 0
[DOGOPYAT'98,LIVERANI'04]: the mixing is exponential : |Cy ()| < e

The decay is controlled by Ruelle—Pollicott resonances {Z;} (Im Z; < 0).

Question: how are the R-P resonances distributed?



Anosov flow = scattering problem with K Normal. Hyp.

Original idea [FAURE-SJOSTRAND'10]: analyze ¢! : X — X as a quantum
scattering propagator

Fact: the transfer operator £'f = fo o~ is identical to
the quantum propagator £! = e=™/% for the
Hamiltonian Hy, = 2 v(x) - 0

~» resonances of H; = R-P resonances : zj(h) = hZ

The corresponding classical Hamiltonian
H(x,p) = v(x) - pon T*X generates the Hamiltonian
flow &' : T*X — T*X, liftof o' : X — X.
@ VE, the energy shell {H(x, p) = E} is unbounded <
in the momentum direction (~scattering system)
@ ' preserves the Liouville 1-form a on X

— trapped set Ke = {(x,p = Eax), x € X}.
K = UeKe normally hyperb. smooth submanifold,

E* =lift of EZ,
A = A minimal expanding rate along £+



Applying our gap result to the Ruelle-Pollicott resonances

Theorem
Consider the geodesic flow on (Y, g) compact of negative sectional
curvature.

Then there can be at most finitely many Ruelle-Pollicott resonances Z; in the
strip {0 > ImZ; > —A\/2 + €}.
As a consequence, the correlations Cy(t) decay as

= Ce(t)= > e F'M(f.g)+0(e"?)
ImZ>—A/2
(A = infyex liminfo 1 log|detdy’ [+ |)

Same result by [TsuJi’10,12], by studying the action of £; on anisotropic
Sobolev spaces adapted to the dynamics.



Beyond this resonance gap: resonances in strips

[DyATLOV’'13] DO [FAURE-TsuJI'13]
wave propagation on Kerr(-de Sitter) metrics.

Assuming pinching condition Amax < 2Amin, resonances in isolated strip
{—# <Imz/h < —*gn}. Counting satisfies a Weyl's law. [DyATLOV'13]

Anosov flow: same type of result for Ruelle-Pollicott resonances
[FAURE-TsuUJII' 3].



Thank you for your attention, and good appetite!



Applications to wave decay

@ Schrédinger eq.: 11,12 € L2(B(0, R)), x € C*((E — 6, E + 6)).
Exponential decay of "correlations":

<¢2, e_itHﬁ/hX(Hﬁ)i/)1> < Cnh_’eeim/z + CR’NﬁN, forall t > 0.

@ X odd-dimensional. (82 — Ax)y = 0, with (¥(0), 9r(0)) € C3°(X).
For Q € X bounded, exponential decay of the local energy:

Ea(¥(t)) < Cee™ ! (I10(0)[Fr+e + 10r(0)][fre) -

@ wave propagation in certain stationary Lorentzian metrics: perturbations
of slowly-rotating Kerr (-de Sitter) metrics = K normally hyperbolic.
~» resonance gap [WUNSCH-ZWORSKI'10, DYATLOV'13,'14]
(resonances = Quasinormal modes)
~> local energy decay for ¢, (0) concentrated near frequency A:

Ea(ya(t)) < CAXV2e M2 (lYa (0% + 18:2 (0)]1%), t< TlogA.



Normal hyperbolicity implies a resonance gap

Theorem (N-ZwoRskI’13)

Assume K is a normally hyperbolic smooth symplectic manifold, with C°
invariant distributions.

Then, for any \' < A, the cutoff resolvent ||Ry(z; h)|| < C |log k| n~"+c!m2/h
in the strip {|E — Re z| <4, 0 > Imz > —hN' /2}.

[GERARD-SJOSTRAND'88]: same gap for P(x, hD) analytic differential op. on
R?, weaker dynamical conditions: K ¢ ¥ a C' symplectic submanifold,
normally hyperbolic, C° invariant distributions.

Exponentially large resolvent estimate.

[WuNscH-ZwoRskI'10]: C* setting, K smooth symplectic, I+ smooth of
codimension 1 = (non-explicit) gap, resolvent estimates.

[DyaTLOV'13,14]: same assumptions as in [WUNSCH-ZWORSKI'10], +
orientability of I'* = gap A/2 , sharper resolvent estimates.
(Much) simpler proof: no need for a refined escape function.

[Tsudir12, FAURE-TsuJI'13], Anosov flow: explicitly use the transverse
hyperbolic dispersion to compute the gap (and more..).



Proof (1): making H;) absorbing away from K

1. Complex-deform H; outside the "interaction region” Qi & {Ix] < Ro}, with
angle 6 = Ch|log i|. ~ nonselfadjoint op. Hj, .
In the energy shell £& = {|H(x, p) — E| < &}, its symbol Hy(p) satisfies

ImHy(p) < —chi|logh| for pe &\ Qi
== H} ¢ is absorbing outside Qiy:

for any ¢ microlocalized in € \ Qin, [|& "0/ || < e 19" ||| .

2. Extend absorption outside a thin neighbourhood K (1'/?).
Strategy: using normal hyperbolicity, construct an adapted escape function
9(x, pi; h):

pe L\ K('?) = {H,g}(p)>C>0.
Take G = Op,(9) = He = e S Hyp €% = Huo—ihOp,({H.g}) + ...
absorbing outside K(7:'/?):

for any ¥ microlocalized in €2 \ K(h'/?), ||e”™Me/"yp| < e ||y



Proof (2): transverse hyperbolic dispersion on K(h'/?)

3. Use local adapted Darboux coordinates (x, x’; p, p’) near
K ={x=p=0} K(h'?) = {|x]? +|p2 < h},
Take x(x, p; h) a transverse cutoff supported in K(21'/2), x = 1in K(h'/?).

Near K, write the propagator e~/ as the product of

— a unitary propagator on LZ(R)‘Z” ), quantizing ®' [x: K — K)
— an operator Op, (M;) on LQ(RZ” ), with symbol M(x’, p') taking values in the

metaplectic operators on LZ(]R?% ). Mi(x’, p’) quantizes the linearised
(hyperbolic) transverse map d®' [ iy (X', ')

= hyperbolic dispersion estimate from the linearized transverse dynamics:
V(x',p) € K, ¥t >0, [[Op,()Mi(x',p") Op,(x)llizi2< C i ()72
= 110PA(x) Ops(M) OP(X) .2 , iz , < C&™™2
= 1 0ps(x)e” " Opy(W)lliz , 12, < Ce™™.
4. Combine the estimates near and away from K ~ for any 1 € L2
microlocalized inside &%, in particular for ¢ an eigenstate of Hg :

|e~™e/my| < Cem™? |||, t>0 (indep.ofh) O



Proof (3): from propagator to resolvent estimate
5. Take a € C>(T*X) with suppa C €%, a=1in Y2

le”"""Opy(@)lli2-.12 < Ce™%, >0 indep. of h

@ ForImz > —A’/2, construct a parametrix for (Pg — z) ™' on supp a:
Take Q, & 1 [T e "Pe=2/hOp, (a) = O(h™").
Then (Pg — z)Qa = (I- e Pa=2/" Op,(a) = Op,(a) + small if T > 1
@ (Pg — z) semiclassically elliptic on supp(1 — a)
~» construct Q_, = O(1) s.t. (Pg — 2)Qi—a = (I — Op,(a)) + small
= (Pg — 2)(Qa+ Qi_a) = Id + small
= [I(Pe—2)7"| = 0(h™").

@ by construction ||e¢| 2_, 2 = O(h™")
= [[(Ps—2)""| = 0(h"""2") inthe strip
= [x(P=2)""xll = Ix(Ps — 2) x| = 0(h—""*"). O



