Normally hyperbolic trapping: from quantum dispersion to classical mixing

S. Nonnenmacher (CEA-Saclay) + M. Zworski (Berkeley)

Outline

- reminder on quantum (/wave) scattering, resonance spectrum.
- semiclassical distribution of long-living resonances near energy E
 ↔ structure of set K_E of classical trapped trajectories
- focus: K_E normally hyperbolic symplectic submanifold
- Normal hyperbolicity \Longrightarrow explicit resonance gap
- Application to classical chaos: *quantitative exponential mixing* for Anosov geodesic flows

Classical and quantum scattering

(X, g) of infinite volume, Euclidean outside of a bounded region \rightarrow *scattering* by geometry / potential / obstacles

Classical scattering: particles follow the geodesic / Hamiltonian flow (with reflection on obstacles).

Quantum scattering: wave propagation. Two types of situations:

• Schrödinger equation: $i\hbar\partial_t\psi = H_\hbar\psi$, with the Hamiltonian operator $H_\hbar \stackrel{\text{def}}{=} -\frac{\hbar^2\Delta}{2} + V(x)$, or $H_\hbar = -\frac{\hbar^2\Delta_{Dir}}{2}$

• wave equation $(\partial_t^2 - \Delta)\psi(x, t) = 0$ (\Leftrightarrow Schrödinger with $H_{\hbar} = \sqrt{-\hbar^2 \Delta}$) High frequency régime: fix E > 0, take the semiclassical limit $\hbar \to 0$.

Quantum resonances

X Euclidean near infinity \implies Spec(H_{\hbar}) purely abs. continuous on \mathbb{R}^+ . \implies the resolvent $(H_{\hbar} - z)^{-1}$ diverges when Im $z \to 0$.

- however, the Green's function G(y, x; z) = ⟨y|(H_ħ − z)⁻¹|x⟩ can be meromorphically continued from {Im z > 0} to {Im z < 0}.
 Poles (of finite multiplicity) = resonances {z_i(ħ)} (indep. of x, y)
- each $z_j \longleftrightarrow$ lifetime $\tau_j(\hbar) = \frac{\hbar}{2|\operatorname{Im} z_j|}$ Long-living resonance: $|\operatorname{Im} z_j(\hbar)| \le C\hbar$
- A way to uncover resonances: complex deformation of H_h [Aguilar-Balslev-Combes,SIMON,Helffer-SJÖSTRAND..]

$$H_{\hbar} \text{ on } \Gamma_{\theta} \iff H_{\hbar,\theta} \text{ on } X, H_{\hbar,\theta} = -e^{-2i\theta}\hbar^2 \frac{\Delta}{2} \text{ for } |x| > R$$

Questions in the semiclassical régime $h \ll 1$

- For *E* > 0 fixed, what is the semiclassical distribution of the long-living resonances *z_i*(*h*) near *E*? Resonance-free strip?
- bounds on G(x, y; z) (or on the cutoff resolvent operator) for z in the resonance free strip?
- Gap + good resolvent bound \Longrightarrow fast decays as $t \to \infty$
 - Schrödinger "correlations" (e^{−itH_ħ/ħ}ψ₁, ψ₂)
 - wave eq.: local energy $\mathcal{E}_{\Omega}(\psi(t)) \stackrel{\text{def}}{=} \frac{1}{2} \int_{\Omega} (|\partial_t \psi(t, x)|^2 + |\nabla \psi(t, x)|^2) dx$
 - correlations for Anosov geodesic flow $\int f(x)g(\varphi^t x) dx \int f(x)dx \int g(x)dx$

Main idea: the distribution of long-living resonances near *E* is guided by the set of **trapped classical trajectories** for the Hamiltonian flow Φ^t ,

$${\it \textit{K}}_{\it \textit{E}}=\{(x,p)\in T^*X,\; {\it \textit{H}}(x,p)={\it E},\; \Phi^t(x,p)\not\rightarrow\infty,\; t\rightarrow\pm\infty\}$$

 K_E compact subset of $\{H(x, p) = E\}$, invariant through Φ^t .

- $K_E = \emptyset \implies \text{Im } z_j \le -C\hbar \log \hbar^{-1}$. No long-living resonances [LAX-PHILLIPS'69...MARTINEZ'02].
- *K_E* contains a stable periodic orbit. Resonances Im *z_j*(ħ) = O(ħ[∞]): very long lifetimes [POPOV.VODEV.TANG-

ZWORSKI, STEFANOV]

Normally hyperbolic trapped set

Focus on the case where $K = \bigcup_{|E'-E| \le \delta} K_{E'}$ is a (smooth) $2d_{\parallel}$ -dimensional symplectic submanifold of T^*X , and such that the transverse dynamics is hyperbolic. Normally Hyperbolic Invariant Manifold [WIGGINS'94...]

 $\textit{forall} \rho \in K, \quad T_{\rho}(T^*X) = T_{\rho}K \oplus (T_{\rho}K)^{\perp}, \quad (T_{\rho}K)^{\perp} = E_{\rho}^{-} \oplus E_{\rho}^{+}, \quad \dim E_{\rho}^{\pm} = d - d_{\parallel}$

 E_{ρ}^{-} , E_{ρ}^{+} are the transverse stable and unstable subspaces:

$$\forall \rho \in K, \quad \forall t > 0, \quad \| d\Phi^t \upharpoonright_{\mathbf{E}_{\rho}^-} \| \leq C e^{-\lambda t}, \quad \| d\Phi^{-t} \upharpoonright_{\mathbf{E}_{\rho}^+} \| \leq C e^{-\lambda t}$$

The subspaces $\{E_{\rho}^{\mp}, \rho \in K\}$ are Φ^{t} -invariant, and assumed continuous w.r.t. ρ .

 E_{ρ}^{\mp} tangent to the stable/unstable manifolds Γ^{\mp} .

1st example: trapped set = 1 hyperbolic orbit

• $K_E =$ single hyperbolic periodic orbit ($d_{\parallel} = 1$) [IKAWA'85,GÉRARD-SJÖSTRAND'87,GÉRARD'88...]

Construct a **Quantum Normal Form** for H_h near the orbit Ex. (d=2): NF variables $(x_1, x_2) \in \mathbb{R} \times \mathbb{S}^1$, $K_E = \{x_1 = p_1 = p_2 = 0, x_2 \in \mathbb{S}^1\}$ $H(x_1, p_1, x_2, p_2) = E + \lambda_E x_1 p_1 + \frac{p_2}{T_2} + \dots$ NF: $U_{\hbar}^{*} H_{\hbar} U_{\hbar} \equiv E + \lambda_{E} \frac{\hbar}{2i} (x_{1} \partial_{x_{1}} + \partial_{x_{1}} x_{1}) + \frac{\hbar \partial_{x_{2}}}{iT_{F}} + \dots \text{ on } L^{2} (\mathbb{R} \times \mathbb{S}^{1})$ QNF: dilation op. \rightarrow explicit resonances near z = E: 0 deformed half-lattice Im $z < -h\lambda/2$ $z_{\ell,k}(\hbar) = E(\hbar) - i\hbar\lambda_E(1/2 + \ell) + \frac{\hbar k}{T_E} + \mathcal{O}(\hbar^2), \ \ell \in \mathbb{N}, \ k \in \mathbb{Z}$

Hyperbolicity \implies resonance gap: hyperbolic dispersion

Another example from quantum chemistry

Chemical reaction dynamics [GOUSSEV-SCHUBERT-WAALKENS-WIGGINS'10]: Neighbourhood of a saddle-center-center fixed point $(d_{\parallel} = d - 1)$

Quadratic approximation near the fixed point:

$$H(x,p) = E + \lambda x_1 p_1 + \sum_{k=2}^{d} \frac{\omega_k}{2} (x_k^2 + \xi_k^2) + \dots, \quad K = \{x_1 = p_1 = 0\}$$
$$H_{\hbar} = E + \lambda \frac{\hbar}{2i} (x_1 \partial_{x_1} + \partial_{x_1} x_1) + \sum_{k=2}^{d} \frac{\omega_k}{2} (-\hbar^2 \partial_{x_k}^2 + x_k^2) + \dots$$

Nonresonance condition on the $\omega_2, \ldots, \omega_d \Longrightarrow \mathbf{QNF}$ Explicit resonances : $z_{\ell,n} \approx E - i\hbar\lambda(1/2 + \ell) + \sum_{k=2}^{d} \hbar\omega_k(n_k + 1/2).$

Our main result: Normal hyperbolicity implies a resonance gap

If the dynamics on K is not integrable, NO normal forms, NO expression for resonances. Still, one can prove a resonance gap.

Normal hyperbolicity $\rightarrow |\det d\Phi^t \upharpoonright_{E_{\alpha}^+}| \sim e^{\Lambda(\rho)t}$ for $t \gg 1$

 \sim minimal transverse expanding rate $\Lambda \stackrel{\text{def}}{=} \inf_{\rho \in K} \Lambda(\rho)$

Theorem (N-ZWORSKI'14)

Assume the trapped set *K* is a normally hyperbolic symplectic manifold. Then, for $\delta, \epsilon > 0$ and $\hbar > 0$ small enough, the strip $\{|E - \operatorname{Re} z| \le \delta, \ 0 \ge \operatorname{Im} z \ge -\hbar\Lambda/2 + \epsilon\}$ is free of resonances. (+ polynomial bound for the resolvent in the strip)

Intuition: wavepackets localized on *K* disperse exponentially fast along Γ^+ , due to transverse hyperbolicity.

Consequences: exponential decay for wave dynamics

A non-quantum application: exponential mixing for Anosov flows

(Y, g) compact Riemannian manifold of negative curvature. $X = S^* Y$ (unit cotangent bundle) carries the geodesic flow φ^t , generated by $v(x) \in T_x X$

Negative curvature \implies the flow φ^t is Anosov (uniformly hyperbolic):

 $\implies \varphi^t \text{ ergodic and mixing w.r.t. Liouville measure: decay of correlations} \\ C_{tg}(t) \stackrel{\text{def}}{=} \int f(x)g(\varphi^t(x)) \, dx - \int f(x) dx \int g(x) \, dx \stackrel{t \to \infty}{\longrightarrow} 0$

[DOGOPYAT'98,LIVERANI'04]: the mixing is exponential : $|C_{fg}(t)| \le e^{-\gamma t}$

The decay is controlled by Ruelle–Pollicott resonances $\{Z_j\}$ (Im $Z_j < 0$).

Question: how are the R-P resonances distributed?

Anosov flow \equiv scattering problem with *K* Normal. Hyp.

Original idea [Faure-Sjöstrand'10]: analyze $\varphi^t : X \to X$ as a quantum scattering propagator

Fact: the transfer operator $\mathcal{L}^t f = f \circ \varphi^{-t}$ is identical to the quantum propagator $\mathcal{L}^t = e^{-itH_\hbar/\hbar}$, for the Hamiltonian $H_\hbar = \frac{\hbar}{l} v(x) \cdot \partial_x$

 \rightsquigarrow resonances of $H_{\hbar} \equiv \text{R-P}$ resonances : $z_j(\hbar) = \hbar Z_j$

The corresponding classical Hamiltonian $H(x, p) = v(x) \cdot p$ on T^*X generates the Hamiltonian flow $\Phi^t : T^*X \to T^*X$, lift of $\varphi^t : X \to X$.

- ∀E, the energy shell {H(x, p) = E} is unbounded in the momentum direction (≃scattering system)
- φ^t preserves the Liouville 1-form α on X \implies trapped set $K_E = \{(x, p = E\alpha_x), x \in X\}$. $K = \bigcup_E K_E$ normally hyperb. smooth submanifold, $E_{\rho^{\pm}}^{\pm} = \text{lift of } \tilde{E}_x^{\pm},$
 - $\Lambda = \tilde{\Lambda}$ minimal expanding rate along \tilde{E}^+

Applying our gap result to the Ruelle-Pollicott resonances

Theorem

Consider the geodesic flow on (Y, g) compact of negative sectional curvature.

Then there can be at most finitely many Ruelle-Pollicott resonances Z_j in the strip $\{0 \ge \text{Im } Z_j \ge -\tilde{\Lambda}/2 + \epsilon\}$. As a consequence, the correlations $C_{fa}(t)$ decay as

$$\implies \mathcal{C}_{fg}(t) = \sum_{\operatorname{Im} Z_j > -\tilde{\Lambda}/2} e^{-iZ_j t} M_j(f,g) + \mathcal{O}(e^{-t\tilde{\Lambda}/2})$$

 $(\tilde{\Lambda} = \inf_{x \in X} \liminf_{t \to \infty} \frac{1}{t} \log |\det d\varphi^t|_{E^+(x)}|)$

Same result by [TsUJII'10,'12], by studying the action of \mathcal{L}_t on anisotropic Sobolev spaces adapted to the dynamics.

Beyond this resonance gap: resonances in strips

• wave propagation on Kerr(-de Sitter) metrics. Assuming pinching condition $\Lambda_{max} < 2\Lambda_{min}$, resonances in isolated strip $\{-\frac{\nu_{max}}{2} \le \text{Im } z/\hbar \le -\frac{\nu_{min}}{2}\}$. Counting satisfies a Weyl's law. [DYATLOV'13]

• Anosov flow: same type of result for Ruelle-Pollicott resonances [FAURE-TSUJII'13].

Thank you for your attention, and good appetite!

Applications to wave decay

 Schrödinger eq.: ψ₁, ψ₂ ∈ L²(B(0, R)), χ ∈ C[∞]((E − δ, E + δ)). Exponential decay of "correlations":

 $\langle \psi_2, \mathbf{e}^{-it\mathcal{H}_{\hbar}/\hbar}\chi(\mathcal{H}_{\hbar})\psi_1 \rangle \leq C_R \hbar^{-\beta} \mathbf{e}^{-\Lambda t/2} + C_{R,N} \hbar^N$, for all t > 0.

• X odd-dimensional. $(\partial_t^2 - \Delta_X)\psi = 0$, with $(\psi(0), \partial_t\psi(0)) \in C_c^{\infty}(X)$. For $\Omega \subset X$ bounded, exponential decay of the local energy:

$$\mathcal{E}_{\Omega}(\psi(t)) \leq C_{\epsilon} e^{-\nu_{\epsilon} t} \left(\|\psi(0)\|_{H^{1+\epsilon}}^2 + \|\partial_t \psi(0)\|_{H^{\epsilon}}^2 \right).$$

wave propagation in certain stationary Lorentzian metrics: perturbations of slowly-rotating Kerr (-de Sitter) metrics ⇒ K normally hyperbolic.
 ~> resonance gap [WUNSCH-ZWORSKI'10, DYATLOV'13,'14] (resonances = Quasinormal modes)

 \sim local energy decay for $\psi_{\lambda}(0)$ concentrated near frequency λ :

$$\mathcal{E}_{\Omega}(\psi_{\lambda}(t)) \leq C \,\lambda^{1/2} \boldsymbol{e}^{-\Lambda t/2} \big(\|\psi_{\lambda}(\mathbf{0})\|_{H^1}^2 + \|\partial_t \psi_{\lambda}(\mathbf{0})\|_{L^2}^2 \big), \quad t \leq T \log \lambda \,.$$

Normal hyperbolicity implies a resonance gap

Theorem (N-Zworski'13)

Assume K is a normally hyperbolic smooth symplectic manifold, with C^0 invariant distributions.

Then, for any $\Lambda' < \Lambda$, the cutoff resolvent $||R_{\chi}(z;\hbar)|| \le C |\log \hbar| \hbar^{-1+c_0 \ln z/h}$ in the strip $\{|E - \operatorname{Re} z| \le \delta, \ 0 \ge \ln z \ge -\hbar\Lambda'/2\}$.

[GÉRARD-SJÖSTRAND'88]: same gap for P(x, hD) analytic differential op. on \mathbb{R}^d , weaker dynamical conditions: $K \subset \Sigma$ a C^1 symplectic submanifold, normally hyperbolic, C^0 invariant distributions. Exponentially large resolvent estimate.

[WUNSCH-ZWORSKI'10]: C^{∞} setting, K smooth symplectic, Γ^{\pm} smooth of codimension 1 \implies (non-explicit) gap, resolvent estimates.

[DYATLOV'13,'14]: same assumptions as in [WUNSCH-ZWORSKI'10], + orientability of $\Gamma^{\pm} \Longrightarrow$ gap $\Lambda/2$, sharper resolvent estimates. (Much) simpler proof: no need for a refined escape function.

[TSUJII'12, FAURE-TSUJII'13], Anosov flow: explicitly use the transverse hyperbolic dispersion to compute the gap (and more..).

Proof (1): making H_{\hbar}) absorbing away from K

1. Complex-deform H_{\hbar} outside the "interaction region" $\Omega_{int} \stackrel{\text{def}}{=} \{|x| \leq R_0\}$, with angle $\theta = C \hbar |\log \hbar|$. \rightsquigarrow nonselfadjoint op. $H_{\hbar,\theta}$. In the energy shell $\mathcal{E}_E^{\delta} = \{|H(x, p) - E| \leq \delta\}$, its symbol $H_{\theta}(\rho)$ satisfies

$$\mathsf{Im}\, \textit{H}_{\!\theta}(\rho) \leq -\textit{c}\,\hbar \, |\log \hbar| \quad \mathsf{for} \quad \rho \in \mathcal{E}^{\delta}_{\textit{E}} \setminus \Omega_{\mathrm{int}}$$

 \implies $H_{\hbar,\theta}$ is absorbing outside Ω_{int} :

for any ψ microlocalized in $\mathcal{E}^{\delta}_{E} \setminus \Omega_{\text{int}}$, $\| e^{-iH_{\hbar,\theta}/\hbar} \psi \| \leq e^{-c|\log \hbar|} \| \psi \|$.

2. Extend absorption outside a thin neighbourhood $K(\hbar^{1/2})$. Strategy: using normal hyperbolicity, construct an adapted escape function g(x, pi; h):

$$ho\in \mathcal{E}^{\delta}_{E}\setminus K(\hbar^{1/2})\Longrightarrow \{H,g\}(
ho)\geq C>0$$
 .

Take $G = \operatorname{Op}_{\hbar}(g) \Longrightarrow H_G \stackrel{\text{def}}{=} e^{-G} H_{\hbar,\theta} e^G = H_{\hbar,\theta} - i\hbar \operatorname{Op}_{\hbar}(\{H,g\}) + \dots$ absorbing outside $K(\hbar^{1/2})$:

for any ψ microlocalized in $\mathcal{E}^{\delta}_{E} \setminus K(\hbar^{1/2}), \quad \|\boldsymbol{e}^{-i\mathcal{H}_{G}/\hbar}\psi\| \leq \boldsymbol{e}^{-\mathcal{C}} \|\psi\|.$

Proof (2): transverse hyperbolic dispersion on $K(h^{1/2})$

3. Use local adapted Darboux coordinates (x, x'; p, p') near $K = \{x = p = 0\}$: $K(\hbar^{1/2}) \equiv \{|x|^2 + |p|^2 \le \hbar\}$, Take $\chi(x, p; h)$ a transverse cutoff supported in $K(2\hbar^{1/2}), \chi = 1$ in $K(\hbar^{1/2})$.

Near *K*, write the propagator $e^{-itH_{\hbar}/\hbar}$ as the product of

– a unitary propagator on $L^2(\mathbb{R}^{d_{\parallel}}_x)$, quantizing $\Phi^t \upharpoonright_{\mathcal{K}} \mathcal{K} \to \mathcal{K}$)

- an operator $Op_{\hbar}(M_t)$ on $L^2(\mathbb{R}_{x'}^{d_{\parallel}})$, with symbol $M_t(x', p')$ taking values in the metaplectic operators on $L^2(\mathbb{R}_{x'}^{d_{\perp}})$. $M_t(x', p')$ quantizes the linearised (hyperbolic) transverse map $d\Phi^t \upharpoonright_{(TK)^{\perp}}(x', p')$

 \implies hyperbolic dispersion estimate from the linearized transverse dynamics:

$$\begin{aligned} \forall (x',p') \in \mathcal{K}, \ \forall t > 0, \quad \| \operatorname{Op}_{h}(\chi) M_{t}(x',p') \operatorname{Op}_{h}(\chi) \|_{L^{2}_{x} \to L^{2}_{x}} \leq C J^{+}_{t}(\rho)^{-1/2} \\ \Longrightarrow \| \operatorname{Op}_{h}(\chi) \operatorname{Op}_{h}(M_{t}) \operatorname{Op}_{h}(\chi) \|_{L^{2}_{x,x'} \to L^{2}_{x,x'}} \leq C e^{-t\Lambda/2} \\ \Longrightarrow \| \operatorname{Op}_{h}(\chi) e^{-itP(h)/h} \operatorname{Op}_{h}(\chi) \|_{L^{2}_{x,x'} \to L^{2}_{x,x'}} \leq C e^{-t\Lambda/2}. \end{aligned}$$

4. Combine the estimates near and away from $K \rightsquigarrow$ for any $\psi \in L^2$ microlocalized inside \mathcal{E}_E^{δ} , in particular for ψ an eigenstate of H_G :

$$\|e^{-it\mathcal{H}_G/\hbar}\psi\| \leq C \, e^{-t\Lambda/2} \, \|\psi\|, \quad t > 0 \quad (ext{indep. of } \hbar) \quad \square$$

Proof (3): from propagator to resolvent estimate

5. Take
$$a \in C^{\infty}(T^*X)$$
 with supp $a \subset \mathcal{E}_E^{\delta}$, $a \equiv 1$ in $\mathcal{E}_E^{\delta/2}$.:

$$\|e^{-it\mathcal{P}_G/h}\operatorname{Op}_{\hbar}(a)\|_{L^2 o L^2}\leq C\,e^{-t\Lambda/2},\quad t>0\quad ext{indep. of }h$$

• For $\operatorname{Im} z > -\Lambda'/2$, construct a parametrix for $(P_G - z)^{-1}$ on supp *a*: Take $Q_a \stackrel{\text{def}}{=} \frac{i}{\hbar} \int_0^T e^{-it(P_G - z)/\hbar} \operatorname{Op}_{\hbar}(a) = \mathfrak{O}(\hbar^{-1})$. Then $(P_G - z)Q_a = (I - e^{-iT(P_G - z)/\hbar}) \operatorname{Op}_{\hbar}(a) = \operatorname{Op}_{\hbar}(a) + small$ if $T \gg 1$ • $(P_G - z)$ semiclassically elliptic on $\operatorname{supp}(1 - a)$ \sim construct $Q_{1-a} = \mathfrak{O}(1)$ s.t. $(P_G - z)Q_{1-a} = (I - \operatorname{Op}_{\hbar}(a)) + small$ $\Longrightarrow (P_G - z)(Q_a + Q_{1-a}) = Id + small$ $\Longrightarrow \|(P_G - z)^{-1}\| = \mathfrak{O}(\hbar^{-1})$.

• by construction $\|e^{\pm G}\|_{L^2 \to L^2} = \mathcal{O}(h^{-M})$

$$\implies \|(P_{\theta} - z)^{-1}\| = \mathcal{O}(h^{-1-2M}) \quad \text{in the strip}$$
$$\implies \|\chi(P - z)^{-1}\chi\| = \|\chi(P_{\theta} - z)^{-1}\chi\| = \mathcal{O}(h^{-1-2M}). \quad \Box$$