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My favourite toy model of many-body quantum chaos: Kicked Ising Chain

Prosen PTPS 2000, Prosen PRE 2002

H(t) =
L−1∑
j=0

{
Jσzj σ

z
j+1 + (hxσxj + hzσzj )

∑
m∈Z

δ(t −m)

}

UFloquet = T exp
(
−i
∫ 1+

0+

dt′H(t′)
)

=
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j

exp
(
−i(hxσxj + hzσzj )
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(
−iJσzj σ

z
j+1
)

where [σαj , σ
β
k ] = 2iεαβγσγj δjk .
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The model is completely integrable in terms of Jordan-Wigner transformation if

hx = 0 (longitudinal field)

hz = 0 (transverse field)
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Prosen PTPS 2000, Prosen PRE 2002
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L−1∑
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{
Jσzj σ
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exp
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−iJσzj σ
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)

where [σαj , σ
β
k ] = 2iεαβγσγj δjk .

The model is completely integrable in terms of Jordan-Wigner transformation if

hx = 0 (longitudinal field)

hz = 0 (transverse field)

Time-evolution of local observables is quasi-exact, e.g. for computing

U−t
Floquetσ

α
j Ut

Floquet

only 2t + 1 sites in the range [j − t, j + t] are needed!.
Quantum cellular automaton in the sense of Schumacher and Werner (2004).
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Quasi-energy level statistics of KI [C. Pineda, TP, PRE 2007]

Fix J = 0.7, hx = 0.9, hz = 0.9, s.t. KI is (strongly) non-integrable.

Diagonalize UFloquet|n〉 = exp(−iϕn)|n〉. For each conserved total momentum
K quantum number, we find N ∼ 2L/L levels, normalized to mean level
spacing as sn = (N/2π)ϕn.
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Fix J = 0.7, hx = 0.9, hz = 0.9, s.t. KI is (strongly) non-integrable.

Diagonalize UFloquet|n〉 = exp(−iϕn)|n〉. For each conserved total momentum
K quantum number, we find N ∼ 2L/L levels, normalized to mean level
spacing as sn = (N/2π)ϕn.

N(s) = #{sn < s} = Nsmooth(s) + Nfluct(s)

Tomaž Prosen Ergodicity breaking transitions



Quasi-energy level statistics of KI [C. Pineda, TP, PRE 2007]

Fix J = 0.7, hx = 0.9, hz = 0.9, s.t. KI is (strongly) non-integrable.

Diagonalize UFloquet|n〉 = exp(−iϕn)|n〉. For each conserved total momentum
K quantum number, we find N ∼ 2L/L levels, normalized to mean level
spacing as sn = (N/2π)ϕn.

N(s) = #{sn < s} = Nsmooth(s) + Nfluct(s)

For kicked quantum quantum systems spectra are expected to be statistically
uniformly dense

Nsmooth(s) = s
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Short-range statistics: Nearest neighbor level spacings

We plot cumulative level spacing distribution
W (s) =

∫ s
0 dsP(s) = Prob{sn+1 − sn < s}.
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The noisy curve shows the difference between the numerical data for 18 qubits,
averaged over the different momentum sectors, and the Wigner RMT surmise.
The smooth (red) curve is the difference between infinitely dimensional COE
solution and the Wigner surmise. In the inset we present a similar figure with
the results for each of quasi-moemtnum sector K .
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Long-range statistics: spectral form factor

Spectral form factor K2(τ) is for nonzero integer t defined as

K2(t/N ) =
1
N
∣∣tr Ut∣∣2 =

1
N

∣∣∣∣∣∑
n

e−iϕnt

∣∣∣∣∣
2

.

Tomaž Prosen Ergodicity breaking transitions



Long-range statistics: spectral form factor

Spectral form factor K2(τ) is for nonzero integer t defined as

K2(t/N ) =
1
N
∣∣tr Ut∣∣2 =

1
N

∣∣∣∣∣∑
n

e−iϕnt

∣∣∣∣∣
2

.

In non-integrable systems with a chaotic classical lomit, form factor has two
regimes:

universal described by RMT,

non-universal described by short classical periodic orbits.
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Long-range statistics: spectral form factor

Note that for kicked systems, Heisenberg integer time τH = N
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We show the behavior of the form factor for L = 18 qubits. We perform
averaging over short ranges of time (τH/25). The results for each of the
K -spaces are shown in colors. The average over the different spaces as well as
the theoretical COE(N) curve is plotted as a black and red curve, respectively.
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Surprise!? Deviaton from universality at short times

Similarly as for semi-classical systems, we find notable statistically significant
deviations from universal COE/GOE predictions for short times of few kicks.
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But there is no underlying classical structure! Dynamical explanation of this
phenomenon needed!
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Quantum ergodicity and its "order parameter"

Temporal correlation of an extensive traceless observable A
(tr A = 0, tr A2 ∝ L):

CA(t) = lim
L→∞

1
L2L tr AU−tAUt

Average correlator

DA = lim
T→∞

1
T

T−1∑
t=0

CA(t)

signals quantum ergodicity if DA = 0.

Quantum chaos regime in KI chain seems compatible with exponential
decay of correlations. For integrable, and weakly non-integrable cases,
though, we find saturation of temporal correlations D 6= 0.
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Decay of time correlatons in KI chain

Three typical cases of parameters:

(a) J = 1, hx = 1.4, hz = 0.0
(completely integrable).

(b) J = 1, hx = 1.4, hz = 0.4
(intermediate).

(c) J = 1, hx = 1.4, hz = 1.4
("quantum chaotic").
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Loschmidt echo and decay of fidelity

Decay of correlations is closely related to
fidelity decay F (t) = 〈U−tUt

δ(t)〉 due to
perturbed evolution Uδ = U exp(−iδA)
(Prosen PRE 2002) e.g. in a linear re-
sponse approximation:

F (t) = 1− δ2

2

t∑
t′,t′′=1

C(t′ − t′′)

(a) J = 1, hx = 1.4, hz = 0.0
(completely integrable).

(b) J = 1, hx = 1.4, hz = 0.4
(intermediate).

(c) J = 1, hx = 1.4, hz = 1.4
("quantum chaotic").
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General relation between quantum ergodicity and fidelity of quantum dynamics

Tomaž Prosen
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

!Received 26 June 2001; published 11 February 2002"

A general relation is derived, which expresses the fidelity of quantum dynamics, measuring the stability of
time evolution to small static variation in the Hamiltonian, in terms of ergodicity of an observable generating
the perturbation as defined by its time correlation function. Fidelity for ergodic dynamics is predicted to decay
exponentially on time scale #$!2, $% strength of perturbation, whereas faster, typically Gaussian decay on
shorter time scale #$!1 is predicted for integrable, or generally nonergodic dynamics. This result needs the
perturbation $ to be sufficiently small such that the fidelity decay time scale is larger than any !quantum"
relaxation time, e.g., mixing time for mixing dynamics, or averaging time for nonergodic dynamics !or Ehren-
fest time for wave packets in systems with chaotic classical limit". Our surprising predictions are demonstrated
in a quantum Ising spin-(1/2) chain periodically kicked with a tilted magnetic field where we find finite
parameter-space regions of nonergodic and nonintegrable motion in the thermodynamic limit.

DOI: 10.1103/PhysRevE.65.036208 PACS number!s": 05.45.!a, 03.65.Yz, 75.10.Jm

The quantum signatures of various types of classical mo-
tion, ranging from integrable to ergodic, mixing and chaotic,
are still lively debated issues !see, e.g., Ref. &1'". Most con-
troversial is the absence of exponential sensitivity to varia-
tion of initial condition in quantum mechanics, which pre-
vents direct definition of quantum chaos &2'. However, there
is an alternative concept that can be used in classical as well
as in quantum mechanics &3': One can study the stability of
motion with respect to small variation in the Hamiltonian.
Clearly, in classical mechanics this concept, when applied to
individual trajectories, is equivalent to sensitivity to initial
conditions. Integrable systems with regular orbits are stable
against small variation in the Hamiltonian !the statement of
KAM theorem", wheres for chaotic orbits varying the Hamil-
tonian has similar effect as varying the initial condition: ex-
ponential divergence of two orbits for two nearby chaotic
Hamiltonians.
The quantity of the central interest here is the fidelity of

quantum motion. Consider a unitary operator U being either
!i" a short-time propagator, or !ii" a Floquet map U"T̂ exp
&!i(0

pd)H())/*' of !periodically time-dependent" Hamil-
tonian H&H()#p)"H())' , or !iii" a quantum Poincaré
map. The influence of a small perturbation to the unitary
evolution, which is generated by a Hermitian operator A,
U$"U exp(!iA$),$ being a small parameter, is described by
the overlap +,$(t)!,(t)- measuring the Hilbert space dis-
tance between exact and perturbed time evolution from the
same initial pure state !,(t)-"Ut!,-,!,$(t)-"U$

t !,-,
where integer t is a discrete time !in units of the period p)
&4'. This defines the fidelity

F! t ""+U$
!tUt-, !1"

where the average is performed either over a fixed pure state
+•-"+,!•!,- , or, if convenient, as a uniform average over
all possible initial states +•-"(1/N)tr(•),N being the Hilbert
space dimension. The quantity F(t) has already raised con-
siderable interest, though under different names and interpre-
tations: First, it has been proposed by Peres &3' as a measure
of stability of quantum motion. Second, it is the Loschmidt

echo measuring the dynamical irreversibility of quantum
phases, used, e.g., in spin-echo experiments &5' where one is
interested in the overlap between the initial state !,- and a
state U$

!tUt!,- obtained by composing forward time evolu-
tion, imperfect time inversion with a residual interaction de-
scribed by the operator A$ , and backward time evolution.
Third, the fidelity has become a standard measure character-
izing the loss of phase coherence in quantum computation
&6'. Fourth, it was used to characterize ‘‘hypersensitivity to
perturbation’’ in related studies &7', though in different con-
texts of stochastically time-dependent perturbation.
The main result of this paper is a relation of the fidelity to

ergodic properties of quantum dynamics, more precisely to
the time autocorrelation function of the generator of the per-
turbation A. Quantum dynamics of finite and bound systems
has always a discrete spectrum since the effective Hilbert
space dimension N is finite, hence it is nonergodic and non-
mixing &8,9': time correlation functions have fluctuating tails
of order %1/N. In order to reach genuine complexity of
quantum motion with possibly continuous spectrum one has
to enforce N→. by considering one of the following two
limits: quasiclassical limit of effective Planck’s constant *
→0, or thermodynamic limit !TL" of number of particles, or
size L→. . Our result is surprising in the sense that it pre-
dicts the average fidelity to exhibit exponential decay on a
time scale #$!2 for ergodic systems !i.e., such that the inte-
grated time autocorrelation of A is finite", but much faster,
typically Gaussian decay on a shorter time scale #$!1 for
integrable and general nonergodic systems !i.e., such that
time averaged autocorrelation of A is nonvanishing". Our
theory on fidelity is very general and can be extended to any
perturbed unitary evolution, either in quantum, quasiclassi-
cal, or even classical !Liouvillian" context. In this paper we
apply it to the quantum many-body problem in TL, in par-
ticular in the kicked Ising model !KI", namely, the Ising spin-
(1/2) chain periodically kicked with a tilted homogeneous
magnetic field. KI is particularly interesting since it pos-
sesses parameter-space regions with positive measure of
nonergodic behavior in TL surrounding the integrable cases
&10' of vanishing measure, which is an additional evidence
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for a conjecture !9" on existence of intermediate, noninte-
grable and nonergodic quantum motion of disorderless inter-
acting many-body systems in TL.
We start by rewriting the fidelity #1$ in terms of a Heisen-

berg evolution of the perturbation AtªU!tAUt

F# t $"%eiA0&eiA1&•••eiAt!1&'"T̂! (
t!"0

t!1

exp# iAt!&$"
#2$

which is achieved by t insertions of the unity U!t!Ut! and
recognizing U!(t!!1)U&

†Ut!"exp(i&At!!1). T̂ is a left-to-
right time ordering. Next we make an expansion in & ex-
pressing the fidelity in terms of correlation functions

F# t $"1# )
m"1

* im&m

m! T̂ )
t1 ,t2 . . . tm"0

t!1

%At1
At2

•••Atm'. #3$

Being interested mainly in the absolute value #F(t)#, we will,
in the following, choose perturbations with vanishing first
moment aª(1/t)) t!"0

t!1 %At!'"0 so that the series #3$ starts
at m"2, since a shift by a multiple of unity A→A!a1
simply rotates the fidelity F(t)→exp(!ia&)F(t). To second
order in & we have

F# t $"1!
&2

2 )
t!"!t

t

# t!#t!#$CA# t!$#O#&3$, #4$

where it is assumed that two-point time correlation function
is homogeneous CA(t!!t)ª%AtAt!', as is the case for uni-
form average over initial states %•'"tr(•)/N. Equation #4$
reveals a simple general rule: the stronger the correlation
decay, the slower is the decay in fidelity, and vice versa.
Below we discuss two different cases in the limit N→* .
(I) Ergodicity and fast mixing. Here we assume that

CA(t)→0 sufficiently fast that the total sum converges, SAª(1/2)) t"!*
* CA(t),#SA#$* . For times t much larger than

the so-called mixing time scale t%tmix , which effectively
characterizes the correlation decay, e.g., tmix
") t#tCA(t)#/) t#CA(t)#, it follows that the fidelity drops lin-
early in time Fe(t)"1!t/+e#O(&3) on a scale

+e"SA
!1&!2. #5$

In order to show even stronger result, we further assume
fast mixing with respect to product observables Btt!
"AtAt! with %Btt!'"CA(t!!t), of order k,2, namely
%Bt1t2

Bt3t4
•••Bt2k!1t2k'→( j"1

k %Bt2 j!1t2 j' as t1 ,t2 , . . . are
ordered and t2 j#1!t2 j→* . Therefore, the leading contribu-
tion for large t to each m term of Eq. #3$ comes from se-
quences (t1 ,t2 , . . . ,tm) where consecutive pairs (t2 j!1 ,t2 j)
are close to each other, t2 j!t2 j!1&tmix . Since for odd m
time indices cannot be paired these terms should vanish as-
ymptotically #as t→*$ relatively to even m terms. Thus we
can evaluate (2k!1)!! equivalent even m"2k terms in Eq.
#3$ as k tuple of independent sums over t j!"t2 j!t2 j!1 giv-
ing, for t%tmix ,

Fe# t $" )
k"0

*
#!1 $k#2k!1 $!!2k&2kSA

k

#2k $! "exp#!t/+e$. #6$

Note that formulas #5$ and #6$ remain valid in a more general
case of inhomogeneous time correlation where one should
take SAªlimt→*(1/t)) t ,t!"0

* %Btt!'.
(II) Nonergodicity. Here we assume that the autocorrela-

tion function of the perturbation does not decay asymptoti-
cally but has a nonvanishing time average, DAªlimt→*(1/t)) t!"0

t!1 CA(t!), though the first moment is van-
ishing %A'"0. For times t larger than the averaging time tave
in which a finite time average effectively relaxes into the
stationary value DA , we can write fidelity to second order,
which decays quadratically in time, Fne(t)"1!(1/2)
'(t/+ne)2#O(&3), on a scale

+ne"DA
!1/2&!1. #7$

More general result can be formulated in terms of a time-
averaged operator Āªlimt→*(1/t)) t!"0

t!1 At! , namely, for t
%tave Eq. #3$ can be rewritten as

Fne# t $"1# )
m"2

* im&mtm

m! %Ām'"%exp# iĀ&t $'. #8$

Global behavior of Fne(t) for nonergodic systems, where
higher m terms of Eq. #3$ become important, depends gener-
ally on the full sequence of moments %Ām'. We argue below,
by giving an example of spin-(1/2) chains, that there are
large classes of perturbing operators where these moments
can be shown to possess normal Gaussian behavior, yielding
Eq. #9$. Nonergodic behavior is certainly present for generic
observables in completely integrable systems where a se-
quence of conservation laws can be used to estimate the
time-averaged correlator DA !11", but we wish to make a
stronger statement, namely, that there is a generic regime of
intermediate dynamics in nonintegrable systems displaying
nonergodic behavior !9".
Let us now apply our theory to quantum spin-(1/2) chains

described by Pauli operators - j
xyz on a periodic lattice of size

L , j#L. j , acting on a Hilbert space of dimension N"2L,
fix the average %•'"tr(•)/N, and assume that our Floquet
operator U is translationally invariant #TI$ on a lattice. It is
useful to introduce a set of local TI observables Zs
"L!1/2) j- j

s0- j#1
s1 •••- j#n

sn , of order n(L , where s
"!s0 ,s1 , . . . ,sn" ,s0 ,sn!/x ,y ,z0,s j!/0,x ,y ,z0,11 j1n!1,
and - j

0ª1. Using %- j
s-k

r'"& j ,k&s ,r one may derive a con-
traction formula

%Zs1Zs2•••Zs2k'" )
all pairings

!/2 ,30"/1 . . . 2k0

(
2 ,3

&s2
,s3

#O#L!1$,

while for odd number %Zs1Zs2•••Zs2k#1'"O(L!1), hence
Zs become independent Gaussian field variables in TL de-
pending on a multi-index s of variable but finite length.
Therefore, any TI pseudolocal #PL$ observable A, having by
definition !9" l2-expansion in the basis Zs #when L"*),
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simply rotates the fidelity F(t)→exp(!ia&)F(t). To second
order in & we have
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where it is assumed that two-point time correlation function
is homogeneous CA(t!!t)ª%AtAt!', as is the case for uni-
form average over initial states %•'"tr(•)/N. Equation #4$
reveals a simple general rule: the stronger the correlation
decay, the slower is the decay in fidelity, and vice versa.
Below we discuss two different cases in the limit N→* .
(I) Ergodicity and fast mixing. Here we assume that

CA(t)→0 sufficiently fast that the total sum converges, SAª(1/2)) t"!*
* CA(t),#SA#$* . For times t much larger than

the so-called mixing time scale t%tmix , which effectively
characterizes the correlation decay, e.g., tmix
") t#tCA(t)#/) t#CA(t)#, it follows that the fidelity drops lin-
early in time Fe(t)"1!t/+e#O(&3) on a scale

+e"SA
!1&!2. #5$

In order to show even stronger result, we further assume
fast mixing with respect to product observables Btt!
"AtAt! with %Btt!'"CA(t!!t), of order k,2, namely
%Bt1t2

Bt3t4
•••Bt2k!1t2k'→( j"1

k %Bt2 j!1t2 j' as t1 ,t2 , . . . are
ordered and t2 j#1!t2 j→* . Therefore, the leading contribu-
tion for large t to each m term of Eq. #3$ comes from se-
quences (t1 ,t2 , . . . ,tm) where consecutive pairs (t2 j!1 ,t2 j)
are close to each other, t2 j!t2 j!1&tmix . Since for odd m
time indices cannot be paired these terms should vanish as-
ymptotically #as t→*$ relatively to even m terms. Thus we
can evaluate (2k!1)!! equivalent even m"2k terms in Eq.
#3$ as k tuple of independent sums over t j!"t2 j!t2 j!1 giv-
ing, for t%tmix ,
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Note that formulas #5$ and #6$ remain valid in a more general
case of inhomogeneous time correlation where one should
take SAªlimt→*(1/t)) t ,t!"0

* %Btt!'.
(II) Nonergodicity. Here we assume that the autocorrela-

tion function of the perturbation does not decay asymptoti-
cally but has a nonvanishing time average, DAªlimt→*(1/t)) t!"0

t!1 CA(t!), though the first moment is van-
ishing %A'"0. For times t larger than the averaging time tave
in which a finite time average effectively relaxes into the
stationary value DA , we can write fidelity to second order,
which decays quadratically in time, Fne(t)"1!(1/2)
'(t/+ne)2#O(&3), on a scale

+ne"DA
!1/2&!1. #7$

More general result can be formulated in terms of a time-
averaged operator Āªlimt→*(1/t)) t!"0

t!1 At! , namely, for t
%tave Eq. #3$ can be rewritten as
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Global behavior of Fne(t) for nonergodic systems, where
higher m terms of Eq. #3$ become important, depends gener-
ally on the full sequence of moments %Ām'. We argue below,
by giving an example of spin-(1/2) chains, that there are
large classes of perturbing operators where these moments
can be shown to possess normal Gaussian behavior, yielding
Eq. #9$. Nonergodic behavior is certainly present for generic
observables in completely integrable systems where a se-
quence of conservation laws can be used to estimate the
time-averaged correlator DA !11", but we wish to make a
stronger statement, namely, that there is a generic regime of
intermediate dynamics in nonintegrable systems displaying
nonergodic behavior !9".
Let us now apply our theory to quantum spin-(1/2) chains

described by Pauli operators - j
xyz on a periodic lattice of size

L , j#L. j , acting on a Hilbert space of dimension N"2L,
fix the average %•'"tr(•)/N, and assume that our Floquet
operator U is translationally invariant #TI$ on a lattice. It is
useful to introduce a set of local TI observables Zs
"L!1/2) j- j

s0- j#1
s1 •••- j#n

sn , of order n(L , where s
"!s0 ,s1 , . . . ,sn" ,s0 ,sn!/x ,y ,z0,s j!/0,x ,y ,z0,11 j1n!1,
and - j

0ª1. Using %- j
s-k

r'"& j ,k&s ,r one may derive a con-
traction formula
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while for odd number %Zs1Zs2•••Zs2k#1'"O(L!1), hence
Zs become independent Gaussian field variables in TL de-
pending on a multi-index s of variable but finite length.
Therefore, any TI pseudolocal #PL$ observable A, having by
definition !9" l2-expansion in the basis Zs #when L"*),
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TOMAŽ PROSEN PHYSICAL REVIEW E 65 036208

036208-2

Tomaž Prosen Ergodicity breaking transitions



Quantum Ruelle-Policot-like resonances

TP, J. Phys. A 35, L737 (2002)
Transfer matrix approach to exponential decay of correlation:
Truncated quantum Perron-Frobenius map and Ruelle resonances.

Tomaž Prosen Ergodicity breaking transitions



Quantum Ruelle-Policot-like resonances

TP, J. Phys. A 35, L737 (2002)
Transfer matrix approach to exponential decay of correlation:
Truncated quantum Perron-Frobenius map and Ruelle resonances.

We construct a matrix representation of the following dynamical Heisenberg
map

T̂A = [U†AU]r

truncated with respect to the following basis of translationally invariant
extensive observables

Z(s0s1...sr−1) =
∞∑

j=−∞

σs0
j σ

s1
j+1 · · ·σ

sr−1
j+r−1

and inner product
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L2L tr A†B, A =
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|as |2 <∞.
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Time Evolution of a Quantum Many-Body System: Transition from Integrability
to Ergodicity in the Thermodynamic Limit

Tomaž Prosen
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(Received 17 July 1997)
Numerical evidence is given for nonergodic (nonmixing) behavior, exhibiting ideal transport, of a

simple nonintegrable many-body quantum system in the thermodynamic limit, namely, the kicked t-V
model of spinless fermions on a ring. However, for sufficiently large kick parameters t and V we
recover quantum ergodicity, and normal transport, which can be described by random matrix theory.
[S0031-9007(98)05420-9]

PACS numbers: 05.30.Fk, 05.45.+b, 72.10.Bg

A simple question is addressed here: “Do intermedi-
ate quantum many-body systems, which are neither in-
tegrable nor ergodic, exist in the thermodynamic limit”?
While it is clear that integrable systems are rather excep-
tional, it is an important open question whether a finite
generic perturbation of an integrable system becomes er-
godic or not in the thermodynamic limit (TL), size ! `
and fixed density. It is known that local statistical prop-
erties of quantum systems with few degrees of freedom
whose classical limit is completely chaotic/ergodic, are
universally described by random matrix theory (RMT);
while in the other extreme case of integrable systems,
Poissonian statistics may typically be applied [1,2] (with
some notable nongeneric exceptions such as finite dimen-
sional harmonic oscillator). This statement has also been
recently verified numerically for integrable and strongly
nonintegrable many-body systems of interacting fermions
[3] which do not have a classical limit.
Having lost the reference to classical dynamics, we re-

sort to the definition of quantum ergodicity (also termed
quantum mixing) [4] as the decay of time correlations
kAstdBs0dl 2 kAl kBl of any pair of quantum observables
A and B in TL, taking the time limit t ! ` in the end.
In [4] a many-body system of interacting bosons has been
studied, and it has been shown that quantum ergodic-
ity corresponds to strongly chaotic (ergodic) dynamics of
associated nonlinear mean-field equations. As a conse-
quence of linear response theory, quantum ergodicity also
implies normal transport and finite transport coefficients
(such as dc electrical conductivity). On the other hand,
integrable systems, which are solvable by Bethe ansatz
or quantum inverse scattering, are characterized by (infin-
itely many) conservation laws and are thus nonergodic. It
has been pointed out recently [5] that integrability implies
nonvanishing stiffness, i.e., ideal conductance with infi-
nite transport coefficients (or ideal insulating state). As
we argue below, any deviation from quantum ergodicity
generically implies nonvanishing long-time current auto-
correlation and therefore an infinite transport coefficient.
Since generic nonintegrable systems of finite size (num-
ber of degrees of freedom) are nonergodic (obeying mixed

statistics smoothly interpolating from Poisson to RMT), it
is thus important to question if and when such nonergod-
icity can survive TL.
In this Letter we introduce a family of simple many-

body systems smoothly interpolating between integrable
and ergodic regimes, namely, kicked t-V model (KtV)
of spinless fermions with periodically switched nearest-
neighbor interaction on a 1D lattice of size L and peri-
odic boundary conditions L ; 0, with a time-dependent
Hamiltonian,

Hstd ≠
L21X

j≠0
f2 1

2 tscy
j cj11 1 H.c.d 1 dpstdVnjnj11g ,

(1)
and give numerical evidence for the existence of an inter-
mediate nonergodic regime in TL by direct simulation of
the time evolution. cy

j , cj , nj are fermionic creation, anni-
hilation, and number operators, respectively, and dpstd ≠P`

m≠2` dst 2 md. Deviations from quantum ergodicity
(or mixing) are characterized by several different quanti-
ties as described below.
The KtV model (1) is a many-body analog of popular

1D nonintegrable kicked systems [2] such as, e.g., kicked
rotor: Its evolution (Floquet) operator over one period,
U ≠ T̂ expf2i

R11

01 dtHstdg sh̄ ≠ 1d, factorizes into the
product of a kinetic and potential part,

U ≠ exp
√

2iV
L21X

j≠0
njnj11

!

3 exp
√

it
L21X

k≠0
cosssk 1 fdñk

!
, (2)

where s ≠ 2pyL. The flux parameter f is used in order
to introduce a current operator J ≠ siytdUy≠fUjf≠0 ≠PL21

k≠0 sinsskdñk , elsewhere we put f :≠ 0. The tilde de-
notes the operators which refer to momentum variable
k, c̃k ≠ L21y2

PL21
j≠0 expsisjkdcj , ñk ≠ c̃y

k c̃k . The KtV
model is integrable if either t ≠ 0, or V ≠ 0 smod 2pd,
or tV ! 0 and tyV finite (continuous time t-V model
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we argue below, any deviation from quantum ergodicity
generically implies nonvanishing long-time current auto-
correlation and therefore an infinite transport coefficient.
Since generic nonintegrable systems of finite size (num-
ber of degrees of freedom) are nonergodic (obeying mixed

statistics smoothly interpolating from Poisson to RMT), it
is thus important to question if and when such nonergod-
icity can survive TL.
In this Letter we introduce a family of simple many-

body systems smoothly interpolating between integrable
and ergodic regimes, namely, kicked t-V model (KtV)
of spinless fermions with periodically switched nearest-
neighbor interaction on a 1D lattice of size L and peri-
odic boundary conditions L ; 0, with a time-dependent
Hamiltonian,

Hstd ≠
L21X

j≠0
f2 1

2 tscy
j cj11 1 H.c.d 1 dpstdVnjnj11g ,

(1)
and give numerical evidence for the existence of an inter-
mediate nonergodic regime in TL by direct simulation of
the time evolution. cy

j , cj , nj are fermionic creation, anni-
hilation, and number operators, respectively, and dpstd ≠P`

m≠2` dst 2 md. Deviations from quantum ergodicity
(or mixing) are characterized by several different quanti-
ties as described below.
The KtV model (1) is a many-body analog of popular

1D nonintegrable kicked systems [2] such as, e.g., kicked
rotor: Its evolution (Floquet) operator over one period,
U ≠ T̂ expf2i

R11

01 dtHstdg sh̄ ≠ 1d, factorizes into the
product of a kinetic and potential part,

U ≠ exp
√

2iV
L21X

j≠0
njnj11

!

3 exp
√

it
L21X

k≠0
cosssk 1 fdñk

!
, (2)

where s ≠ 2pyL. The flux parameter f is used in order
to introduce a current operator J ≠ siytdUy≠fUjf≠0 ≠PL21

k≠0 sinsskdñk , elsewhere we put f :≠ 0. The tilde de-
notes the operators which refer to momentum variable
k, c̃k ≠ L21y2

PL21
j≠0 expsisjkdcj , ñk ≠ c̃y

k c̃k . The KtV
model is integrable if either t ≠ 0, or V ≠ 0 smod 2pd,
or tV ! 0 and tyV finite (continuous time t-V model
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[6]), while for t , V , 1 it is expected to be noninte-
grable, either quantum ergodic or intermediate. We ex-
pect that unitary many-body quantum maps, such as (2),
also mimic the dynamics of generic autonomous quantum
many-body systems on the energy shell similar to the way
1D quantum maps describe quantum Poincaré sections of
autonomous 2D quantum chaotic systems (e.g., [7]).
The total number of particles N ≠

P
j nj is conserved,

so the map U acts over Hilbert (Fock) space H of di-
mension N ≠ s L

N d. The dynamics of a given initial
many-body state jcs0dl, which is an iteration of the map
jcsmdl ≠ Ujcsm 2 1dl ≠ Umjcs0dl, can be performed
most efficiently by observing that the kinetic part UT is di-
agonal in the momentum basis jkl ≠ c̃y

k1
, . . . , c̃y

kN
j0l, k1 ,

· · · , kN while the potential part UV is diagonal in the
position basis jjl ≠ cy

j1 , . . . , cy
jN j0l, j1 , · · · , jN . The

transformation between the two, F$j $k ≠ k $j j $kl, is an anti-
symmetrized N-dimensional discrete Fourier transforma-
tion (DFT) on L sites which has been efficiently coded
in ,N log2 N floating point operations (FPO) by fac-
torizing L site DFT to the product of O sL log2 Ld two-
site transformations parametrized with 2 3 2 submatrices
sa, b; g, ddjj0 , which are successively applied to creation
operators, scy

j , cy
j0 d ! sacy

j 1 bcy
j0 , gcy

j 1 dcy
j0 d, in all

Slater determinants Pncy
jn
j0l which contain a particle

at sites j or j0. Our algorithm (fermionic fast Fourier
transform) requires almost no extra storage apart from
a vector of N c numbers and works for lattices of
sizes L ≠ 2p , 10, 12, 15, 20, 24, 30, and 40. Therefore, the
map (2) is iterated on a vector c $ksmd ≠ kk jcsmdl, us-
ing the matrix composition U ≠ FpUV FUT in roughly
2N log2 N FPO per time step which is by far superior
to complete diagonalization techniques [O sN 3d FPO],
even for long time scales m ≠ O sN d when quantum dy-
namics becomes quasiperiodic due to discreteness of the
spectrum of U.
We now consider the current time-autocorrelation func-

tion CJ smd ≠ s1yLd kJsmdJs0dl, where Jsmd ≠ UymJUm

and k?l ≠ s1yN dTrs?d is a “microcanonical average.” J
is diagonal in the momentum basis Jj $kl ≠ J$kj $kl, and
kJl ≠ 0. So CJ smd can be evaluated by means of time
evolution of momentum initial states jcs0dl ≠ j $k0l,

CJ smd ≠
1

LN 0
X

$k0

0
J$k0

X

$k

J$kp$k $k0smd , (3)

where p$k $k0smd ≠ jk $k jcsmdlj2 ≠ jk $k jUmj $k0lj2. For
large sizes L, a smaller but uniformly random sample of
N 0 initial states j $k0l, 1 ø N 0 ø N , is used in order
to save computer time. Direct computation of CJsmd for
m # M can be performed in ,s2MN N 0yLd log2 N
FPO since, due to translational symmetry, one can
simultaneously simulate the dynamics of L different
states with different values of the conserved total
momentum K ≠

P
n k0

n smod Ld. Using the eigen-

phases hn and eigenstates jnl of evolution operator
U, Ujnl ≠ e2ihn jnl, n ≠ 1, . . . ,N , one can write the
dissipative dc conductivity of such a kicked system
s :≠

PN
n≠1 s≠fhnd2 ¯ CJ s0d 1 2

PN y2
m≠1 CJ smd. Note

that ≠fhn ≠ knjJjnl.
In Fig. 1 we present numerical computation of cor-

relation function CJsmd for parameters t ≠ V ≠ 1 and
t ≠ V ≠ 4, for various sizes L, but at fixed density r ≠
NyL ≠ 1

4 . Quite generally, CJ smd exhibits fast relaxation
on a time scale Mp which is typically small, Mp , 10,
and roughly independent of L, and afterwards it fluctuates
around the averaged limiting value, the stiffness

DJ ≠ lim
M!`

1
M

MX

m≠1
CJ smd , (4)

where the strength of fluctuations decreases with increas-
ing size L. Note again that TL L ! ` should be taken
prior to the time-limit, limM!`s1yMd

PM
m≠1 s?d which, for

systems of finite size L here and below, is estimated nu-
merically as s1yM 0d

P2M0

m≠M 011 s?d with sufficiently large
but fixed averaging time M 0 . Mp; we take M 0 ≠ 30.
For sufficiently large control parameters the system is
quantum ergodic (case t ≠ V ≠ 4 of Fig. 1), DJ goes
to zero, and s remains finite as L ! ` sN ! `d and
r ≠ NyL fixed, whereas in the other case (t ≠ V ≠ 1
of Fig. 1), DJ remains well above zero as we approach
TL, whereas conductivity s diverges [8]. In Fig. 2 we
have analyzed 1yL scaling of DJ . Again, for large val-
ues of parameters, say t ≠ V ≠ 4, DJ is already practi-
cally zero for L ¯ 20, while for smaller (but not small)
control parameters DJ ¯ D`

J 1 byL, where D`
J . 0. In

the close-to-critical case t ≠ V ≠ 2, we find a larger cor-
relation time Mp , 102, and hence use a longer aver-
aging time M 0 ≠ 200. In Fig. 3 we illustrate an ideal
transport for t , V , 1 by plotting a persistent cur-
rent J

p
$k0 ≠ limM!`s1yMd

PM
m≠1 k $k0jJsmdj $k0l vs the initial

FIG. 1. Current autocorrelation function CJ smd against dis-
crete time m for the quantum ergodic (t ≠ V ≠ 4, lower set of
curves for various sizes L) and intermediate regimes (t ≠ V ≠
1, upper set of curves) with density r ≠ 1

4 . Averaging over
the entire Fock space is performed, N 0 ≠ N , for L # 20,
whereas random samples of N 0 ≠ 12 000 and N 0 ≠ 160 ini-
tial states have been used for L ≠ 24 and L ≠ 32, respectively.
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FIG. 2. Stiffness DJ vs 1yL at constant density r ≠ 1
4 and

for different values of control parameters in the ergodic, t ≠
V ≠ 4 and t ≠ V ≠ 2, and intermediate, t ≠ 1, V ≠ 2 and
t ≠ V ≠ 1, regimes. Other parameters are the same as in
Fig. 1.

current J$k0 . The normal transport in the ergodic regime
t ≠ V ≠ 4 is characterized by J

p
$k0 ≠ 0, while for t ,

V , 1 we find the ideal transport with the persistent cur-
rent being proportional to the initial current, J

p
$k0 ≠ aJ$k0 .

Proportionality constant a can be computed from [Eq. (4)]
DJ ≠ s1yLd kJ$k0J

p
$k0 l ≠ sayLd kJ2l, so a ≠ 2DJyfrs1 2

rdg, where kJ2l is given below [Eq. (5)].
Because of translational symmetry, the total momen-

tum K ≠
P

k kñk smodLd is the only conserved quan-
tity (apart from N and parity), so the evolution of
the initial momentum state j $k0l takes place in NK ¯
N yL dimensional subspace HK , spanned by j $kl with
K ≠ j $kj :≠ P

n kn. Starting with a momentum state
j $k0l, the number of “excited” states j $kl after time m is
characterized by information entropy [9] (see also [7])
as expf2

P
$k p$k $k0 smd lnp$k $k0 smdg. Averaging the entropy

over a uniformly random sample ofN 0 initial states j $k0l,
we define relative localization dimension in Fock space as
a measure of quantum ergodicity,

Rsmd ≠
L
N exp

√
2

1
N 0

X

$k0

0 X

$k

p$k $k0smd lnp$k $k0smd

!
.

Again, similar behavior is found numerically for Rsmd as
for CJ smd, namely, it typically saturates within the same
(short) correlation time Mp to a roughly constant value
R̄ ≠ limM!`s1yMd

PM
m≠1 Rsmd. If there are no conser-

vation laws then the unitary blocks UmjHK should have no
preferred basis other than eigenbasis, and hence they may
be modeled by circular orthogonal ensemble (COE) of
random matrices for sufficiently large m giving the max-
imal asymptotic (as N ! `) value of relative localiza-
tion dimension, R̄COE ¯ 0.655. This case corresponds to
quantum ergodicity since p$k $k0 smd, for m . Mp, become
pseudorandom and independent of $k and $k0, hence the cor-
relation function (3) factorizes and yields Csmd ≠ kJl2 ≠
0. Indeed, as we show in Fig. 4, such behavior is obtained
only for sufficiently large parameters, say, t ≠ V ≠ 4,

FIG. 3. Persistent current J
p
$k
against initial current J $k (aver-

aged over bins of size DJ ≠ 0.05) in the ergodic, t ≠ V ≠ 4,
(nearly) ergodic, t ≠ V ≠ 2, and intermediate, t ≠ V ≠ 1 and
t ≠ 1, V ≠ 2, regimes (L ≠ 24 and r ≠ 1

4 .)

while for smaller values of parameters t, V , Rsmd satu-
rates to a smaller value indicating that there may exist
approximate conservation laws causing nontrivial local-
ization inside the Fock space. Scaling with 1yL suggests
that, even in TL, R̄ is smaller than R̄COE for the interme-
diate regime t , V , 1 (Fig. 5).
Finally, we discuss current fluctuations, or more gener-

ally, current distribution Pc sId ≠ kcjdsI 2 Jdjcl giving
a probability density of having a current I in a state jcl.
We let the state c with a “good” known initial current I0
evolve for a long time from which we compute a steady-
state current distribution (SSCD),

PsI; I0d ≠ lim
M!`

1
M

MX

m≠1
kdsssI0 2 Js0dddddsssI 2 Jsmddddl .

Of course, delta functions should have a finite small width
providing averaging over several states j $kl with J$k ¯ I0.
In the quantum ergodic regime all states eventually be-
come populated, so SSCD PsI ; I0d should be independent
of the initial current I0 and equal to the microcanoni-
cal current distribution PmcsId ≠ kdsI 2 Jdl. It has
been shown by elementary calculation that in TL
the latter becomes a Gaussian, PmcsId ! PGausssId ≠
s1y

p
2pkJ2ld exps2 1

2 I2ykJ2ld, while at any finite size L

FIG. 4. Relative localization dimension in Fock space Rsmd
for data of Fig. 1.
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FIG. 2. Stiffness DJ vs 1yL at constant density r ≠ 1
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V ≠ 4 and t ≠ V ≠ 2, and intermediate, t ≠ 1, V ≠ 2 and
t ≠ V ≠ 1, regimes. Other parameters are the same as in
Fig. 1.
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V , 1 we find the ideal transport with the persistent cur-
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N yL dimensional subspace HK , spanned by j $kl with
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n kn. Starting with a momentum state
j $k0l, the number of “excited” states j $kl after time m is
characterized by information entropy [9] (see also [7])
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(short) correlation time Mp to a roughly constant value
R̄ ≠ limM!`s1yMd
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m≠1 Rsmd. If there are no conser-

vation laws then the unitary blocks UmjHK should have no
preferred basis other than eigenbasis, and hence they may
be modeled by circular orthogonal ensemble (COE) of
random matrices for sufficiently large m giving the max-
imal asymptotic (as N ! `) value of relative localiza-
tion dimension, R̄COE ¯ 0.655. This case corresponds to
quantum ergodicity since p$k $k0 smd, for m . Mp, become
pseudorandom and independent of $k and $k0, hence the cor-
relation function (3) factorizes and yields Csmd ≠ kJl2 ≠
0. Indeed, as we show in Fig. 4, such behavior is obtained
only for sufficiently large parameters, say, t ≠ V ≠ 4,

FIG. 3. Persistent current J
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aged over bins of size DJ ≠ 0.05) in the ergodic, t ≠ V ≠ 4,
(nearly) ergodic, t ≠ V ≠ 2, and intermediate, t ≠ V ≠ 1 and
t ≠ 1, V ≠ 2, regimes (L ≠ 24 and r ≠ 1
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while for smaller values of parameters t, V , Rsmd satu-
rates to a smaller value indicating that there may exist
approximate conservation laws causing nontrivial local-
ization inside the Fock space. Scaling with 1yL suggests
that, even in TL, R̄ is smaller than R̄COE for the interme-
diate regime t , V , 1 (Fig. 5).
Finally, we discuss current fluctuations, or more gener-

ally, current distribution Pc sId ≠ kcjdsI 2 Jdjcl giving
a probability density of having a current I in a state jcl.
We let the state c with a “good” known initial current I0
evolve for a long time from which we compute a steady-
state current distribution (SSCD),

PsI; I0d ≠ lim
M!`

1
M
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m≠1
kdsssI0 2 Js0dddddsssI 2 Jsmddddl .

Of course, delta functions should have a finite small width
providing averaging over several states j $kl with J$k ¯ I0.
In the quantum ergodic regime all states eventually be-
come populated, so SSCD PsI ; I0d should be independent
of the initial current I0 and equal to the microcanoni-
cal current distribution PmcsId ≠ kdsI 2 Jdl. It has
been shown by elementary calculation that in TL
the latter becomes a Gaussian, PmcsId ! PGausssId ≠
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FIG. 4. Relative localization dimension in Fock space Rsmd
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FIG. 5. Limiting relative localization dimension R̄ vs 1yL for
data of Fig. 2.

the first few moments are

kJ2l ≠
NsL 2 Nd
2sL 2 1d

¯
1
2

rs1 2 rdL,

kJ4l
kJ2l2 ≠

3sL 2 1d f2NsL 2 Nd 2 Lg
2NsL 2 2d sL 2 Nd

≠ 3 1 O
µ

1
L

∂
.

(5)

Numerical results for L ≠ 24 (see Fig. 6) indicate that
in the ergodic regime, t ≠ V ≠ 4, SSCD is already in
good agreement with microcanonical distribution PmcsId,
while in the nonergodic (intermediate) regime, t ≠ V ≠
1, SSCD is localized on a smaller range indicating that
the current fluctuation is smaller than kJ2l. Note that
the mean Ī ≠

R
dIIPsI ; I0d is just a persistent current, so

Ī ≠ aI0 (see Fig. 3).
In this Letter we have presented numerical evidence,

based on efficiently coded time evolution of a kicked
fermionic system, in support of hypothesis, that intermedi-
ate (neither integrable nor ergodic) behavior of a quantum
many-body system may survive TL provided that control
parameters are not too far away from integrable points. In
this regime ideal transport is possible due to nonvanish-
ing current time correlations as a consequence of quantum
nonergodicity (nonmixing). However, when the control
parameters are sufficiently large we have a strong inter-
action between particles, hence we expect (according to
ergodic hypothesis) and confirm quantum ergodicity com-
patible with RMT and normal transport properties. It is
interesting to note that, at the transition point between the
two regimes, where order parameter—stiffness DJ jL≠`

(inferred from 1yL scaling)—becomes zero, the correla-
tion time scale Mp drastically increases what is reminis-
cent of a type of dynamical phase transition. This seems
to be a discontinuous “order-to-chaos” transition in con-
trast to a smooth (KAM-like) transition in systems with
a finite number of degrees of freedom. Although only
data for quarter-filled lattice sr ≠ 1

4 d are presented here,
we should stress that the same conclusion follows from

FIG. 6. Steady-state current distribution divided by a Gauss-
ian PsI , I0dyPGausssId averaged over 279 initial states with
jI0j , 0.08 in the ergodic, t ≠ V ≠ 4, and intermediate, t ≠
V ≠ 1, regimes, and the finite-size microcanonical current dis-
tribution PmcsId. (L ≠ 24 and r ≠ 1

4 .)

our data for other densities, r ≠ 1
3 , 3

8 , 2
5 , and

1
2 , with a

general rule that the border of a quantum ergodic regime
moves to slightly smaller values of control parameters
t, V as the density r approaches 1

2 . It should be noted
that statistics of eigenphases of evolution operator U have
been computed as well, and it has been found that, in
the ergodic regime, level statistics are indeed that of COE
while, in the intermediate regime, it interpolates smoothly
between Poisson and COE.
Discussions with Professor P. Prelovšek, and the finan-

cial support from the Ministry of Science and Technology
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Tomaž Prosen Ergodicity breaking transitions



Considerable followup up activity on periodically driven quantum spin chains
only after cca. 2011, reviewed recently in:

Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov,
arXiv:1407.4803, to appear in Adv. Phys.

Tomaž Prosen Ergodicity breaking transitions



Transport and time correlations

Green-Kubo formulae express the conductivities in terms of current
autocorrelaion functions

κ(ω) = lim
t→∞

lim
L→∞

β

L

∫ t

0
dt′eiωt〈J(t′)J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
L→∞

β

2tL

∫ t

0
dt′〈J(t′)J(0)〉β =

β

2L
〈JJ̄〉β =

β

2L
〈J̄2〉β
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Transport and time correlations

Green-Kubo formulae express the conductivities in terms of current
autocorrelaion functions

κ(ω) = lim
t→∞

lim
L→∞

β

L

∫ t

0
dt′eiωt〈J(t′)J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
L→∞

β

2tL

∫ t

0
dt′〈J(t′)J(0)〉β =

β

2L
〈JJ̄〉β =

β

2L
〈J̄2〉β

For integrable quantum systems, Zotos et al. (1997) suggested to use Mazur’s
(1969) and Suzuki’s (1971) bound, estimating Drude weight in terms of local
conserved operators Fj , [H,Fj ] = 0:

D ≥ lim
L→∞

β

2L

∑
j

〈JFj 〉2β
〈F 2

j 〉β

where operators Fj are chosen mutually orthogonal 〈FjFk〉 = 0 for j 6= k.
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Example of ergodicity/non-ergodicity transition in integrable system

XXZ spin 1/2 chain

H =
n−1∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1 + ∆σzj σ

z
j+1).

Fractal Drude weight bound (at high temperature β → 0)

D
β
≥ DZ :=

sin2(πl/m)

sin2(π/m)

(
1− m

2π
sin
(
2π
m

))
, ∆ = cos

(
πl
m

)
and D

β
= 0 for |∆| > 1.
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TP, PRL 106, 217206 (2011); TP, PRL 107, 137201 (2011); TP, Ilievski,
PRL 111, 057203 (2013); TP, NPB 886, 1177 (2014)
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Nonequilibrium quantum transport problem in one-dimension

The new quasi-local conservation law Z , satisfying [H,Z ] = σz1 − σzn, comes
from studying the far from equilibrium problem:

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.
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Nonequilibrium quantum transport problem in one-dimension

The new quasi-local conservation law Z , satisfying [H,Z ] = σz1 − σzn, comes
from studying the far from equilibrium problem:

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.

Bulk: Fully coherent, local interactions,e.g. H =
∑n−1

x=1 hx,x+1.
Boundaries: Fully incoherent, ultra-local dissipation,
jump operators Lµ supported near boundaries x = 1 or x = n.
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Exactly solvable NESS of boundary driven XXZ chain

Steady state Lindblad equation L̂ρ∞ = 0:

i[H, ρ∞] =
∑
µ

(
2Lµρ∞L†µ − {L†µLµ, ρ∞}

)
The XXZ Hamiltonian:

H =
n−1∑
x=1

(2σ+
x σ
−
x+1 + 2σ−x σ

+
x+1 + ∆σzxσ

z
x+1)

and symmetric boundary (ultra local) Lindblad jump operators:

LL1 =

√
1
2

(1− µ)ε σ+
1 , LR1 =

√
1
2

(1 + µ)ε σ+
n ,

LL2 =

√
1
2

(1 + µ)ε σ−1 , LR2 =

√
1
2

(1− µ)ε σ−n .

Two key boundary parameters:

ε System-bath coupling strength

µ Non-equilibrium driving strength (bias)
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = (tr R)−1R, R = SS†

S =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(
A0 A+

A− A0

)⊗n

|0〉
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = (tr R)−1R, R = SS†

S =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(
A0 A+

A− A0

)⊗n

|0〉

A0 =
∞∑

k=0

a0k |k〉〈k|,

A+ =
∞∑

k=0

a+
k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |, 0^

1^

2^

3^

A0 A+ A-

..
.
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = (tr R)−1R, R = SS†

S =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(
A0 A+

A− A0

)⊗n

|0〉

A0 =
∞∑

k=0

a0k |k〉〈k|,

A+ =
∞∑

k=0

a+
k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |, 0^

1^

2^

3^

A0 A+ A-

..
.

a0k = cos((s − k)η) cos η := ∆,

a+
k = sin((k + 1)η) tan(ηs) :=

ε

2i sin η

a−k = cos((2s − k)η) s is a q−deformed complex spin q = eiη
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Observables in NESS: From insulating to ballistic transport

For |∆| < 1, 〈J〉 ∼ n0 (ballistic)

For |∆| > 1, 〈J〉 ∼ exp(−constn) (insulating)

For |∆| = 1, 〈J〉 ∼ n−2 (anomalous)
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There is an example of ergodicity/non-ergodicity transition even in a classical
mechanical completely integrable many body system!

Macroscopic Diffusive Transport in a Microscopically Integrable Hamiltonian System

Tomaž Prosen
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

Bojan Žunkovič
Departamento de Fı́sica, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile

(Received 26 April 2013; published 26 July 2013)

We demonstrate that a completely integrable classical mechanical model, namely the lattice Landau-

Lifshitz classical spin chain, supports diffusive spin transport with a finite diffusion constant in the easy-

axis regime, while in the easy-plane regime, it displays ballistic transport in the absence of any known

relevant local or quasilocal constant of motion in the symmetry sector of the spin current. This surprising

finding should open the way towards analytical computation of diffusion constants for integrable

interacting systems and hints on the existence of new quasilocal classical conservation laws beyond

the standard soliton theory.

DOI: 10.1103/PhysRevLett.111.040602 PACS numbers: 05.60.Cd, 02.30.Ik

Introduction.—Derivation of irreversible macroscopic
transport (e.g., Fourier’s, Ohm’s, or Fick’s) laws from
reversible, deterministic, microscopic equations of motion
is one of the central questions of statistical physics which
remains largely unsolved even today. It has been believed
[1–6] that chaotic dynamics in classical systems, or more
generally strong nonintegrability in either quantum or
classical systems, are necessary conditions for diffusive
transport. Recently, few examples of spin diffusion at high
temperature in completely integrable but strongly interact-
ing quantum spin or particle chains have appeared [7–11],
suggesting that complete integrability might not exclude
the possibility of macroscopically diffusive dynamics. It
has remained unclear, however, whether quantum nature of
the corresponding many-body dynamics supporting mac-
roscopic entanglement is a necessary condition. Here, we
show that even quantum correlations are not necessary. By
performing extensive numerical simulations in a family of
integrable classical spin chains with local interactions—
the lattice Landau-Lifshitz model [12]—we show that spin
transport at finite temperature is diffusive in the easy-axis
regime, while it becomes ballistic in the easy-plane regime
and anomalous at the isotropic point. This opens up
the possibility for analytic computations of diffusion con-
stants in interacting many-body systems. In the context of
spin transport, our results have potential applications to
nanomagnetism and the theory of data storage devices
where the soliton based transport of magnetization plays
a crucial role [13].

Liouville integrability [14] is the central concept in the
analytic theory of classical mechanics. A Hamiltonian, i.e.,
conservative system in classical mechanics, is integrable if
it possesses the same number of independent conserved
quantities as the number of degrees of freedom, call it n.
In other words, its motion can be reduced to quasiperiodic
winding around n-dimensional torus embedded in

2n-dimensional phase space [14]. Thus, integrable dynam-
ics is regular and manifestly free of sensitive dependence
on initial conditions. Nevertheless, integrable systems,
though being sparse in nature, represent one of the key
topics in mathematical physics as they gave birth to
the celebrated soliton theory [12] explaining a variety of
observable phenomena, ranging, to name just a few, from
localized light in nonlinear optics, waves on shallow water,
and tsunami waves, to elementary particles and localized
excitations in condensed matter at low temperatures.
The solitons, indestructible localized packages of energy

which propagate through the system and scatter from each
other like elastic hard balls, have been believed to be the
reason why integrable extended systems behave as ideal
ballistic conductors of heat, particles, electric charge,
magnetization, etc. [1,2]. Being particularly interested in
the one-dimensional lattice systems, where n particles are
arranged along a line or a ring such that only nearest
neighbors can interact representing the simplest model of
crystalline solids, one finds that the existence of nontrivial
conservation laws (besides the transported quantity, e.g.,
energy, particle number, electric charge, magnetization)
generically implies the ballistic (nondiffusive) transport
[15]. This statement, which builds on an old idea of
Mazur [16] but has only recently been formally proven
[17], essentially states the following. Whenever there
exists a quantity I which is conserved in time IðtÞ # I
and independent of the transported quantity itself, such
that hIJi ! 0, where JðtÞ ¼ Pn

x¼1 jðx; tÞ is the current
with jðx; tÞ being the current density at time t and at site
x in the lattice, and h% % %i denotes the thermodynamic
average (for fixed, specified values of temperature, electro-
chemical potential, magnetization, etc.), then the transport
is ballistic and the corresponding Kubo conductivity !
diverges. Conductivity is related to a diffusion constant
D, via the generalized Einstein relation ! ¼ D=T where T

PRL 111, 040602 (2013) P HY S I CA L R EV I EW LE T T E R S
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Transition from ballistic to diffusive transport in integrable classical chain
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Transition from ballistic to diffusive transport in integrable classical chain

Locally interacting spin chain Hamiltonian

H =
n∑

x=1

h(~Sx , ~Sx+1),

where for Lattice-Landau-Lifshitz model, the energy density reads

h(~S , ~S ′) = log
∣∣cosh(ρS3) cosh(ρS ′3) + coth2(ρR) sinh(ρS3) sinh(ρS ′3)

+ sinh−2(ρR)F (S3)F (S ′3)(S1S ′1 + S2S ′2)
∣∣

and F (S) ≡
√

(sinh2(ρR)− sinh2(ρS))/(R2 − S2).
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Transition from ballistic to diffusive transport in integrable classical chain

Locally interacting spin chain Hamiltonian

H =
n∑

x=1

h(~Sx , ~Sx+1),

where for Lattice-Landau-Lifshitz model, the energy density reads

h(~S , ~S ′) = log
∣∣cosh(ρS3) cosh(ρS ′3) + coth2(ρR) sinh(ρS3) sinh(ρS ′3)

+ sinh−2(ρR)F (S3)F (S ′3)(S1S ′1 + S2S ′2)
∣∣

and F (S) ≡
√

(sinh2(ρR)− sinh2(ρS))/(R2 − S2).

Writing anisotropy parameter δ = ρ2 we study three cases:

δ > 0, easy axis regime (Ising-like) diffusive!!!
δ < 0, easy plane regime (XY -like) ballistic!!!

δ = 0, isotropic regime (where h(~S , ~S ′) = log
(
1 +

~S·~S′
R2

)
) anomalous!!!

Tomaž Prosen Ergodicity breaking transitions



Spatio-temporal current-current c.f. shown in log-scale with color scale
ranging from 10−4.5 to 10−1 indicated in the bottom-right. In the upper panels
we show data averaged over ensembles of N ≈ 103 initial conditions in
easy-axis (left; n = 5120), isotropic (center; n = 5120 ) and easy-plane (right;
n = 2560) regimes. Bottom: smaller n = 160,N = 600 where scars of solitons
emerging from local thermal fluctuations are still clearly visible.
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C¥=0.61

CHtL µ t -0.65

0.1 1 10 100

0.01

0.1

1

t

C
Ht

L

C(t) in log-log scale for easy-plane regime (top curves, orange: n = 160, black:
n = 2560), isotropic regime (middle curves, yellow: n = 2560, blue: n = 5120)
and easy-axis regime (bottom curves, violet: n = 2560, green: n = 5120).
Shaded regions denote the estimated statistical error for ensemble averages over
N ≈ 103 initial conditions. Dashed lines denote asymptotic behavior for large
time in the easy-plane regime (dark-blue) and isotropic regime (light-blue).
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So much for 1D quantum (and classical) lattice systems.

However, situation gets even more puzzling for 2D systems..
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Yet another toy model: Two dimensional kicked quantum Ising model

C. Pineda, TP and E. Villasenor, NJP 16, 123044 (2014).

Taking an Ising Hamiltonian on a rectangular lattice

H1 = JHI, HI =

Lx−1∑
m=0

Ly−1∑
n=0

(σz
m,nσ

z
m+1,n + σz

m,nσ
z
m,n+1),

with periodic boundary conditions σαm,Ly ≡ σ
α
m,0, σαLx ,n ≡ σ

α
0,n. and a Zeeman

Hamiltonian for a spatially homogeneous magnetic field ~b

H0 =

Lx−1∑
m=0

Ly−1∑
n=0

~b · ~σm,n = ~b · ~S , ~S =:

Lx−1∑
m=0

Ly−1∑
n=0

~σm,n.

we consider the kicked Hamiltonian

H(t) = H1 + H0
∑
j∈Z

δ(t − jτ).
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Yet another toy model: Two dimensional kicked quantum Ising model

C. Pineda, TP and E. Villasenor, NJP 16, 123044 (2014).

Taking an Ising Hamiltonian on a rectangular lattice

H1 = JHI, HI =

Lx−1∑
m=0

Ly−1∑
n=0

(σz
m,nσ

z
m+1,n + σz

m,nσ
z
m,n+1),

with periodic boundary conditions σαm,Ly ≡ σ
α
m,0, σαLx ,n ≡ σ

α
0,n. and a Zeeman

Hamiltonian for a spatially homogeneous magnetic field ~b

H0 =

Lx−1∑
m=0

Ly−1∑
n=0

~b · ~σm,n = ~b · ~S , ~S =:

Lx−1∑
m=0

Ly−1∑
n=0

~σm,n.

we consider the kicked Hamiltonian

H(t) = H1 + H0
∑
j∈Z

δ(t − jτ).

We observe three unrelated transitions as we vary the parameters J,~b...
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Floquet spectral density

Floquet map spectrum:

UKI|ψn〉 = e−iφn |ψn〉, UKI = e−iH1e−iH0

Spectral density (N = 2LxLy ):

ρ(φ) =
1
N

N∑
n=1

δ(φ− φn) =
1
2π

(
1 +

∞∑
k=1

cos(kφ)
2
N tr Uk

)
.

ρ
(φ
)

φ
0 π 2π0.0

0.1

0.2

0.3

ρ
(φ
)

φ
0 π 2π

0.1

0.2
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Level spacing distribution

0.2

0.6

1.

1.4

P
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)
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0
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J π/8

π/4

0

bx
π/4 π/20

Analysis of the distribution of the nearest neighbour spacing P(s). On the left panel, we observe the

nearest neighbour spacing distribution for three different transverse fields, bx = 0.2, 0.3 and 0.5 in red,

green and yellow respectively, J = 0.5, and we consider a 5× 4 lattice. In all cases, we are considering

sx = ±1, kx ∈ {1, 2} and ky = 1. The thick black curve correspond to the Wigner surmise. In the

inset, we show the average of these three curves, minus the Wigner surmise, together with the

theoretical prediction. On the right panel, we consider the Kolmogorov distance between the unfolded

P(s), and the Wigner surmise, for all the parameters of the model, and a 4× 3 lattice. Very good

agreement with the RMT prediction is observed except when J or bx are zero, or J = bx = π/4.
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Ergodicity breaking transition

C
(t
)

lo
g
1
0
C
(t
)

C
(t
)

t
0 20 40 60 80 100

bx = 0.2

bx = 0.3

bx = 0.5

-4

-3

-2

-1

0

0.1

0.2

0.3

0

0.2

0.4

0.6

Correlation decay (of transverse magnetisation) for the transverse field KI model, varying bx , for

different dimensions and fixed J = 0.5. The calculation is done using a single random state.

Tomaž Prosen Ergodicity breaking transitions



Phase diagram of ergodicity
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Phase diagram of time averaged correlator for the Ising model, for M = Sx , as a
function of bx and J, with M = Sx and bz = 0.
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Phase diagram of ergodicity
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Phase diagram of time averaged correlator for the Ising model, for M = Sx , as a
function of bx and J, with M = Sx and bz = 0.
The phase diagram has no resemblance to phase diagram of level density,
whereas spectral statistics is Wigner-Dyson-like almost everywhere!
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