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Quantum ergodicity, decay of correlations and fidelity decay

Kicked Ising chain

Integrability breaking ergodicity/non-ergodicity transition
Heisenberg XXZ chain

Integrable ergodicity/non-ergodicity transition

Ergodicity /non-ergodicity transition in a completely integrable
classical-mechanical model (Lattice-Laudau-Lifshitz)

Kicked Ising spin system on a 2D lattice — dynamical phase transitions
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(Prosen PTPS 2000, Prosen PRE2002 |
H(t):i{

Jojoiiy + (ho} + h,of) Z 5(t — m)

meZ }
1+
Urloquet = T exp <—i/dt/H(tl)) = Hexp (=i(hxo} + h.of)) exp (—idof o)
0+ j

where [af‘,af] = 2icapy 0] djk.
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My favourite toy model of many-body quantum chaos: Kicked Ising Chain

Prosen PTPS 2000, Prosen PRE 2002

H(t) = i: {Jafaf+1 + (heo + huof) Y 8(t — m)}

Jj=0 meZ

1+
Urloquet = T exp <—’ / dt’H(t’)> = [T exp (i(hxo} + hoo})) exp (—idofo}is)
0+ ;
J

V.

where [O'J(-X,Jf] = 215(1570']5]1(.
The model is completely integrable in terms of Jordan-Wigner transformation if
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where [O'J(-X,Jf] = 215(1570']5]1(.
The model is completely integrable in terms of Jordan-Wigner transformation if

e hy = 0 (longitudinal field)
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My favourite toy model of many-body quantum chaos: Kicked Ising Chain

Prosen PTPS 2000, Prosen PRE 2002

L-1
H(t) = Z {JUfUﬁ-l + (hgoj + hzo7) Z ot — m)}

Jj=0 meZ

1+
UFloquet - TexP <_.\/dt/H(t/)> = HeXp (—i(th';'( + thJZ)) exp (—iJO’;O‘erl)
0+ i
J

V.

where [O'J(-X,Jf] = 21561570]5]1(.
The model is completely integrable in terms of Jordan-Wigner transformation if

e hy = 0 (longitudinal field)

e h, =0 (transverse field)
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My favourite toy model of many-body quantum chaos: Kicked Ising Chain

Prosen PTPS 2000, Prosen PRE 2002

A =3 {Jofafﬂ + (heof + haof) 3 8t - m>}

Jj=0 meZ

1+
Urloquet = T exp <—'/dt'H(t')> = H exp (—i(ho} + h,o7)) exp (—iJofof 1)
0+ j

v

where [0f, 0}] = 2icap0;] Ojk.
The model is completely integrable in terms of Jordan-Wigner transformation if

e hy = 0 (longitudinal field)
@ h, = 0 (transverse field)
Time-evolution of local observables is quasi-exact, e.g. for computing

—t gt
UFloquet Uj UFloquet

only 2t + 1 sites in the range [j — t,j + t] are needed!.
Quantum cellular automaton in the sense of Schumacher and Werner (2004).
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Quasi-energy level statistics of Kl [C. Pineda, TP, PRE 2007]

Fix J=0.7, hx = 0.9, h, = 0.9, s.t. Kl is (strongly) non-integrable.

Diagonalize Urioquet|n) = exp(—ipn)|n). For each conserved total momentum
K quantum number, we find A/ ~ 2'/L levels, normalized to mean level
spacing as s, = (N/27)¢n.
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Quasi-energy level statistics of Kl [C. Pineda, TP, PRE 2007]

Fix J=0.7, hx = 0.9, h, = 0.9, s.t. Kl is (strongly) non-integrable.

Diagonalize Urioquet|n) = exp(—ipn)|n). For each conserved total momentum
K quantum number, we find A/ ~ 2'/L levels, normalized to mean level
spacing as s, = (N/27)¢n.

N(S) = #{Sn < 5} = Nsmooth(s) + Nﬂuct(s)
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Quasi-energy level statistics of Kl [C. Pineda, TP, PRE 2007]

Fix J=0.7, hx = 0.9, h, = 0.9, s.t. Kl is (strongly) non-integrable.

Diagonalize Urioquet|n) = exp(—ipn)|n). For each conserved total momentum
K quantum number, we find A/ ~ 2'/L levels, normalized to mean level
spacing as s, = (N/27)¢n.

N(S) = #{Sn < 5} = Nsmooth(s) + Nﬂuct(s)

For kicked quantum quantum systems spectra are expected to be statistically
uniformly dense

-/\/'smooth(s) =S
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Short-range statistics: Nearest neighbor level spacings

We plot cumulative level spacing distribution
W(s) = [, dsP(s) = Prob{sni1 — s, < s}.
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The noisy curve shows the difference between the numerical data for 18 qubits,
averaged over the different momentum sectors, and the Wigner RMT surmise.
The smooth (red) curve is the difference between infinitely dimensional COE
solution and the Wigner surmise. In the inset we present a similar figure with
the results for each of quasi-moemtnum sector K.

Tomaz Prosen Ergodicity breaking transitions



Spectral form factor Kz(7) is for nonzero integer t defined as
1 1 ?
_ t)2 _ —ipnt
Kz(t/N)—/T/.]trU] _Nzn:e .
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Long-range statistics: spectral form factor

Spectral form factor Kz(7) is for nonzero integer t defined as

z : e—i(p,.,t

n

2

Ka(t/N) = /lv It U2 = %

In non-integrable systems with a chaotic classical lomit, form factor has two
regimes:

@ universal described by RMT,

@ non-universal described by short classical periodic orbits.

KD > universal
1 | nonuaiversal
I
!
LA | *
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Long-range statistics: spectral form factor

Note that for kicked systems, Heisenberg integer time 74 = N

"1.25 1.5 1.75 2

0.25 0.5 0.75

We show the behavior of the form factor for L = 18 qubits. We perform
averaging over short ranges of time (7u/25). The results for each of the
K-spaces are shown in colors. The average over the different spaces as well as
the theoretical COE(N) curve is plotted as a black and red curve, respectively.
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Surprise!? Deviaton from universality at short times

Similarly as for semi-classical systems, we find notable statistically significant
deviations from universal COE/GOE predictions for short times of few kicks.
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But there is no underlying classical structure!
phenomenon needed!

Dynamical explanation of this

=} =
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@ Temporal correlation of an extensive traceless observable A
(trA=0,tr A% o L):

Calt) =l

1 —t t
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Quantum ergodicity and its "order parameter"

@ Temporal correlation of an extensive traceless observable A
(trA=0,tr A> < L):

Ca(t) = LILmoo &trAU_tAUt

@ Average correlator

. 1
Pa=lm 7

signals quantum ergodicity if Da = 0.
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Quantum ergodicity and its "order parameter"

@ Temporal correlation of an extensive traceless observable A
(trA=0,tr A> < L):

Ca(t) = LILmoo &trAU_tAUt

@ Average correlator

. 1
Pa=lm 7
signals quantum ergodicity if Da = 0.

@ Quantum chaos regime in Kl chain seems compatible with exponential
decay of correlations. For integrable, and weakly non-integrable cases,
though, we find saturation of temporal correlations D # 0.
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Decay of time correlatons in Kl chain

Dy,/L=0.485 -------
0s ) @ M
g ‘
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i 0.2
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Loschmidt echo and decay of fidelity

Decay of correlations is closely related to
fidelity decay F(t) = (U *Uj(t)) due to
perturbed evolution Us = U exp(—idA)

H : ol N\ S 8'=0.0025
(Prosen PRE 2002) e.g. in a linear re- = S 520005
. . = _: \ :
sponse approximation: = 107 .
10
F(t)=1— — C(t N N §=0.0025
(1) = t;t”jl (¢ I ——
E 2| &=0m N

0o (@) J=1h=14h=00 1w
completely integrable).

(
(
o (b)J=1,h =14h,=04
(
° (
("

L y=002 =001
intermediate).

) J=1h.=14h, =14
quantum chaotic").
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PHYSICAL REVIEW E, VOLUME 65, 036208
General relation between quantum ergodicity and fidelity of quantum dynamics

Toma Prosen
Physics Department, Faculty of Mathematics and Physics, University of Liubljana, Ljubljana, Slovenia
(Received 26 June 2001; published 11 February 2002)

A general relation is derived, which expresses the fidelity of quantum dynamics, measuring the stability of
time evolution to small static variation in the Hamiltonian. in terms of ergodicity of an obscrvable generating
the perturbation as defined by its time correlation function. Fidelity for ergodic dynamics is predicted to decay
exponentially on time scale x8~2, 5~ strength of perturbation, whereas faster, typically Gaussian decay on
shorter time scale 5~ is predicted for integrable, or generally nonergodic dynamics. This result needs the
perturbation & to be sufficiently small such that the fidelity decay time scale is larger than any (quantum)
relaxation time. e.g.. mixing time for mixing dynamics, or averaging time for nonergodic dynamics (or Ehren-
fest time for wave packets in systems with chaotic classical limit). Our surprising predictions are demonstrated
in a quantum Ising spin-(1/2) chain periodically kicked with a tilted magnetic field where we find finite
parameter-space regions of nonergodic and motion in the ic limit.

n -1

A,) 3

F(=1+ Z‘, (A A4,

v, a1, =0

(II) Nonergodicity. Here we assume that the autocorrela-
tion function of the perturbation does not decay asymptoti-
cally but has a nonvanishing time average, D,
E mHm(l/t)El,, C(1"), though the first moment is van-
ishing (A)=0. For times 7 larger than the averaging time t .
in which a finite time average effectively relaxes into the
stationary value D, , we can write fidelity to second order,
which decays quadratically in time, F,(t)=1—(1/2)
X(1/7pe) 2+ O(8%), on a scale

(I) Ergodicity and fast mixing. Here we assume that
C4(1)—0 sufficiently fast that the total sum converges, S,
=(1/2)2]2 _,,Cx(1).]S4| <. For times ¢ much larger than
the so-called mixing time scale t>1;,, which effectively
characterizes ~ the  correlation  decay, e.g.  f.;
=3,[tCA()]/Z,|C4(1)], it follows that the fidelity drops lin-
carly in time Fo(t)=1—1/7,+O(5%) on a scale

" ™

. B |1k s2k ok More general result can be formulated in terms of a time-
- E M:exp(,ﬂn)‘ (6) averaged operator A llme(l/l)Et,, ,+» namely, for ¢
k=0 (2k)! 1. Eq. (3) can be rewritten as

-1
Tpe=D
- ne= 4

syle2 (5)

Ful t>71+2 <A'"> (exp(iAdn).  (8)
] (w1 =

Tomaz Prosen Ergodicity breaking transi

A




TP, J. Phys. A 35, L737 (2002)
Transfer matrix approach to exponential decay of correlation:
Truncated quantum Perron-Frobenius map and Ruelle resonances.
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Quantum Ruelle-Policot-like resonances

TP, J. Phys. A 35, L737 (2002)
Transfer matrix approach to exponential decay of correlation:
Truncated quantum Perron-Frobenius map and Ruelle resonances.

We construct a matrix representation of the following dynamical Heisenberg
map
TA=[U'AU],

truncated with respect to the following basis of translationally invariant
extensive observables

oo
o so _s1 L1
Z(Sosl-»-sr—l) - E : 0 011 O-j+r71

jm—o

and inner product

(A1B) = fim %w\fs, A=Yz = (AA) = Jaf < .
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Quantum Ruelle resonances

J=07h =11

UL L=24
L=12 *
Tpr=12

h,=0.5

r=6
Wiexp(-qt) ---- ]

0.1

Ico!
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VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MarcH 1998

Time Evolution of a Quantum Many-Body System: Transition from Integrability
to Ergodicity in the Thermodynamic Limit

Toma, Prosen
Physics Department, Faculty of Mathematics and Physics, University of Liubljana, Jadranska 19, 1111 Liubljana, Slovenia
(Received 17 July 1997)
Numerical evidence is given for nonergodic (nonmixing) behavior, exhibiting ideal transport, of a
simple nonintegrable many-body quantum sysiem in the thermodynamic limit, namely, the Kicked 1-V
model of spinless fermions on a ring. for sufficiently large kick parameters 7 and V' we
recover quantum crgodmuy and normal n‘anspoﬂ which can be described by random matrix theory.

H(r) = Z [=3t(cfejer + He) + 8,(WVinjal,
=0

008 -
007 [~
006 |-
005 |-
o 004
003 |-
002 |-
001 |-

C(m)

1 1 R R W
0 002 004 006 D.G?IL 01 012 0.4 0.16

R(m)

03 -

02 -

0 1 1 L 1 1 ! 1 1
60 0 002 004 006 O.OB/L 01 012 0.14 016
o 1 = =

30
m (discr.time)

A
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Considerable followup up activity on periodically driven quantum spin chains
only after cca. 2011, reviewed recently in:

Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov,
arXiv:1407.4803, to appear in Adv. Phys.
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Transport and time correlations

Green-Kubo formulae express the conductivities in terms of current
autocorrelaion functions

k(w) = lim lim f/ dt’ e t')J(0)) 5

t—oo L— oo
When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 27D (w) + Kreg(w)

which in linear response expresses as
T . ﬂ t / ’ _ 6
D= lim lim 2L/, dt’(J(t)J(0)); = oL

t—oo L—oo 2tL
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Transport and time correlations

Green-Kubo formulae express the conductivities in terms of current
autocorrelaion functions

k(w) = lim lim %/0 dt’ei“t<J(t/)J(0)>B

t—oo L—oo

When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 27D (w) + Kreg(w)

which in linear response expresses as

T : B f o ’ _ B, 5 o B -2
D= lim fim 5o | A€ ()0, = 57 (T = 5 (P

For integrable quantum systems, Zotos et al. (1997) suggested to use Mazur's
(1969) and Suzuki's (1971) bound, estimating Drude weight in terms of local

conserved operators Fj, [H, Fj] = 0:
2
. B (JFi)s

> -

D2 i op D ),
J

where operators F; are chosen mutually orthogonal (F;Fx) = 0 for j # k.
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Example of ergodicity/non-ergodicity transition in integrable system

XXZ spin 1/2 chain
n—1
H= Z(O’fc’f+1 + o070}, + Aojojia).

j=1

Fractal Drude weight bound (at high temperature 8 — 0)

2200 L 1 Zan (X)), a-(2)

and % =0 for [A| > 1.

10F

0.8+

0.6+

%

Dz, Dk

04}

0.2t

0.0k . . . . e
0.0 0.2 0.4 0.6 0.8 10

A
TP, PRL 106, 217206 (2011); TP, PRL 107, 137201 (2011); TP, Ilievski,
PRL 111, 057203 (2013); TP, NPB 886, 1177 (2014)
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The new quasi-local conservation law Z, satisfying [H, Z] = of — o7, comes
from studying the far from equilibrium problem:

©
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Nonequilibrium quantum transport problem in one-dimension

The new quasi-local conservation law Z, satisfying [H, Z] = of — o7, comes
from studying the far from equilibrium problem:

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:
d .
d;; ['p _1[H7 p] + Z (2LHPLL - {LLLH>p}) 0
i

e Bulk: Fully coherent, local interactions,e.g. H=>""_ 1hx X1

@ Boundaries: Fully incoherent, ultra-local dissipation,
jump operators L, supported near boundaries x =1 or x = n.
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Exactly solvable NESS of boundary driven XXZ chain

Steady state Lindblad equation ﬁpoo =0:

ilH, poc] = 3 (2Lupoo Ll — {LhLus poc})

n
The XXZ Hamiltonian:
n—1
H= 2(20;0;“ + 205 041 + Dchob )
x=1

and symmetric boundary (ultra local) Lindblad jump operators:

1 1
Llf = E(l_ﬂ)a Ura LIR: 5(1+N)5 O’j7
5 1 . 1 _
L2 = 5(1+/,L)E g1 , L2 = 5(1—/,6)5 Op .

Two key boundary parameters:
@ ¢ System-bath coupling strength
@ 1 Non-equilibrium driving strength (bias)
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

poo = (trR)™'R, R =S5S"

S; S; S, AO A+ ®n
S= Y <0|A51Asz~--As,,|0)01®az-~~®a":<0|( ) |0)
(s1,---s8n)E{+,—,0}"
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

poo = (trR)"'R, R =S5S"

Ao AL\®"
S= ) <0|A51A52~~-Asn|0>os‘®a”---®as"=<0|( ) 0
(s1,.--,sn)E{+,—,0}"

Ro = Dok, T T
o G‘ﬁh)
A = > aflk)(k+1], @TP)
! @ﬁlﬂ
A= X alkanr, G
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

poo = (trR) 'R, R =S5S"

s s s Ao AN\Z"
- wAs, A |00 0% @ o™ =
S= > (0A4A,, A, 00" @%@ o™ = (0] |0)

A_ Ao
(s1,...,sn)E{+,—,0}"
no = Sk T
k=0 GT )
Ar = > alk)(k+1], @ﬁ 2
e GT [t
~ S G—"—" P
A_ = gak |k+1){r|, A A o)
32 = cos((s — k)n) cosn = A,
+ = i Pp—
a, = sin((k + 1)n) tan(ns) = Sisinm
a = cos((2s — k)n) s is a q—deformed complex spin q = &'
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Observables in NESS: From insulating to ballistic transport

e For |A| < 1, (J) ~ n® (ballistic)
@ For |A| > 1, (J) ~ exp(—constn) (insulating)

e For |A| =1, (J) ~ n~? (anomalous)

1.0 prse

i \ .. ©

0.01

05}

00/

I

5
05 0.001

-1.0 i 104
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There is an example of ergodicity/non-ergodicity transition even in a classical
mechanical completely integrable many body system!

'k endis
PRL 111, 040602 (2013) PHYSICAL REVIEW LETTERS suyeck ending,

Macroscopic Diffusive Transport in a Microscopically Integrable Hamiltonian System

Tomaz Prosen

Physics Dey , Faculty of Math ics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

Bojan Zunkovié
Departamento de Fisica, Facultad de Ciencias Fisicas y Matemdticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
(Received 26 April 2013; published 26 July 2013)

We that a pletely i ble classical hanical model, namely the lattice Landau-
Lifshitz classical spin chain, supporls diffusive spin transport with a finite diffusion constant in the easy-
axis regime, while in the easy-plane regime, it displays ballistic transport in the absence of any known
relevant local or quasilocal constant of motion in the symmetry sector of the spin current. This surprising
finding should open the way towards analytical computation of diffusion constants for integrable
interacting systems and hints on the existence of new quasilocal classical conservation laws beyond
the standard soliton theory.

] (w1 =
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Transition from ballistic to diffusive transport in integrable classical chain

A



Transition from ballistic to diffusive transport in integrable classical chain

Locally interacting spin chain Hamiltonian
n
H=>h(5, 51),
x=1

where for Lattice-Landau-Lifshitz model, the energy density reads

h(s5,5) = log|cosh(pSs) cosh(pS3) + coth?(pR) sinh(pSs) sinh(pS5)
+sinh=2(pR)F(S3)F(S3)(S151 + $255)|

and F(S) = /(sinh?(pR) — sinh?(pS))/(R? — S?).

Tomaz Prosen Ergodicity breaking transitions



Transition from ballistic to diffusive transport in integrable classical chain

Locally interacting spin chain Hamiltonian
n
H= Z h(SX7 5x+1)7
x=1

where for Lattice-Landau-Lifshitz model, the energy density reads

3 & _ / 2 . . /
) - 3
h(S,S") log|cosh(pSs) cosh(pS3) + coth?(pR) sinh(pSs) sinh(pS3)
+sinh=2(pR)F(S3)F(S3)(5151 + $255)|

and F(S) = \/(sinh?(pR) — sinh?(pS))/(R? — S?).
Writing anisotropy parameter § = p° we study three cases:
@ § > 0, easy axis regime (Ising-like) diffusive!!!
@ § < 0, easy plane regime (XY-like) ballistic!!!

e § =0, isotropic regime (where h(S,S’) = log (1 + 5"?5,)) anomalous!!!
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Spatio-temporal current-current c.f. shown in log-scale with color scale
ranging from 107*® to 10! indicated in the bottom-right. In the upper panels
we show data averaged over ensembles of N ~ 10 initial conditions in
easy-axis (left; n = 5120), isotropic (center; n = 5120 ) and easy-plane (right;
n = 2560) regimes. Bottom: smaller n = 160, N = 600 where scars of solitons
emerging from local thermal fluctuations are still clearly visible.
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0.1

C(t)

0.01

0.1 1 10 100

C(t) in log-log scale for easy-plane regime (top curves, orange: n = 160, black:
n = 2560), isotropic regime (middle curves, yellow: n = 2560, blue: n = 5120)
and easy-axis regime (bottom curves, violet: n = 2560, green: n = 5120).
Shaded regions denote the estimated statistical error for ensemble averages over
N ~ 103 initial conditions. Dashed lines denote asymptotic behavior for large
time in the easy-plane regime (dark-blue) and isotropic, regime (light-blue).
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So much for 1D quantum (and classical) lattice systems.

However, situation gets even more puzzling for 2D systems

Tomaz Prosen
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Yet another toy model: Two dimensional kicked quantum Ising model

C. Pineda, TP and E. Villasenor, NJP 16, 123044 (2014).

Taking an Ising Hamiltonian on a rectangular lattice

Ly—1Ly—1

z z z z
Hy = JH, H; = E E (Um,n0m+1,n + Um,ngm,n+1)7
m=0 n=0

with periodic boundary conditions o7, | = om0, 07, » = 06,,. and a Zeeman

Hamiltonian for a spatially homogeneous magnetic field b

Ly—1Ly—1 Ly—1Ly—1
Ho=Y>_ Y b-Gmn=b'5 S=> > Gmn
m=0 n=0 m=0 n=0

we consider the kicked Hamiltonian

H(t) = Hi + Ho Y 4(t — jr).

jez
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Yet another toy model: Two dimensional kicked quantum Ising model

C. Pineda, TP and E. Villasenor, NJP 16, 123044 (2014).

Taking an Ising Hamiltonian on a rectangular lattice

Ly—1Ly—1

z z z z
Hy = JH, H; = E E (Um,n0m+1,n + Um,ngm,n+1)7
m=0 n=0

with periodic boundary conditions o7, | = o0, 0f, » = 06,,. and a Zeeman

Hamiltonian for a spatially homogeneous magnetic field b

Ly—1Ly—1 Ly—1Ly—1
Ho=Y> Y b-Gmn=b'5 S=> > Gmn
m=0 n=0 m=0 n=0

we consider the kicked Hamiltonian

H(t) = Hi+ Ho Y _ d(t — jr).

jez

We observe three unrelated transitions as we vary the parameters J, b...
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Floquet spectral density

Floquet map spectrum

UKI|wn> —e i¢"|¢n>, Uk = e—iH1 e—iHo
Spectral density (N = 2’-XLY)

1+ Zcos ko) —tr Uk

k=1 )
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Level spacing distribution

1.4
0.02
1.
~7/8
0.6
0.2
7‘—/40 ™ /2
s s

Analysis of the distribution of the nearest neighbour spacing P(s). On the left panel, we observe the
nearest neighbour spacing distribution for three different transverse fields, by = 0.2, 0.3 and 0.5 in red,
green and yellow respectively, J = 0.5, and we consider a 5 X 4 lattice. In all cases, we are considering
sx = 1, kx € {1,2} and ky, = 1. The thick black curve correspond to the Wigner surmise. In the
inset, we show the average of these three curves, minus the Wigner surmise, together with the
theoretical prediction. On the right panel, we consider the Kolmogorov distance between the unfolded
P(s), and the Wigner surmise, for all the parameters of the model, and a 4 X 3 lattice. Very good

agreement with the RMT prediction is observed except when J or by are zero, or J = by = 7w /4.
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Correlation decay (of transverse magnetisation) for the transverse field KI model, varying by, for

different dimensions and fixed J = 0.5. The calculation is done using a single random state.




Phase diagram of ergodicity

~/8

7T/40 /4 /2

ba

Phase diagram of time averaged correlator for the Ising model, for M = 5%, as a
function of bx and J, with M = Sx and b, = 0.
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Phase diagram of ergodicity

1.

~ /8
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/2

Phase diagram of time averaged correlator for the Ising model, for M = S%, as a
function of bx and J, with M = S and b, = 0.

The phase diagram has no resemblance to phase diagram of level density,
whereas spectral statistics is Wigner-Dyson-like almost everywhere!
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