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1. Introduction and Motivation



Introduction: General

Symmetries

represent a cornerstone and fundamental principle in physics
are ubiquitous in nature
apply to many different disciplines of physics
allow to make predictions for a system without solving the
underlying equations of motion !

quantum mechanics: group and representation theory
⇒ multiplets, degeneracies, selection rules and structure
(redundancy)
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Global Symmetries we are used to
rotation O(3): atoms, quantum dots,....
molecular point group symmetries: inversion, reflection, finite
rotation (C2v ,C∞h, ...)
discrete translational symmetry: periodic crystals
gauge symmetries U(1),SU(3)× SU(2)× U(1)
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Introduction: Symmetries and Invariants

Symmetries: Emergence of conservation laws (invariants) that
simplify mathematical description

Classical particles and fields: Noether theorem (invariant
currents), continuity and boundary effects

Quantum mechanics: Commutation relations, not restricted to
continuous transforms, good quantum numbers

Yes or No access to symmetry: Global !

What about remnants ? ⇒ Local !

In general: no systematic way to describe the breaking of symmetry !

Field theory: Spontaneous symmetry breaking (Higgs mechanism,
global)



Introduction

But what about more complex ’less pure and simply
structured’ systems

Nature: From global to local symmetry !

In most cases a local symmetry, spatially varying, exists,
but no global symmetry !
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Lets look at molecules:
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Introduction

Lets look at a snow-crystal:



Introduction

In sharp contrast to this:

There is no concept or theory of local spatial symmetries
in physics !



Introduction

Pathway of symmetry breaking

global symmetry obeyed
inversion symmetry (parity): atoms, molecules, clusters ⇒
even/odd states
discrete translational symmetry: periodic crystals ⇒ Bloch phase
and theorem

introduce asymmetric boundary conditions: scattering setup
breaks symmetry
LOCAL SYMMETRY

Does any impact of symmetry on a local scale survive ?

Is there something like a generalized parity or Bloch theorem ? Or
does symmetry breaking erase all signatures of the remnants of the
symmetry ?
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Focus on wave-mechanical systems:

Acoustics (granular phononic crystals)
Optics (photonic multilayers and crystals)
Quantum Mechanics (electrons in semiconductor
heterostructures, cold atoms ?)
....



2. Invariant Non-Local Currents



Wave equation of motion

Unified theoretical framework: Helmholtz equation with a complex
wave field A(x)

A′′(x) + U(x)A(x) = 0

optics - electromagnetic wave: U(x) = ω2n2(x)
c2

matter wave: quantum mechanics U(x) = 2m
~2 (E − V (x))

A(x) wave function
acoustics: sound waves
focus on scattering



Wave equation of motion

Complexity emerges due to U(x): From global to local symmetries

Come back to
the corresponding
classification later !



Symmetry transformations

Consider the following (linear) spatial symmetry transformations:

F : x → x = F (x) = σx + ρ,

σ = −1, ρ = 2α ⇒ F = Π : inversion through α
σ = +1, ρ = L ⇒ F = T : translation by L

Assume now the following symmetry of U(x)

U(x) = U(F (x)) ∀ x ∈ D
If D = R, then the above symmetry is global, otherwise the symmetry
is called local.

F (D) = D 6= D in general, but not for local inversion and parity.



Invariant nonlocal currents

Exploit the equation of motion and construct the difference
A(x)A′′(x)−A(x)A′′(x). One can show then:

A(x)A′′(x)−A(x)A′′(x) = 2iQ′(x) = 0,

which implies that the complex quantity

Q =
1
2i

[σA(x)A′(x)−A(x)A′(x)] = constant

is spatially invariant (constant in x) within the domain D.
Repeating the procedure with the complex conjugation yields

Q̃ =
1
2i

[σA∗(x)A′(x)−A(x)A′∗(x)]

Invariant non-local currents↔ Invariant two-point correlators at
symmetry related points !



Invariant nonlocal currents

Additionally we have, of course, the global current J (probability
(QM), energy (optics,acoustics))

J =
1
2i

[A∗(x)A′(x)−A(x)A′∗(x)]

Some algebra shows that the non-local currents are related to the
global current within each symmetry domain D

|Q̃|2 − |Q|2 = σJ2

|Q̃| > |Q| for local translations and |Q̃| < |Q| for local parity



3. Generalized Parity and Bloch

Theorems



Preliminaries

A brief reminder: Global discrete symmetries

Inversion symmetry leads to the parity theorem: ψ(−x) = ±ψ(x)

Periodicity leads to the Bloch theorem: ψ(x) = exp(ikx)φk (x) with
φk (x + L) = φk (x) being periodic

with the Bloch phase exp(ikL)

(alternatively ψ(x + L) = exp(ikL)ψ(x))



Generalized parity and Bloch theorems

Goal:
Use the invariants Q, Q̃ to obtain a definite relation between the wave
field A(x) and its image A(x) under a symmetry transformation.

This would generalize the usual parity and Bloch theorems to the
case where global inversion and translation symmetry, respectively, is
broken.

Herefore: define an operator ÔF which acts on A(x) by transforming
its argument through F = Π or T : ÔFA(x) = A(x = F (x)).

Some algebra then yields:

ÔFA(x) = A(x) =
1
J

[
Q̃A(x)−QA∗(x)

]
for all x ∈ D.

Central result providing a generalized symmetry image !



Generalized parity and Bloch theorems

ÔFA(x) = A(x) =
1
J

[
Q̃A(x)−QA∗(x)

]
for all x ∈ D.

Invariant non-local currents Q, Q̃, induced by the generic symmetry of
U(x), provide the mapping between the field amplitudes at points
related by this symmetry, regardless if the symmetry is global or not.

This generalized transformation of the field can therefore be identified
as a remnant of symmetry in the case when it is globally broken.

P.A. KALOZOUMIS, C. MORFONIOS, F.K. DIAKONOS AND P. S.,
PRL 113, 050403 (2014)



In a nutshell

Mapping relation(
A(x)
A∗(x)

)
=

1
J

(
Q̃ −Q
−Q∗ Q̃∗

)(
A(x)
A∗(x)

)

det
1
J

(
Q̃ −Q
−Q∗ Q̃∗

)
= σ

The Q-matrix belongs to the U(1,1) group
However note: The above is a nonlinear identity
Local basis renders the above relation diagonal



Back to global symmetry

ÔFA(x) = A(x) =
1
J

[
Q̃A(x)−QA∗(x)

]
A nonvanishing Q is a manifestation of broken global symmetry under
the discrete transformation F .

⇒ Recovery of the usual parity and Bloch theorems for globally Π-
and T -symmetric systems

When Q = 0, the field A(x) becomes an eigenfunction of ÔF=Π,T .

ÔFA(x) =
Q̃
J
A(x) ≡ λFA(x)



Back to global symmetry

ÔFA(x) =
Q̃
J
A(x) ≡ λFA(x)

One can immediately see that | Q̃J | = 1, so that any eigenvalue of ÔF

is restricted to the unit circle λF = eiθF !

In more detail:

For inversion Π we get λΠ = ±1

For translation Q̃ = ±|J|eiθQ̃ = ±|J|eikL which constitutes the
Bloch theorem

Q = 0: Global symmetry (note on BC).
Q 6= 0: Locally broken symmetry.
Q is a symmetry breaking (order) parameter !



4. Locally Symmetric Potentials



Locally symmetric potentials

Invariance U(x) = U(F (x)) on limited domains: Local parity or
translation invariance.

⇒ ÔF does not commute with Ĥ !

Local symmetry impact is analyzed in terms of invariants Q and Q̃.

Distinguish different cases !



Classification of locally symmetric potentials

1. Global symmetries

2. Non-gapped local symmetries -
for every domain there exist the in-
variants Q and Q̃ which map the
wave function.

3. Gapped local symmetries - a
domain D has no overlap with its
symmetry-related image (D ∩ D =
∅). Gaps can be symmetry ele-
ments or not. Qs connect wave
functions of distant elements.

4. Complete local symmetries - intertwined
symmetry domains possible on different
spatial scales - long range order.

The latter suggests a new class of materials with unique properties !



CLS - Local parity symmetric potentials

Local Π-symmetric potential U(x) =
∑N

i=1 Ui(x) on successive
non-overlapping domains Di with centers αi such that
Ui(2αi − x) = Ui(x) for x ∈ Di and Ui(x) = 0 for x /∈ Di .

The field in one half of the entire configuration space is mapped to
the other half, though the domains of the source A(x) are
topologically different.

Relation of the Qi , Q̃i to the globally invariant current J provides:
different domains,

|Qi+1|2 − |Q̃i+1|2

|Qi |2 − |Q̃i |2
= 1, i = 1,2, ...,N − 1. (1)

Overall piecewise constant functions Qc(x) and Q̃c(x), which
characterize the CLS of the structure at a given energy (or frequency)
of the field.



CLS - Local parity symmetric potentials

CLS material structures generalize the notion of periodic or aperiodic
crystals.

Classification:

Periodic crystals
Quasicrystals
Disordered systems
Locally symmetric materials

Nongapped, gapped or completely locally symmetric materials

Note: Quasicrystals are a special case - quasiperiodic dynamics of
local symmetries generate quasicrystals !
See P.S. et al, Nonlinear Dynamics (2014).



5. Summary: Theoretical
Foundations of Local Symmetries



Summary - theoretical foundations

Existence of non-local invariant currents, Q and Q̃, that
characterize generic wave propagation within arbitrary (local)
symmetry domains
These invariant currents comprise the information necessary to
map the wave function from a spatial subdomain to any
symmetry-related subdomain
Our theoretical framework generalizes the parity and Bloch
theorems from global to local symmetries.
Both invariant currents represent a (local) remnant of the
corresponding global symmetry, and nonvanishing Q is identified
as the key to the breaking of global symmetry

see P.A. KALOZOUMIS, C. MORFONIOS, F.K. DIAKONOS AND P. S.,
PRL 113, 050403 (2014)



Summary - theoretical foundations

Applies to any wave mechanical system: Acoustics, optics,
quantum mechanics,....

Nanoelectronic devices, photonic crystals and multilayers or
acoustic channels
Emergence of novel wave behaviour due to local symmetries

New class of structures (artificial materials) consisting
exclusively of locally symmetric building blocks
PT Symmetry
discrete systems (spin systems, optical waveguides, ...)
Nonlinear dynamics of local symmetries: Generating new types
of locally symmetric materials (chaotic, intermittent,
quasiperiodic local symmetry devices)

see P.A. KALOZOUMIS, C. MORFONIOS, F.K. DIAKONOS AND P. S.,
PRL 113, 050403 (2014)



Acoustics - Experiment
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Summary - theoretical foundations

Higher dimensions
Interacting systems
Periodically driven explicitly time-dependent systems
Emergent phenomena
Lossy systems: acoustics
wave control by local symmetries (localization, perfect
transmission, etc)
........
Gauge theories ???

see P.A. KALOZOUMIS, C. MORFONIOS, F.K. DIAKONOS AND P. S.,
PRL 113, 050403 (2014)



6. Application to Photonic Multilayers



Setup Photonic Multilayers

Schematic of an aperiodic multilayer comprised of 16 planar
slabs of materials A and B with nAdA = nBdB = λ0/4. The
scattered monochromatic plane light wave of stationary electric
field amplitude E propagates along the z-axis, perpendicularly to
the xy -plane of the slabs.
1D cross section of the multilayer in real space, showing its local
symmetries. The arcs depict locally symmetric domains Dm of
the device.



EOM, Invariants and Resonances

Helmholtz equation for light propagation

Ω̂(z, ω)E(z) =
ω2

c2 E(z)

with

Ω̂(z, ω) = − d2

dz2 +
[
1− n2(z)

] ω2

c2

with the non-local invariant currents

E(2αm − z)E ′(z) + E(z)E ′(2αm − z) ≡ Qm

Important: the Qm provide a classification of the resonances, i.e. of
the corresponding field configurations in terms of local symmetries.



Perfectly Transmitting Resonances

We define

Vm ≡
Qm

E(zm−1) E(zm)

and the sum

L =
N∑

m=1

(−1)m−1Vm

Where the E(zm) at the boundaries of each domain are provided by
the Qm, Q̃m via the symmetry mapping.

It can be shown that perfect transmission T = 1 leads to

L = iJ[1− (−1)N ] =

{
0, N even
2ik , N odd

Sum rule for perfect transmission !
see PRA 87, 032113 (2013); PRA 88, 033857 (2013)



Perfectly Transmitting Resonances

The global quantity L, together with the non-local invariants Qm, can
be utilized to classify the perfectly transmitting resonances (PTR).

Non-PTR: Transmission T < 1, Vm add up to a complex vector
L 6= 0,2ik . Open trajectory in the complex plane.
Asymmetric PTR: T = 1 stationary light wave with electric field
magnitude E0(z) which is not completely LP symmetric, does not
follow the symmetries of U(x). Vm take on arbitrary values in the
N local symmetry domains.

Even N: closed trajectory in the complex plane, starting and ending
at the origin.
Odd N: open trajectory ends at 2ik .

symmetric PTR: Tm = 1 in each subdomain Dm. All local
invariants align to the single, ’N-fold degenerate’ value
Qm = Vm = 2ik . Trajectory representing L is restricted to the
imaginary axis, oscillating between 0 and 2ik .



Perfectly Transmitting Resonances

Geometric representation of scattering in locally symmetric media.

Non-PTR, open trajectory with arbitrary end 6= 2ik .
Asymmetric PTRs the trajectory explores the complex plane.
Symmetric PTRs trajectory oscillates between 0 and 2ik .

see PRA 87, 032113 (2013); PRA 88, 033857 (2013)



Transmission spectra in loc.symm. media



Transmission spectra in loc.symm. media

Construction principle
for PTRs at desired
energies based on the
invariants !



The story of local symmetries just
begins ....



Thank you for your attention!
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