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Introduction

Dynamical tunneling

- Energy domain approach based on trance formula
No semiclassical formula for mixed systems

(cf. hyperbolic : Gutzwiller, completely integrable : Berry-Tabor)

- Time domain approach based on Van-Vleck Gutzwiller
works well within the leading order semiclassical approximation
(cf. recent advances in theory of complex dynamical systems by Bedford and Smillie)
but depends on initial and final states, or representations

- Here, not long-time, but just a single step semiclassical analysis
as close as possible to the energy domain by adjusting initial and final states




Completely integrable model

In the real plane
LAY A =0
if A’ is outside the classically allowed region.

In the complex plane

L(A) N A" # 0 for any A and A’.
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Completely integrable model

1-step propagator Saddle point condition

JF(q; p’, p) _
aq B

0

71 13 — ~ i v an!
PlUlp) = Lo dq exv[—E{F(q,p ,P)}]

where

Fg;p',p) =T +V(g) + q@p’ —p)

Langrangian manifold a set of saddle points complex solution

classically forbidden

real solution

turning
classically forbidden point

Reg




Completely integrable model

Manifold around the turning point
Locally, the behavior around the turning point is described by

00 K
Yi(p) = f exp(i®k(t;p))dt, where ®(t;p)=1t""+ Z X t™

m=1

with K =1, that is the Airy function.
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Completely integrable model

tunneling

log |Kp'| U |p)?

(Schematic)

(Schematic)




Completely integrable model
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L(A) A = 0 for any A and A’.
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Completely integrable model




Map with discontinuity

g+ T’ (p)
—tV'(g + T (p))

E(p —d)’ + w(p — d)|0s(p — d) 0s(p) = —|tanh(Bp) + 1]
K cos(2mtq)




Map with discontinuity

g+ T’ (p)
—tV'(g + T (p))

E(p —d)’ + w(p — d)|0s(p — d) 0s(p) = —|tanh(Bp) + 1]
K cos(2mtq)




Anomalous tail in the action representation

1-step time evolution: (I|U|I,) where U = e #7® e #V®

Here |I) denotes the eigenfunction of the integrable map L:

Uo|I) = e #E|I) where Uy = e i®Pe iKsing

initial state {I|Iy)
'
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Semiclassical analysis for discontinuous limit (f = o)

1-step propagator in the action representation

(r|ay = f dq f dq’ f dpexp[—%{l—"(q',p,q;l,l’)}]

where
F(q’,Pr q, II I,) = S(I,r 6]’) - S(I, q) - P(Cl' - 6]) + T(P) + V(q)

Since T(p) has a discontinuity atp = d,
d +00
qu’fdpqu:qu’{f dp+f dp}qu
—o0 d

semiclassical 10°
(edge contribution)
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Semiclassical analysis for large but finite 8

1-step propagator in the action representation

(r|ay = f dq f dq’ f dpexp[—%{l—"(q',p,q;l,l’)}]

where

F(q’,Pr q, II I,) = S(I,r 6]’) - S(I, q) - P(Cl' - 6]) + T(P) + V(q)

for the present map

T() = 2 = D + wlp - D|0stp -
V(g) = K cos(2mq)
S(I,q) =Iqg+ Ksing




Semiclassical analysis for large but finite 8

1-step propagator in the action representation

(I’lfllI):f dqf dq’f dpexp[—%{F(q',p,q;I,I’)}]

where

F(q’,Pr q, II I,) = S(I,r 6]’) - S(I/ q) - P(Cl' - 6]) + T(P) + V(q)

for the present map

T() = 2 = D + wlp - D|0stp -
V(g) = K cos(2mq)
S(I,q) =Iqg+ Ksing

Saddle point condition:

F o oy F_
q’ ap aq




A set of saddle points

complex solution

=10 completely integrable model

p
NS [T
‘ real solution

turning
point
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Two types of turning points

=10

p
1. Turning points on the real manifold
. M L locally highly degenerated, reflecting tangency
between I and S;(I)

2. Turning points in the complex plane

Iy
increase as f8 gets large, reflecting the increase
I ﬁ (ﬁ\ of singularities, and possibly the existence of
, natural boundaries
N /ZEN/Z=%
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o turning points on the real manifold

e turning points in the complex plane




1-step time evolution of the real manifold I

: An invariant curve of the integrable map

1-step time evolution of 1

With increase in f, the initial manifold I comes closer to KAM curves, and moves

very slightly within a single step.




Diffraction integrals with coalescing saddles

Integrals with coalescing saddles

%) K
We(x) = f exp(i Pk(t;x)) dt, where Dy(t;x) = 52 4 Z X, "

%) m=1

X = (xllOI”' 10)




Diffraction integrals with coalescing saddles

Integrals with coalescing saddles

%) K
We(x) = f exp(i Pk(t;x)) dt, where Dy(t;x) = 52 4 Z X, "

%) m=1

X = (xllOI”' 10)

K =1 (Airy)
K = 3 (Pearcey)
K=5

— K =7

— K=9

! beyond leading-order
_ saddle point approximation




Two types of turning points

2. Turning points in the complex plane
increase as f§ gets large, reflecting the increase
of singularities, and possibly the existence of
natural boundaries
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o turning points on the real manifold

* turning points in the complex plane
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Range beyond the semiclassical approximation

initial state {I|I)
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o turning points on the real manifold

e turning points in the complex plane




Standard map and integrable approximation

Quantum unitary operator

A i V(@) ' i V(g)
U = exp [—%TTLI exp [—%TT(ﬁ)] exp [—%TTLI

Integrable approximation of U
M) 1 aons o
u™ .= exp[ hTHeff (q,p)]

where

M . j—1
I:Igf/n(f]\, p) = Hi(q,p) + Z (%) H;(§, p)
j=3

H;: the j-th order term in the Baker-Campbell-Hausdorff (BCH) series.

Classical Hamiltonian

M

Hgf\f/l)(q, p) = Hi(g,p) + Z (h

j=3
(jeodd int.)

H;(q, p): obtained by replacing commutators in the BCH series by Poisson brackets.




1-step time evolution in the action representation

1-step time evolution: (I'™| (I |I"™) where I = e 5T e~V @

Here [I™) denotes the eigenfunction of the integrable Hamiltonian Hgf\f):

(M) 1M\ (M) 1(M)
Heff |I > — Eeff |I >

Standard map Map with discontinuity
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log [(IM | 24 | 1)
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A set of saddle points

completely integrable model complex solution

real solution

turning
point

Reg




A set of saddle points

1. Turning points on the real manifold
locally highly degenerated, reflecting tangency
between I and F(I)

2. Turning points in the complex plane
increases as M gets large, reflecting the increase
of singularities, and possibly the existence of
natural boundaries

Reg

o turning points on the real manifold

e turning points in the complex plane




Integrable approximation

An invariant curve of the BCH integrable Hamiltonian

1-step time evolution of I

With increase in M, the initial manifold I comes closer to KAM curves, and moves
only slightly within a single step.




Around the turning point on the real manifold

M=1
M=3
M=5




Large deformation in the complex plane

I (complexified)




Large deformation in the complex plane

M=5 S(I) (complexified)




Range beyond the semiclassical approximation
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o turning points on the real manifold

e turning points in the complex plane




- Semiclassical approximation (leading-order) in a single step propagator
breaks down in the integrable representation

- Transition from one torus to another or to chaotic regions occurs under a
purely quantum mechanism and cannot be described even by complex clas-
sical dynamics.

- Purely quantum regions are sandwiched between highly degenerated turn-
ing points and turning points associated with singularities of complexified
tori, and possibly with natural boundaries.

- Observed diffractive phenomena are global and beyond the treatment based
on local diffraction integrals such as a series of diffraction catastrophes.




