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Quantum chaotic transport

Chaotic cavity to which two semi-infinite leads are attached
Asymptotic solutions in a lead of width w;

C Sin(kJ_XJ_) exp(ﬁkaH)
where k, =1,..., M; and

K2+ K — k2 = 2TF VWJ

R Mi =
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The M x M scattering matrix S connects the M (flux normalised) incoming
modes to the M outgoing modes, where M = M; + M,. Due to flux
conservation S is unitary, S'S = 1, and it has the block structure

r t
s=(7 1)

r and t refer to reflection and transmission for incoming waves in lead 1
r"and t’ refer to reflection and transmission for incoming waves in lead 2



Transmission eigenvalues

The eigenvalues of it are the transmission eigenvalues

Ti,...,Th, T, €[0,1], n=min(My, M)

Quantities of interest:
@ conductance G = G (tr(tt")) = Go <Z/- T,-> (Landauer formula)

@ conductance variance
@ shot noise P = (r(ttt) — tr(tt)2) = <Z/ T(1 - 7})>

@ moments of transmission My = (tr[(#)]) = <Zj Tjk>

Go = 2€°/h. We will set it in the following equal to one



Time delays

Other statistics are related to the Wigner-Smith matrix Q and its
eigenvalues, the proper time delays ;
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Quantities of interest
@ Wigner time delay w=gtrQ= 427
@ Wigner time delay variance

@ moments of proper time delays me = 47 (r(Q¥)) = <Z/. rj">

The Wigner time delay is related to the total scattering phase shift

ih d h d
w(E) = _IMTE Indet S(E) = 1=

Other statistics involve the diagonal elements g. = Q.. and the partial time
delays {; = hdo./dE.



Random matrix theory

RMT is effective for describing quantum transport in the regime p > 7¢
where 7p is the dwell time and 7¢ the Ehrenfest time.

Two different approaches: In the “Heidelberg approach” the scattering matrix
is related to a Hamiltonian of an inner system coupled to the outside
[Verbaarschot, Weidenmdiller, Zirnbauer '85]

S(E)=1—iVf v, Hcff:H_%va.

E —He
where H is an N x N Hermitian matrix, H.s is an effective non-Hermitian
Hamiltonian of the open system, and V is an N x M coupling matrix

Remark: Formalism can be translated to cavities (N — 00). (E — Heg) ™"
corresponds to resolvent of the open cavity and V projects onto leads.

In the “Mexico approach” the scattering matrix is modelled directly by a
random matrix . For perfect coupling, the relevant ensembles are the
Circular Ensembles, the CUE (8 = 2), COE (8 = 2) and CSE (3 = 2).
[Mello, Pereyra, Seligman '85]



Random matrix theory

Joint probability density function of the transmission eigenvalues (Jacobi
ensemble) [Baranger, Mello ’94; Jalabert, Pichard, Beenakker '94]

n
P(ThTz,---,Tn):./\//gH'l}a H 1T — Tk|?
j 1<j<k<n
where a = 3/2(|Mz — My| + 1) — 1 and N3 is a normalisation constant

Results for conductance

G % for CUE
| Mol - MM MuMe y MM for COE

ML is classical conductance

Variance of the conductance

: 1
nll_)moo Var(G) = 85



Semiclassical approximation
Semiclassical approximation [Jalabert, Baranger,
Stone '00]
tpa ~ Z A'\/ els""/h — 76
y:a—b —

The channels (a, b) determine the angles with
which the trajectories enter and leave the cavity

Semiclassical conductance

G:<that§a> %<Z > AWAﬁ,e"(SW‘Sw/)/h>
a,b E E

a,b v,v':a—b

Relevant contribution only from correlated trajectories

Diagonal approximation considers v = ~' [Baranger, Jalabert, Stone’93]

M; M.
Gdiag:z Z |A7‘2N ;\”2

a,b v:a—b

using a classical sum rule. This is the classical conductance.



Higher orders in 1/M

Correlated pairs [Richter, MS '02; Heusler, Miiller, Braun, Haake '06]

Diagrammatic rules for each orbit configuration
@ 1/M for every link
@ —M for every encounter
@ multiply by number of ingoing and outgoing channels M; M.

M Mo

Example: Left “diagram” contributes (1/M)3(—M)M;M, = — V2

- Gg®




Higher moments M

The approximation of the k-th moment M requires 2k trajectories.

Example of a set of trajectories that contributes to the fourth moment M.

Half of the trajectories connect the channels jjand 0;, j = 1,... K,
the other half connect the channels i,y and o0;, j = 1,..., K (ix+1 = ).

Same diagrammatic rules apply — Combinatorial problem



Semiclassical results

@ [Richter, MS ’02]: First correction to M.

@ [Schanz, Pulhmann, Geisel '03]: Leading order of Mo.

@ [Heusler, Muller, Braun, Haake '06]: All orders for M and M.
@ [Berkolaiko, Harrison and Novaes '08]: Leading order of all M.
@ [Berkolaiko, Kuipers '11]: Second order of all M.

@ [Berkolaiko, Kuipers ’13; Novaes ’13, ’15]: All orders of all M.



Time delays

Joint probability density function of the inverses of the proper time delays
7vj = 1/7; (Laguerre ensemble) [Brouwer, Frahm, Beenakker '97]

n
M/2
P(y,72, o vm) = N [T/ 22 T 1y — wl’
=1 1<j<k<n

where N3 is a normalisation constant

The first moment, the average Wigner time delay, is equal to the classical
dwell time: my = (tw) = 7w = 7

Results for the second moment [Mezzadri, Simm ’11,12]
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Moments of the proper time delays

One can base a semiclassical approximations of the moments of the proper
time delays

on the definition

This expresses the moments in terms of the same kind of lead connecting
trajectories as for the transmission moments. However, the semiclassical
computations are considerably more complicated due to energy derivative.
There are no simple diagrammatic rules as in the transmission problem.

Semiclassical results

@ [Kuipers, MS '08]: All orders for m;.
@ [Berkolaiko, Kuipers '10]: Leading order of all my.

@ [Berkolaiko, Kuipers ’11]: Next two orders of all my.



New semiclassical approach

Alternatively, one can base a semiclassical approximation on a different
representation of the Wigner-Smith matrix [Sokolov, Zelevinsky "89]

i 1 1
Q=hrV 74
(E — Hett)t (E — Herr)

The matrix element Q.5 can be interpreted as overlap of the internal parts
(E — Her)~ 'V of the scattering wave functions in incident channels a and b.

Semiclassical approximation [Kuipers, Savin, MS *14]

1
<‘E Hett Z Ae

c—>r

Involves trajectories that connect channel ¢ with an interior point r.

Similar types of trajectories occur in problems involving the survival
probability, the current density or the fidelity. [Waltner et al.08, Kuipers et
al.09, Gutierrez et al.’09, Gutkin et al.’ 10]



Average Wigner time delay

Semiclassical approximation for Wigner time delay

MZ/d2 Z A Az, en (5=

C—H‘

Note that this is the third semiclassical approximation after the one over lead
connecting (transmission) trajectories

M
W%I%/IZ Z TAAA /efz S=8y)

i,o=1 ~,' I*)O)

and the Gutzwiller type formula due to relation of 7 to density of states
1 i
o~ T+ MRezp:ApeW‘S” ,

where the sum is over all periodic orbits of the open cavity.

The diagonal approximation in the first case already yields: (rw) ~ 7p



Off-diagonal terms for average Wigner time delay

Trajectories can end in an encounter (one-leg loops) or not.

Simple diagrammatic rules [Kuipers, Savin, MS '14].
@ 1/M for every link
@ M for each incoming channel
@ —M for every encounter, unless it contains an end point
@ 1 for every encounter that contains one end point

@ 0 for every encounter that contains more than one end point



Example for second moment and results

Example: leading order for ms

—MB M M? _ p.
(A/I4 + a3 + 2/\/13) MTﬁ/

=275 <

Results

@ All orders for second moments of proper time delays m. (and other time
delays), and for the variance of the Wigner time delay.

@ Leading five orders for all moments my

For systems with and without time-reversal symmetry.
The highest two orders of my have not yet been calculated in RMT.



Higher orders in 1/M

TRI not required TRI required

Midiller, Heusler, Braun, Haake (2007)

Semiclassical evaluations become a combinatorial problem.



