


Quantum chaotic transport

Chaotic cavity to which two semi-infinite leads are attached

Asymptotic solutions in a lead of width wi

C sin(k⊥x⊥) exp(±ik‖x‖)

where k⊥ = 1, . . . ,Mi and

k2
⊥ + k2

‖ = k2 =
2mE
~2 , Mi =

⌊
kwi

π

⌋

The M ×M scattering matrix S connects the M (flux normalised) incoming
modes to the M outgoing modes, where M = M1 + M2. Due to flux
conservation S is unitary, S†S = 1, and it has the block structure

S =

(
r t ′

t r ′

)

r and t refer to reflection and transmission for incoming waves in lead 1
r ′ and t ′ refer to reflection and transmission for incoming waves in lead 2



Transmission eigenvalues

The eigenvalues of tt† are the transmission eigenvalues

T1, . . . ,Tn , Tj ∈ [0,1] , n = min(M1,M2)

Quantities of interest:

conductance G = G0
〈
tr(tt†)

〉
= G0

〈∑
j Tj

〉
(Landauer formula)

conductance variance

shot noise P =
〈
tr(tt†)− tr(tt†)2

〉
=
〈∑

j Tj (1− Tj )
〉

moments of transmissionMk =
〈
tr[(tt†)k ]

〉
=
〈∑

j T k
j

〉

G0 = 2e2/h. We will set it in the following equal to one



Time delays

Other statistics are related to the Wigner-Smith matrix Q and its
eigenvalues, the proper time delays τ j

Q = −i~S†
∂S
∂E

, Q = Q† =⇒ τ1, . . . , τM

Quantities of interest

Wigner time delay τW = 1
M tr Q = 1

M

∑
j τj

Wigner time delay variance

moments of proper time delays mk = 1
M

〈
tr(Qk )

〉
= 1

M

〈∑
j τ

k
j

〉

The Wigner time delay is related to the total scattering phase shift

τW (E) = − i~
M

d
dE

ln det S(E) =
~
M

d
dE

Φ

Other statistics involve the diagonal elements qc = Qcc and the partial time
delays tc = ~dφc/dE .



Random matrix theory

RMT is effective for describing quantum transport in the regime τD > τE
where τD is the dwell time and τE the Ehrenfest time.

Two different approaches: In the “Heidelberg approach” the scattering matrix
is related to a Hamiltonian of an inner system coupled to the outside
[Verbaarschot, Weidenmüller, Zirnbauer ’85]

S(E) = 1− iV †
1

E −Heff
V , Heff = H − i

2
VV † .

where H is an N × N Hermitian matrix, Heff is an effective non-Hermitian
Hamiltonian of the open system, and V is an N ×M coupling matrix

Remark: Formalism can be translated to cavities (N →∞). (E −Heft)
−1

corresponds to resolvent of the open cavity and V projects onto leads.

In the “Mexico approach” the scattering matrix is modelled directly by a
random matrix . For perfect coupling, the relevant ensembles are the
Circular Ensembles, the CUE (β = 2), COE (β = 2) and CSE (β = 2).
[Mello, Pereyra, Seligman ’85]



Random matrix theory

Joint probability density function of the transmission eigenvalues (Jacobi
ensemble) [Baranger, Mello ’94; Jalabert, Pichard, Beenakker ’94]

P(T1,T2, . . . ,Tn) = Nβ
n∏

j=1

Tα
j

∏

1≤j<k≤n

|Tj − Tk |β

where α = β/2(|M2 −M1|+ 1)− 1 and Nβ is a normalisation constant

Results for conductance

G =

{
M1M2

M for CUE
M1M2
M+1 = M1M2

M − M1M2
M2 + M1M2

M3 − . . . for COE

M1M2
M is classical conductance

Variance of the conductance

lim
n→∞

Var(G) =
1

8β



Semiclassical approximation

Semiclassical approximation [Jalabert, Baranger,
Stone ’00]

tba ≈
∑

γ:a→b

Aγ eiSγ/~

The channels (a, b) determine the angles with
which the trajectories enter and leave the cavity

1O

Semiclassical conductance

G =

〈∑

a,b

tba t∗ba

〉

E

≈

〈∑

a,b

∑

γ,γ′:a→b

Aγ A∗γ′ ei(Sγ−Sγ′ )/~

〉

E

Relevant contribution only from correlated trajectories

Diagonal approximation considers γ = γ′ [Baranger, Jalabert, Stone’93]

Gdiag =
∑

a,b

∑

γ:a→b

|Aγ |2 ∼
M1M2

M

using a classical sum rule. This is the classical conductance.



Higher orders in 1/M All orders in 1
N

Correlated pairs [Richter, MS ’02; Heusler, Müller, Braun, Haake ’06]

Diagrammatic rules for each orbit configuration

1/M for every link

−M for every encounter

multiply by number of ingoing and outgoing channels M1M2

Example: Left “diagram” contributes (1/M)3(−M)M1M2 = −M1M2

M2 = G(2)



Higher momentsMk

The approximation of the k -th momentMk requires 2k trajectories.

Example of a set of trajectories that contributes to the fourth momentM4.
Full counting statistics of chaotic cavities from classical action correlations 4
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Figure 1. Schematic examples of correlated sets of classical trajectories
contributing to Msc

4 . Each trajectory γj goes from incoming channel ij to
outgoing channel oj , and is represented by a solid line. Trajectories σj , which
go from ij+1 to oj , are in dashed lines. The circles mark the encounters, where
trajectories switch partners (see text).
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Figure 2. The trees that correspond to Figure 1. The edges are the common
arcs, the empty circles are the lead channels, and the shaded circles (“nodes”)
are the encounters. The edge emerging from i1 is the root, and the channels are
leaves. Note that the leaves are ordered i1, o1, i2, . . . , om, starting with the root
and going anti-clockwise.

time τE , much smaller than the typical duration of an arc which is proportional to the
mean dwell time τD. The action difference between the two sets of trajectories comes
almost entirely from the vicinity of the encounters, and thus becomes small in the
semiclassical limit. This theory has been discussed in several previous semiclassical
calculations [4, 5, 7–11].

To perform the calculation we must construct all possible sets γ, and to this
end we represent each set by a diagram containing its ‘backbone’ morphology of arcs
and encounters. The complicated arcs of the actual trajectories are represented by
straight edges; the encounters are represented by vertices of even degree (ℓ-encounter
has degree 2ℓ) and the lead channels are represented by vertices of degree 1. The
former vertices will be called nodes and denoted by shaded circles, see Fig. 3. The
vertices of degree 1 will be called leaves and denoted by empty circles. We will see
that our diagrams happen to be of a special kind, namely rooted planar trees.

To each of these diagrams we associate a vector v = (v2, v3, . . .), where vℓ is
the number of ℓ-nodes (or ℓ-encounters). For example, one of the graphs in Fig.2
has characteristic v = (3), and the other has characteristic v = (1, 1). If a diagram
has characteristic v, it contains V (v) =

∑
ℓ vℓ nodes, while the number of edges is

L(v) = m +
∑

ℓ ℓvℓ. Simple rules have been established to ‘read off’ the contribution

Half of the trajectories connect the channels ij and oj , j = 1, . . . , k ,
the other half connect the channels ij+1 and oj , j = 1, . . . , k (ik+1 ≡ i1).

Same diagrammatic rules apply =⇒ Combinatorial problem



Semiclassical results

[Richter, MS ’02]: First correction toM1.

[Schanz, Pulhmann, Geisel ’03]: Leading order ofM2.

[Heusler, Müller, Braun, Haake ’06]: All orders forM1 andM2.

[Berkolaiko, Harrison and Novaes ’08]: Leading order of allMk .

[Berkolaiko, Kuipers ’11]: Second order of allMk .

[Berkolaiko, Kuipers ’13; Novaes ’13, ’15]: All orders of allMk .



Time delays

Joint probability density function of the inverses of the proper time delays
γj = 1/τj (Laguerre ensemble) [Brouwer, Frahm, Beenakker ’97]

P(γ1, γ2, . . . , γn) = Nβ
n∏

j=1

γ
βM/2
j e−βγj/2

∏

1≤j<k≤n

|γj − γk |β

where Nβ is a normalisation constant

The first moment, the average Wigner time delay, is equal to the classical
dwell time: m1 = 〈τW 〉 = τ̄W = τD

Results for the second moment [Mezzadri, Simm ’11,’12]

m2 =
1
M
〈tr(Q2)〉 =

2βM2 τ̄2
W

(M + 1) (βM − 2)
.



Moments of the proper time delays

One can base a semiclassical approximations of the moments of the proper
time delays

mk = 〈 1
M

TrQk 〉 = 〈 1
M

M∑

j=1

τ k
j 〉

on the definition
Q = −i~S†

∂S
∂E

This expresses the moments in terms of the same kind of lead connecting
trajectories as for the transmission moments. However, the semiclassical
computations are considerably more complicated due to energy derivative.
There are no simple diagrammatic rules as in the transmission problem.

Semiclassical results

[Kuipers, MS ’08]: All orders for m1.

[Berkolaiko, Kuipers ’10]: Leading order of all mk .

[Berkolaiko, Kuipers ’11]: Next two orders of all mk .



New semiclassical approach

Alternatively, one can base a semiclassical approximation on a different
representation of the Wigner-Smith matrix [Sokolov, Zelevinsky ’89]

Q = ~V †
1

(E −Heff)†
1

(E −Heff)
V

The matrix element Qab can be interpreted as overlap of the internal parts
(E −Heft)

−1V of the scattering wave functions in incident channels a and b.

Semiclassical approximation [Kuipers, Savin, MS ’14]

〈r | 1
E −Heff

Vc ≈
1√
~

∑

γ(c→r)

Aγe
i
~Sγ ,

Involves trajectories that connect channel c with an interior point r .

Similar types of trajectories occur in problems involving the survival
probability, the current density or the fidelity. [Waltner et al.08, Kuipers et
al.09, Gutierrez et al.’09, Gutkin et al.’10]



Average Wigner time delay

Semiclassical approximation for Wigner time delay

τW ≈
1
M

M∑

c=1

∫
d2r

∑

γ,γ′(c→r)

AγA∗γ′ e
i
~ (Sγ−Sγ′ ) ,

Note that this is the third semiclassical approximation after the one over lead
connecting (transmission) trajectories

τW ≈
1
M

M∑

i,o=1

∑

γ,γ′(i→o)

TγÃγÃ∗γ′ e
i
~ (Sγ−Sγ′ ) ,

and the Gutzwiller type formula due to relation of τW to density of states

τW ≈ τ̄W +
1
M

Re
∑

p

Ap e
i
~Sp ,

where the sum is over all periodic orbits of the open cavity.

The diagonal approximation in the first case already yields: 〈τW 〉 ≈ τD



Off-diagonal terms for average Wigner time delay
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Trajectories can end in an encounter (one-leg loops) or not.

Simple diagrammatic rules [Kuipers, Savin, MS ’14].

1/M for every link

M for each incoming channel

−M for every encounter, unless it contains an end point

1 for every encounter that contains one end point

0 for every encounter that contains more than one end point



Example for second moment and results

Example: leading order for m2

(
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Results

All orders for second moments of proper time delays m2 (and other time
delays), and for the variance of the Wigner time delay.

Leading five orders for all moments mk

For systems with and without time-reversal symmetry.
The highest two orders of mk have not yet been calculated in RMT.



Higher orders in 1/M

Müller, Heusler, Braun, Haake (2007)

Semiclassical evaluations become a combinatorial problem.


