Efficient semiclassical approach for time delays

with Jack Kuipers and Dmitry Savin

Quantum chaos: fundamentals and applications
École des sciences avancées de Luchon, March 14-21, 2015

Martin Sieber

Quantum chaotic transport

Chaotic cavity to which two semi-infinite leads are attached Asymptotic solutions in a lead of width w_{i}

$$
C \sin \left(k_{\perp} x_{\perp}\right) \exp \left(\pm i k_{\|} x_{\|}\right)
$$

where $k_{\perp}=1, \ldots, M_{i}$ and

$$
k_{\perp}^{2}+k_{\|}^{2}=k^{2}=\frac{2 m E}{\hbar^{2}}, \quad M_{i}=\left\lfloor\frac{k w_{i}}{\pi}\right\rfloor
$$

The $M \times M$ scattering matrix S connects the M (flux normalised) incoming modes to the M outgoing modes, where $M=M_{1}+M_{2}$. Due to flux conservation S is unitary, $S^{\dagger} S=1$, and it has the block structure

$$
S=\left(\begin{array}{ll}
r & t^{\prime} \\
t & r^{\prime}
\end{array}\right)
$$

r and t refer to reflection and transmission for incoming waves in lead 1 r^{\prime} and t^{\prime} refer to reflection and transmission for incoming waves in lead 2

Transmission eigenvalues

The eigenvalues of $t t^{\dagger}$ are the transmission eigenvalues

$$
T_{1}, \ldots, T_{n}, \quad T_{j} \in[0,1], \quad n=\min \left(M_{1}, M_{2}\right)
$$

Quantities of interest:

- conductance $G=G_{0}\left\langle\operatorname{tr}\left(t t^{\dagger}\right)\right\rangle=G_{0}\left\langle\sum_{j} T_{j}\right\rangle \quad$ (Landauer formula)
- conductance variance
- shot noise $P=\left\langle\operatorname{tr}\left(t t^{\dagger}\right)-\operatorname{tr}\left(t t^{\dagger}\right)^{2}\right\rangle=\left\langle\sum_{j} T_{j}\left(1-T_{j}\right)\right\rangle$
- moments of transmission $\mathcal{M}_{k}=\left\langle\operatorname{tr}\left[\left(t t^{\dagger}\right)^{k}\right]\right\rangle=\left\langle\sum_{j} T_{j}^{k}\right\rangle$
$G_{0}=2 e^{2} / h$. We will set it in the following equal to one

Time delays

Other statistics are related to the Wigner-Smith matrix Q and its eigenvalues, the proper time delays τ_{j}

$$
Q=-\mathrm{i} \hbar S^{\dagger} \frac{\partial S}{\partial E}, \quad Q=Q^{\dagger} \quad \Longrightarrow \quad \tau_{1}, \ldots, \tau_{M}
$$

Quantities of interest

- Wigner time delay $\tau_{W}=\frac{1}{M} \operatorname{tr} Q=\frac{1}{M} \sum_{j} \tau_{j}$
- Wigner time delay variance
- moments of proper time delays $\quad m_{k}=\frac{1}{M}\left\langle\operatorname{tr}\left(Q^{k}\right)\right\rangle=\frac{1}{M}\left\langle\sum_{j} \tau_{j}^{k}\right\rangle$

The Wigner time delay is related to the total scattering phase shift

$$
\tau_{W}(E)=-\frac{\mathrm{i} \hbar}{M} \frac{\mathrm{~d}}{\mathrm{~d} E} \ln \operatorname{det} S(E)=\frac{\hbar}{M} \frac{\mathrm{~d}}{\mathrm{~d} E} \Phi
$$

Other statistics involve the diagonal elements $q_{c}=Q_{c c}$ and the partial time delays $t_{c}=\hbar \mathrm{d} \phi_{c} / \mathrm{d} E$.

Random matrix theory

RMT is effective for describing quantum transport in the regime $\tau_{D}>\tau_{E}$ where τ_{D} is the dwell time and τ_{E} the Ehrenfest time.
Two different approaches: In the "Heidelberg approach" the scattering matrix is related to a Hamiltonian of an inner system coupled to the outside [Verbaarschot, Weidenmüller, Zirnbauer '85]

$$
S(E)=1-\mathrm{i} V^{\dagger} \frac{1}{E-\mathcal{H}_{\mathrm{eff}}} V, \quad \mathcal{H}_{\mathrm{eff}}=H-\frac{\mathrm{i}}{2} V V^{\dagger} .
$$

where H is an $N \times N$ Hermitian matrix, $\mathcal{H}_{\text {eff }}$ is an effective non-Hermitian Hamiltonian of the open system, and V is an $N \times M$ coupling matrix
Remark: Formalism can be translated to cavities $(N \rightarrow \infty)$. $\left(E-\mathcal{H}_{\text {eft }}\right)^{-1}$ corresponds to resolvent of the open cavity and V projects onto leads.

In the "Mexico approach" the scattering matrix is modelled directly by a random matrix. For perfect coupling, the relevant ensembles are the Circular Ensembles, the CUE $(\beta=2)$, $\operatorname{COE}(\beta=2)$ and CSE $(\beta=2)$. [Mello, Pereyra, Seligman '85]

Random matrix theory

Joint probability density function of the transmission eigenvalues (Jacobi ensemble) [Baranger, Mello '94; Jalabert, Pichard, Beenakker '94]

$$
P\left(T_{1}, T_{2}, \ldots, T_{n}\right)=\mathcal{N}_{\beta} \prod_{j=1}^{n} T_{j}^{\alpha} \prod_{1 \leq j<k \leq n}\left|T_{j}-T_{k}\right|^{\beta}
$$

where $\alpha=\beta / 2\left(\left|M_{2}-M_{1}\right|+1\right)-1$ and \mathcal{N}_{β} is a normalisation constant
Results for conductance

$$
G= \begin{cases}\frac{M_{1} M_{2}}{M} & \text { for CUE } \\ \frac{M_{1} M_{2}}{M+1}=\frac{M_{1} M_{2}}{M}-\frac{M_{1} M_{2}}{M^{2}}+\frac{M_{1} M_{2}}{M^{3}}-\ldots & \text { for COE }\end{cases}
$$

$\frac{M_{1} M_{2}}{M}$ is classical conductance
Variance of the conductance

$$
\lim _{n \rightarrow \infty} \operatorname{Var}(\mathrm{G})=\frac{1}{8 \beta}
$$

Semiclassical approximation

Semiclassical approximation [Jalabert, Baranger, Stone '00]

$$
t_{b a} \approx \sum_{\gamma: a \rightarrow b} A_{\gamma} e^{i S_{\gamma} / \hbar}
$$

The channels (a, b) determine the angles with which the trajectories enter and leave the cavity

Semiclassical conductance

$$
G=\left\langle\sum_{a, b} t_{b a} t_{b a}^{*}\right\rangle_{E} \approx\left\langle\sum_{a, b} \sum_{\gamma, \gamma^{\prime}: a \rightarrow b} A_{\gamma} A_{\gamma^{\prime}}^{*} e^{i\left(S_{\gamma}-S_{\gamma^{\prime}}\right) / \hbar}\right\rangle_{E}
$$

Relevant contribution only from correlated trajectories
Diagonal approximation considers $\gamma=\gamma^{\prime}$ [Baranger, Jalabert, Stone'93]

$$
G_{\mathrm{diag}}=\sum_{a, b} \sum_{\gamma: a \rightarrow b}\left|A_{\gamma}\right|^{2} \sim \frac{M_{1} M_{2}}{M}
$$

using a classical sum rule. This is the classical conductance.

Higher orders in $1 / M$

Correlated pairs [Richter, MS '02; Heusler, Müller, Braun, Haake '06]
Diagrammatic rules for each orbit configuration

- $1 / M$ for every link
- $-M$ for every encounter
- multiply by number of ingoing and outgoing channels $M_{1} M_{2}$

Example: Left "diagram" contributes $(1 / M)^{3}(-M) M_{1} M_{2}=-\frac{M_{1} M_{2}}{M^{2}}=G^{(2)}$

Higher moments \mathcal{M}_{k}

The approximation of the k-th moment \mathcal{M}_{k} requires $2 k$ trajectories.
Example of a set of trajectories that contributes to the fourth moment \mathcal{M}_{4}.

Half of the trajectories connect the channels i_{j} and $o_{j}, j=1, \ldots, k$, the other half connect the channels i_{j+1} and $o_{j}, j=1, \ldots, k\left(i_{k+1} \equiv i_{1}\right)$.

Same diagrammatic rules apply $\quad \Longrightarrow$ Combinatorial problem

Semiclassical results

- [Richter, MS '02]: First correction to \mathcal{M}_{1}.
- [Schanz, Pulhmann, Geisel '03]: Leading order of \mathcal{M}_{2}.
- [Heusler, Müller, Braun, Haake '06]: All orders for \mathcal{M}_{1} and \mathcal{M}_{2}.
- [Berkolaiko, Harrison and Novaes '08]: Leading order of all \mathcal{M}_{k}.
- [Berkolaiko, Kuipers '11]: Second order of all \mathcal{M}_{k}.
- [Berkolaiko, Kuipers '13; Novaes '13, '15]: All orders of all \mathcal{M}_{k}.

Time delays

Joint probability density function of the inverses of the proper time delays $\gamma_{j}=1 / \tau_{j}$ (Laguerre ensemble) [Brouwer, Frahm, Beenakker '97]

$$
P\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)=\mathcal{N}_{\beta} \prod_{j=1}^{n} \gamma_{j}^{\beta M / 2} \mathrm{e}^{-\beta \gamma_{j} / 2} \prod_{1 \leq j<k \leq n}\left|\gamma_{j}-\gamma_{k}\right|^{\beta}
$$

where \mathcal{N}_{β} is a normalisation constant
The first moment, the average Wigner time delay, is equal to the classical dwell time: $m_{1}=\left\langle\tau_{w}\right\rangle=\bar{\tau}_{W}=\tau_{D}$

Results for the second moment [Mezzadri, Simm '11,'12]

$$
m_{2}=\frac{1}{M}\left\langle\operatorname{tr}\left(Q^{2}\right)\right\rangle=\frac{2 \beta M^{2} \bar{\tau}_{W}^{2}}{(M+1)(\beta M-2)}
$$

Moments of the proper time delays

One can base a semiclassical approximations of the moments of the proper time delays

$$
m_{k}=\left\langle\frac{1}{M} \operatorname{Tr} Q^{k}\right\rangle=\left\langle\frac{1}{M} \sum_{j=1}^{M} \tau_{j}^{k}\right\rangle
$$

on the definition

$$
Q=-\mathrm{i} \hbar \boldsymbol{S}^{\dagger} \frac{\partial S}{\partial E}
$$

This expresses the moments in terms of the same kind of lead connecting trajectories as for the transmission moments. However, the semiclassical computations are considerably more complicated due to energy derivative. There are no simple diagrammatic rules as in the transmission problem.

Semiclassical results

- [Kuipers, MS '08]: All orders for m_{1}.
- [Berkolaiko, Kuipers '10]: Leading order of all m_{k}.
- [Berkolaiko, Kuipers '11]: Next two orders of all m_{k}.

New semiclassical approach

Alternatively, one can base a semiclassical approximation on a different representation of the Wigner-Smith matrix [Sokolov, Zelevinsky '89]

$$
Q=\hbar V^{\dagger} \frac{1}{\left(E-\mathcal{H}_{\mathrm{eff}}\right)^{\dagger}} \frac{1}{\left(E-\mathcal{H}_{\mathrm{eff}}\right)} V
$$

The matrix element $Q_{a b}$ can be interpreted as overlap of the internal parts $\left(E-\mathcal{H}_{\text {eft }}\right)^{-1} V$ of the scattering wave functions in incident channels a and b.

Semiclassical approximation [Kuipers, Savin, MS '14]

$$
\langle\boldsymbol{r}| \frac{1}{E-\mathcal{H}_{\text {eff }}} V_{c} \approx \frac{1}{\sqrt{\hbar}} \sum_{\gamma(c \rightarrow r)} A_{\gamma} \mathrm{e}^{\frac{i}{\hbar} \mathcal{S}_{\gamma}}
$$

Involves trajectories that connect channel c with an interior point \boldsymbol{r}.
Similar types of trajectories occur in problems involving the survival probability, the current density or the fidelity. [Waltner et al.08, Kuipers et al.09, Gutierrez et al.'09, Gutkin et al.'10]

Average Wigner time delay

Semiclassical approximation for Wigner time delay

$$
\tau_{W} \approx \frac{1}{M} \sum_{c=1}^{M} \int \mathrm{~d}^{2} \boldsymbol{r} \sum_{\gamma, \gamma^{\prime}(c \rightarrow r)} A_{\gamma} A_{\gamma^{\prime}}^{*} \mathrm{e}^{\frac{i}{\hbar}\left(\mathcal{S}_{\gamma}-\mathcal{S}_{\gamma^{\prime}}\right)}
$$

Note that this is the third semiclassical approximation after the one over lead connecting (transmission) trajectories

$$
\tau_{W} \approx \frac{1}{M} \sum_{i, 0=1}^{M} \sum_{\gamma, \gamma^{\prime}(i \rightarrow 0)} T_{\gamma} \tilde{A}_{\gamma} \tilde{A}_{\gamma^{\prime}}^{*} \mathrm{e}^{\frac{i}{\hbar}\left(\mathcal{S}_{\gamma}-\mathcal{S}_{\gamma^{\prime}}\right)}
$$

and the Gutzwiller type formula due to relation of τ_{W} to density of states

$$
\tau_{W} \approx \bar{\tau}_{W}+\frac{1}{M} \operatorname{Re} \sum_{p} A_{p} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \mathcal{S}_{p}}
$$

where the sum is over all periodic orbits of the open cavity.
The diagonal approximation in the first case already yields: $\left\langle\tau_{w}\right\rangle \approx \tau_{D}$

Off-diagonal terms for average Wigner time delay

Trajectories can end in an encounter (one-leg loops) or not.
Simple diagrammatic rules [Kuipers, Savin, MS '14].

- $1 / M$ for every link
- M for each incoming channel
- $-M$ for every encounter, unless it contains an end point
- 1 for every encounter that contains one end point
- 0 for every encounter that contains more than one end point

Example for second moment and results

Example: leading order for m_{2}

(a)

$$
=2 \bar{\tau}_{W}^{2}
$$

$$
\left(\frac{-M^{3}}{M^{4}}+\frac{M}{M^{2}}+2 \frac{M^{2}}{M^{3}}\right) M \bar{\tau}_{W}^{2}
$$

Results

- All orders for second moments of proper time delays m_{2} (and other time delays), and for the variance of the Wigner time delay.
- Leading five orders for all moments m_{k}

For systems with and without time-reversal symmetry.
The highest two orders of m_{k} have not yet been calculated in RMT.

Higher orders in $1 / M$

TRI required

h)

Müller, Heusler, Braun, Haake (2007)
Semiclassical evaluations become a combinatorial problem.

