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Plan of the talk:

1. Microwave networks of coaxial cables and cavities as experimental
realizations of quantum graphs and billiards

2. The elastic enhancement factor Ws ;

3. Results for chaotic and transient systems

4. Conclusions
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An example of a microwave graph with time reversal symmetry

Luchon, 16 March 2015



A AT o0
e, ‘.:‘.v\r‘. s
LT A

b Wy

10 |
™




Propagation inside a coaxial cable

In order to find propagation of a wave inside the coaxial cable joining the i-th
and the j-th vertex of the microwave graph we begin with the continuity equation
for the charge and the current on the considered cable (bond)

de;(x,t) _ dJ . (x,t)
dt dx

(1)

where ¢ (x,7) and J (x,t) are the charge and the current per unit
length on the surface of the inner conductor of a coaxial cable.

For the potential difference we can write down

j i ¢, (x,1)
U, (eut) =V () =V (.0) = =52 )

where Vllf (x,t) and 1/2’7 (x,t) are the potentials of the inner and the
outer conductors of a coaxial cable and ( is the capacitance per unit
length of a cable.
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Making use of the equations (1) and (2) for an ideal lossless coaxial cable
and assuming that along the cable propagates a monochromatic wave, one
can derive the telegraph equation on the microwave network

d’ W°e
&

U,(x) =0 3)

2
W €

Assuming the following correspondence W (x) < U, (x) and k’ < >

the equation (3) is formally equivalent to the one-dimensional Schrodinger €
equation (with w2 2 = 1) on the graph

d2
dx’

2
W (x) + kW, (x) = 0 (4)
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Experimental set-up for measuring of hexagonal graphs with time reversal symmetry
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An example of a hexagonal microwave network with a microwave circulator
which was used to simulate quantum graphs with broken time reversal
symmetry
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Microwave elements used to build a network with broken time
reversal symmetry
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The elastic enhancement factor

The enhancement factor is the ratio of variances in reflection (a = b) to
that in transmission (a = b):

W - \/V'clr(S"“)Var(Sbb) »
L Var(S“b) | ()
Where Var(Sab)=<Sab2>_‘<Sab>2-

For strong absorption

2 12
WS,[S =E . ( )

Savin et al., Acta Physica Polonica A 109, 53 (20006).
Kharkov and Sokolov, Phys. Lett. B 718, 1562 (2013).

Luchon, 16 March 2015



a)

Morowave Yeckor Netwodk Anciyae ’

\\ Y. )//S”b

b . Saa Sab
S

M
Q. 1, S ba S bb

(a) The experimental setup for measuring the two-port scattering matrix
S of fully connected hexagon microwave networks.
The measurements were performed in the frequency window: 0.5--14 GHz.

(b) The scheme of the setup used to measure the radiation scattering matrix
S of the 6-joint connector.
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The experimental setup for measuring the two-port scattering matrix §

of microwave networks with broken time reversal symmetry.

The network additionally to the attenuators contains four microwave circulators.
The measurements were performed in the frequency window: 7--14 GHz.
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a) b)

(a) Experimental set-up used to measure the scattering matrix § of fully
connected irregular hexagon microwave graphs with absorption.
(b) Scheme of the setup used to measure the radiation scattering matrix § .
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Panels (a) and (b): the modulus
measured for the graph with absorption parameter y =19.9 with use of 1 dB
attenuators. Panels (c) and (d): measurements for the graph with y =47.9 with use
of 2 dB attenuators.
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1 y=193 | |
=477

0.4

Experimental distribution P(R) of the reflection coefficient R at different
values of the absorption strength parameter: y =19.3 (open squares)
and Y =47.7 (full squares).

T is the absorption width and A is the mean level spacing.
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Quantum billiards modelled by microwave thin cavities

An electric field inside a thin microwave cavity is described by the Helmholtz
equation

d2 2
—F (x)+—E (x)=0 (13)
dx ¢’
(1)2
Assuming the following correspondence W (x) < E_(x) and k> = —
c

the equation (13) is formally equivalent to the one-dimensional Schrodinger

equation (with [y 2, = 1) in a quantum billiard

2
d—qJ (X)+k°P (x)=0 (14)
dx?
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The microwave rough cavity
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F versus 1) for (from top to bottom) » = 0.5, 5. 50. Black points
- exact numerics; blue lines - small » approximation; red lines - large
approximation; green lme indicates the slope at the point 0= 0.
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The nearest neighbor spacing distributions

P(s)

Left panel: P(s) for coupled rectangular cavity;
The inset: numerically reconstructed P(s) for the chaoticity parameter K=2.8

Right panel: P(s) for chaotic rough cavity
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ai; = gi;[0i; + M1 — &;5)],

where g;; denotes a symmetric matrix which belongs to GOE matrices. As it is defined off-
diagonal elements g;; are independently Gaussian distributed with the same variance=1 and

the mean=0. The diagonal elements g;; are distributed independently with the variance=2.

A is the transition parameter.

For the matrix a;; of size NxN, we found out that A = x/N
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Figure 6: F,(1,7) for 5 =1 (up) and 3 = 2 (down): 7, =0, 0.03, 1, 3 (from
top to bottom. The influence of absorption is stronger in the case of
T-invariant systems.)
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Conclusions

1. We showed that the experimental and theoretical results for the elastic
enhancement factor for irregular networks with preserved and broken time reversal
symmetry are in good overall agreement with the theoretical predictions.

2. Our experimental results suggest that the elastic enhancement factor can be
used as a measure of internal chaos that can be especially useful for systems with
significant absorption or openness.
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