Statistical Theory of Random (and Chaotic) lasers

A. Douglas Stone Applied Physics, Yale University QC 2015 – Luchon – 3/18/15

Collaborators

- Hui Cao- Yale
- B. Redding expt
- H. Tureci Princeton
- L. Ge CUNY S.I.
- S. Rotter– TU Wien
- Y. D. Chong -Nanyang TU

<u>Collaborators</u> <u>A. Goetschy</u> CNRS Paris A. Cerjan, Yale

RMT in Optics/E&M

- Analysis of multiple scattering problems (including wave chaos) => Extremal eigenvalue problems for non-hermitian or non-unitary matrices
- Random/QC lasing: Non-unitary (non-linear) S-matrix
 Realistic technological application for theory
- Control of transmission/absorption/focusing in diffusive scattering media (another talk)
 Open Channels, correlations: DMPK (1984,1987),Imry (1986),Kane (1988)
 SLM-based Focusing thru opaque white media: Mosk et al. PRL 2007
 "Hidden Black", Y.D. Chong and ADS, PRL 107, 163901, 2011
 "Filtered Random Matrices", A. Goetschy and ADS, PRL 111, 063901 (2013); effect of incomplete "channel" control => Free probability theory
 "Control of Total Transmission", Popoff, Cao et al. PRL 112, 133903 (2014): <T> = 5% => T_{max} = 18%

Pioneering Random Lasers

Lawandy, Balachandran, Gomes & Sauvain, Nature **368**, 436 (1994) (following early ideas from Letokhov)

ZnO Nanorods and Powders

Average particle diameter ~ 100 nm

Also confirmed by photon statistics

HC et al, Appl. Phys. Lett. 73, 3656 (1998); Phys. Rev. Lett. 82, 2278 (1999)

Why Interesting? Not due to Anderson Localized High Q modes – Diffusive regime

Thouless #
$$N_T = \frac{\gamma}{\delta v} >> 1$$

Resonances are strongly overlapping <u>spatially</u> and <u>spectrally</u>.

 $N_{T} = g = 1/f$ DRL has f << 1

Passive cavity scattering spectrum shows no isolated resonances – not within standard laser theory

Modes are pseudo-random in space – not based on periodic orbits

Tureci, Ge, Rotter, ADS, Science **320**, 643 (2008) SALT-based calculations Vanneste, Sebbah & H. Cao, Phys. Rev. Lett. **98**,143902 (2007).

Similar to Wave-chaotic Lasers

"Ray and Wave Chaos in Asymmetric Resonant Optical Cavities", J. U. Nöckel, A. D. Stone, Nature, 385, 45 (1997). Open wave-chaotic systems

Hard Chaos

KAM Transition to ray chaos

Theory for lasers with complex geometry

microdisk

Photonic Crystal Lasers

microtoroid

Universal: Lasers as scattering systems

Threshold lasing modes

 $\mathbf{S}(n(\vec{r})k) \cdot \mathbf{Z} = \beta$ 2.5Laser: lasing mode β **m=** goes out, nothing in $|\sin(nk_{\mu}x)|^2$ × 1.5 $|e^{ik_{\mu}x_{\mu}}|$ \Rightarrow Poles of the S-matrix Passive cavity: $n = (\epsilon_c)^{1/2}$, S ٩Ľ unitary, poles complex. Simple example: 1D uniform 0.5 dielectric cavity: 0 0.51.5complex sine inside, purely punin outgoing outside ĸ_{out} Now add gain Stabilized by n>non-linearity! $n = n_c + \Delta n_a$ Pump harder => multimode lasing

Semiclassical lasing theory + SALT no spont emission no laser linewidth Cavity arbitrary (2) 2^2

$$\nabla^2 E(\mathbf{x}, t) - \frac{\epsilon_c(\mathbf{x})}{c^2} \frac{\partial^2}{\partial t^2} E(\mathbf{x}, t) = \frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} P_g(\mathbf{x}, t)$$
$$P_q = \chi_q E$$

Any cavity, gain medium, N-levels, M ind. transitions, non-uniform pumping

Simplest case:2-level atoms

 $\epsilon_{c}(x,\omega)$

gain

$$\int \frac{\mathbf{P} = n_a \operatorname{Tr} \mathbf{p}\rho}{\mathbf{D} = n_a(\rho_{22} - \rho_{11})}$$

 $\epsilon = 1$

Not studying dynamical chaos Look for non-linear steady-state, with purely outgoing BC

Maxwell-Bloch equations

Haken(1963), Lamb (1963) - the standard model

$$\epsilon_{c}\ddot{E}^{+} = \nabla^{2}E^{+} - 4\pi\ddot{P}^{+}$$

$$\dot{P}^{+} = (-i\omega_{a} - \gamma_{\perp})P^{+} - i|g|^{2}E^{+}D$$

$$P = \gamma_{\parallel}(D_{0} - D) + 2i(E^{+}P^{+}) - E^{+*}P^{+})$$

$$\gamma_{\perp} = 1/T_{2}, \quad \gamma_{\parallel} = 1/T_{1}$$

$$D_{0} = pump \ strength$$

$$g^{2} = dipole \ coupling$$

□ dD/dt≈0, <u>in steady-state</u> => SALT Eqs
 □ γ_{perp} << Δ, γ_{par} => good approx <u>for microlasers</u>

$$\begin{bmatrix} \nabla^{2} + (\epsilon_{c} + \tilde{D}_{0}\gamma_{\mu})k_{\mu}^{2}]\Psi_{\mu} = 0 \\ \tilde{D}_{0}(\mathbf{r}) \equiv \frac{D_{0}(\mathbf{r})}{1 + \sum_{\nu}^{N} |\gamma_{\nu}\Psi_{\nu}(\mathbf{x})|^{2}} \end{bmatrix}$$

Re(k)

Non-linear coupled time-independent wave equations with outgoing BC

$$\mu = 1, 2, \dots N$$

$$\Psi_{\mu} \sim e^{+ikr}/r, \quad r \to \infty$$

Saline Solution

Specialized TLM/TCF (non-hermitian biorthogonal) basis set method(Tureci,ADS,Ge,Rotter,Chong)

$$\Psi_{\mu}(\vec{r}) = \sum_{n} a_{n}^{\mu} u_{n}(\vec{r}, k_{\mu}) \longrightarrow$$

$$\text{Lasing Map}$$

$$D_{0} \sum_{n'} \mathcal{T}_{nn'}^{\mu} a_{n'}^{\mu} = a_{n}^{\mu}$$

$$\left[\nabla^{2} + \left(\epsilon_{c}(\vec{r}) + \eta_{n}(k) F(\vec{r}) \right) k^{2} \right] u_{n}(\vec{r}, k) = 0$$

$$\text{Solve by iterative method (rapidly convergent).}$$

□SALT for DRL: approx sum by a single term, soln in terms of evalues of Green fcn for this non-herm eq.

$$\eta_n(k_\mu) = \eta_1 - i\eta_2$$

Freq shift \checkmark gain Λ_2

$$\Lambda_n \equiv \frac{1}{\eta_n} \approx \frac{+\imath}{\eta_2} \ (RL)$$

Why SALT it is good for you

□ General theory of CW steady-state lasing, partially analytic and analytic approx => physical insight

Computationally tractable, no time integration

Cavities/modes of arbitrary complexity and openness.

Non-linear hole-burning interactions to infinite order

□ How well does it work? (it has an approximation)

Test: SALT and FDTD agree for 1D random laser

Other FDTD tests of SALT: 2D PCSEL and 3D PC defect mode laser, coupled cavities; also multiple transitions, and injected signals
 No FDTD on 2D RLs (yet), SALT studies:

Many modes with similar thresholds as kR gets large

SALT for 2D random laser

"Strong interactions in multimode random lasers", H. Tureci, L. Ge, S. Rotter, ADS; Science, 320,643 (2008)

Also, L. Ge, PhD thesis (diffusive regime), and A. Cerjan and A. Goetschy (in preparation) – focus on diffusive results

Diffusive Random Laser

Non-linear interactions

Analytic Theory for DRL Goetschy, Cerjan, ADS, in preparation

Linearized dynamics: $\{ \nabla^2 + k^2 [1 + \delta \epsilon_c(\mathbf{r}, \omega) + \delta \epsilon_g(\omega)] \} E(\mathbf{r}, \omega) = 0$ $(k = \omega/c) \qquad \qquad \texttt{Disorder} \qquad \texttt{Gain curve}$ Pump profile Outgoing solution: $E(\omega) = G(\omega)F(\mathbf{r})\delta\epsilon_g(\omega)E(\omega)$ $G(\omega) = \frac{-k^2}{\nabla^2 + k^2 \epsilon_c(\mathbf{r}) + i0^+}$ Green's function of the disorder
$$\begin{split} \Lambda_n &= 1/\delta\epsilon_g(\omega) \implies Im\{\Lambda_n\} = 1/\tilde{D_0} \\ & \mathbf{k} \\ & \text{Eigenvalue of G(\omega)} \end{split}$$
Lasing threshold:

$$G(\omega) = \frac{-k^2}{\nabla^2 + k^2 \epsilon_c(\mathbf{r}) + i0^+}$$
$$\Lambda_n = \frac{\omega^2}{(\omega_n - i\Gamma_n/2)^2 - \omega^2}$$

Effective H similar to
open chaotic cavities
$$\int_{G(\omega)} = \frac{-k^2}{k^2 - H^e(\omega)}$$
$$H^e = -\nabla^2 - k^2 \delta \epsilon_c(\mathbf{r}) + H^{BC} \longrightarrow \text{Eigenvalue } \omega_n - i\Gamma_n/2$$

$$\begin{array}{ll} \mbox{Statistical averages}\\ \mbox{Single pole}\\ \mbox{approx to SALT:} & \Psi_{\mu}(\vec{r}) = \sum_{n} a_{n}^{\mu} u_{n}(\vec{r}, k_{\mu}) \approx a_{\mu} u_{\mu}(\vec{r})\\ \mbox{$\mu \rightarrow m, u_{\mu} \rightarrow R_{m}$} & \Phi_{m} = |a_{m}|^{2} \int d\mathbf{r} |R_{m}(\mathbf{r})|^{2},\\ \mbox{$\omega_{m} = \omega_{a} + \frac{\operatorname{Re}\Lambda_{m}(\omega_{m})}{\operatorname{Im}\Lambda_{m}(\omega_{m})}\gamma_{\perp},$}\\ \mbox{$\omega_{m} = \omega_{a} + \frac{\operatorname{Re}\Lambda_{m}(\omega_{m})}{\operatorname{Im}\Lambda_{m}(\omega_{m})}\gamma_{\perp},$}\\ \mbox{$\sum_{p=1}^{N_{L}} \alpha_{mp}\Gamma_{p}\Phi_{p} = \tilde{D}_{0}\operatorname{Im}\Lambda_{m}(\omega_{m}) - 1,$} & \begin{array}{c} \operatorname{Constrained}\\ \operatorname{linear Eq. for}\\ \operatorname{modal intensities} \\ \mbox{$\alpha_{mp} = \frac{\int \mathrm{dr}F(\mathbf{r})R_{m}(\mathbf{r})^{2}|R_{p}(\mathbf{r})|^{2}}{\int \mathrm{dr}|R_{m}(\mathbf{r})|^{2}}.$} & \begin{array}{c} \alpha_{mp} \simeq \langle \alpha_{mp} \rangle \simeq \frac{1+2\delta_{mn}}{V}, \\ \operatorname{Self- averaging}\\ \operatorname{gaussian approx} \end{array} \end{array}$$

$$\Phi_m = \frac{V}{2\Gamma_m} \left[\tilde{D}_0 \text{Im} \Lambda_m(\omega_m) - \right]$$

Express all properties of interest in terms of P(Im{Λ})

Predicts monotonically decreasing modal slopes

 $\langle Y_{\rm thr} \rangle$ Eventually saturates with pump

Need prob dist of $Im{\Lambda} \sim \Gamma$

Quasi-modes statistics (simulations in open 2D disk)

Two limits Gain width: γ_{\perp} Γ

Results $\gamma_{\perp} < \overline{\Gamma}$

In 2D

Total Intensity $\gamma_{\perp} < \overline{\Gamma}$

Results: $\gamma_{\perp} > \overline{\Gamma}$

Scaling parameter is:

$$g = \longleftrightarrow \gamma_{\perp} < \bar{\Gamma}$$
$$g' = g \frac{\gamma_{\perp}}{\bar{\Gamma}} \longleftrightarrow \gamma_{\perp} > \bar{\Gamma}$$

Comparison of total intensities

Savior er App for Random Lasers: Exploiting spatial incoherence

Spatial Coherence

If wavefronts at different points have a stable phase relationship there will be interference fringes

- ⇒Always true of single mode lasing
- ⇒Not true of multimode

Young's double slit experiment

Controlling Spatial Coherence in RL by Varying Pump Volume

620

100 μm

600

610

Imaging applications of RL?

Optical coherence tomography (OCT)

Prof. Michael Choma, MD. PhD, Yale Medicine

Brandon Redding, Res. Scientist (Cao Group)

Spatial cross talk

Coherent illumination

$$I = |E|^{2} = |E_{1} + E_{2}|^{2}$$
$$= |E_{1}|^{2} + |E_{2}|^{2} + \frac{2E_{1}E_{2}\cos(0)}{2}$$

Incoherent illumination

$$I = I_1 + I_2$$

Much reduced artifacts

Full-Field OCT

Moneron, Boccara, & Dubois, Opt. Lett. 30, 1351 (2005)

Ideal Illumination Source for Imaging

Spatial Coherence

Speckle-free Laser Imaging

Redding, Choma & HC, Nature Photonics 6, 355 (2012)

On-chip Electrically-Pumped Semiconductor Random laser

Development of a New Light Source for Massive Parallel Confocal Microscopy and Optical Coherence Tomography

Do we really want to use a random laser?

No – a simpler chaotic shape is easier to fabricate

Fabricated on chip AlGaAs - GaAs QW structure.

B. Redding, A. Cerjan, X. Huang, ADS, M. L. Lee, M. A. Choma, H. Cao, PNAS, in press

What Specific D-Shape is best? Want max number of lasing modes at lowest power level – perfect for SALT

D-laser characterization

Results?

Ideal illumination Source for Imaging

Spatial Coherence

Thanks!

Hui

Hakan

Brandon

Yidong

Stefan

Arthur

Alex