Generalized Gaussian wave packet dynamics: integrable and chaotic systems

Steven Tomsovic

Washington State University, Pullman, WA USA work supported by: US National Science Foundation

Collaborators

Harinder Pal, postdoc, WSU
Manan Vyas, postdoc, WSU
both now in T. H. Seligman's group, Mexico

Today's Thread of Logic

1) Gaussian wave packet dynamics
a) Linearized wave packet dynamics (Heller, 1975-7)
b) Method of steepest descents - GGWPD (Huber, Heller, Littlejohn, 1988)

- Saddle points - classical trajectories with complex (q,p)
- Equivalence to complex, time-dependent WBK
- Implementation challenges
c) Off-center real trajectory sums
- Chaotic - heteroclinic orbits (Tomsovic, Heller, 1991-3)
- Integrable - shearing orbits (Barnes, Nockleby, Tomsovic, Nauenberg, 1994)

2) Off-center real trajectories \Longrightarrow complex saddle points
a) Geometry
b) Newton-Raphson equations
3) Illustration using a simple dynamical system
a) Kicked rotor
b) Chaotic regime
c) Near-integrable regime

Linearized wave packet dynamics

For wave packets

$$
\phi_{\alpha}(\vec{x})=\left(\frac{2^{D} \operatorname{Det}\left(\mathbf{b}_{\alpha}\right)}{\pi^{D}}\right)^{\frac{1}{4}} \mathrm{e}^{-\left(\vec{x}-\vec{q}_{\alpha}\right)^{T} \cdot \mathbf{b}_{\alpha} \cdot\left(\vec{x}-\vec{q}_{\alpha}\right)+\frac{i}{\hbar} \vec{p}_{\alpha} \cdot\left(\vec{x}-\vec{q}_{\alpha}\right)}
$$

two typical dynamical quantities of interest are the time propagation of $\phi_{\alpha}(\vec{x})$ and its overlap with a final state

$$
\mathcal{C}_{\beta \alpha}(t)=\int \mathrm{d} \vec{x} \phi_{\beta}^{*}(\vec{x}) U_{\hat{H}}(t, 0) \phi_{\alpha}(\vec{x})
$$

Linearizing the dynamics about the wave packet center generates an approximation depending exclusively on classical mechanical information.

The center of the wave packet, $\left(\vec{q}_{\alpha}, \vec{p}_{\alpha}\right)$, is the initial condition for the classical trajectory used in the approximation.

Linearized wave packet dynamics (cont.)

Advantageous properties

- Only requires a single classical trajectory whose initial conditions are known, i.e. no root search. Can propagate, and calculate stabilities and Maslov index.
- Analytical dynamical expressions require only evaluating Gaussian integrals.
- Can be implemented in any number of degrees of freedom. Can be quite accurate.

Limitations

- Effectively, can only work up to an Ehrenfest time scale.
- No way to improve the approximation without introducing many complications.

Wave packet propagation example

Ehrenfest time ends in upper right frame

Method of steepest descents

The ultimate semiclassical approximation

- Exponential arguments are complex functions, thus roots are generally expected to be saddle points.
- Saddle points are classical trajectories with complex initial conditions ($\overrightarrow{\mathcal{Q}}_{0}, \overrightarrow{\mathcal{P}}_{0}$).
- Essential ambiguity of wave packet center:

$$
2 \sum_{k=1}^{D}\left[\mathbf{b}_{\alpha}\right]_{j k}\left(\overrightarrow{\mathcal{Q}}_{\alpha}\right)_{k}+\frac{i}{\hbar}\left(\overrightarrow{\mathcal{P}}_{\alpha}\right)_{j}=2 \sum_{k=1}^{D}\left[\mathbf{b}_{\alpha}\right]_{j k}\left(\vec{q}_{\alpha}\right)_{k}+\frac{i}{\hbar}\left(\vec{p}_{\alpha}\right)_{j}
$$

equal to Lagrangian manifold condition $\overrightarrow{\mathcal{P}}_{0}\left(\overrightarrow{\mathcal{Q}}_{0}\right)=\nabla \mathcal{S}_{0}\left(\overrightarrow{\mathcal{Q}}_{0}\right)$.

- This approximation called generalized Gaussian wave packet dynamics (GGWPD) turns out to be equivalent to a complexified time-dependent WBK.

Method of steepest descents (cont.)

Challenges:

- Requires finding saddle points, which are intersections of two 2D-dimensional infinite hyperplanes in 4D-dimensional space. ($D=$ number of degrees of freedom)
- The geometry of complexified classical mechanics is rather complicated. For example, some trajectories lead to infinite momenta in finite times and generate Stokes phenomena.
- The number of saddle points must increase at least linearly with increasing time for integrable systems, and at least exponentially fast for chaotic systems.
- Implemented in a couple of works for a $D=1$ Morse oscillator, that's it.

Off-center real trajectories: heteroclinic orbits

- Dynamics in chaotic (K-) systems is generally hyperbolic and there is a convergence zone extendable to infinity along the asymptotes.
- Identify the unstable manifold of the phase point $\left(\vec{q}_{\alpha}, \vec{p}_{\alpha}\right)$ and the stable manifold of $\left(\vec{q}_{\beta}, \vec{p}_{\beta}\right)$.
- If " \hbar " is small enough, all relevant classical transport follows the unstable manifold away from $\left(\vec{q}_{\alpha}, \vec{p}_{\alpha}\right)$ and the stable manifold toward $\left(\vec{q}_{\beta}, \vec{p}_{\beta}\right)$. The complete transport problem is solved as a sum over heteroclinic orbits found at the intersections of the two manifolds.
- Whether one thinks about it this way or not, using a stability analysis around a heteroclinic orbit constructs a saddle that is just a complicated Gaussian integral.

Wave packets Real/complex trajectories Kicked rotor

Heteroclinic chirp illustration

Generalized Gaussian wave packet dynamics

Off-center real trajectories: shearing orbits

- Dynamics in integrable systems generally involves shearing locally.
- All transport follows tori. To transport from the phase space region locally surrounding $\left(\vec{q}_{\alpha}, \vec{p}_{\alpha}\right)$ to the region surrounding $\left(\vec{q}_{\beta}, \vec{p}_{\beta}\right)$, one needs only to identify those tori that intersect both regions.
- Ideally in action-angle variables, construct the surfaces of constant angle variables with varying actions that intersect the points $\left(\vec{q}_{\alpha}, \vec{p}_{\alpha}\right)$ and $\left(\vec{q}_{\beta}, \vec{p}_{\beta}\right)$, respectively.
- Propagate the former and find the intersections with the latter; gives a complete solution to the classical transport problem as a sum over shearing orbits.

Geometrical considerations

A complex saddle point trajectory must satisfy the Lagrangian manifold conditions:

$$
\begin{aligned}
2 \sum_{k=1}^{D}\left[\mathbf{b}_{\alpha}\right]_{j k}\left[\overrightarrow{\mathcal{Q}}_{0}-\vec{q}_{\alpha}\right]_{k}+\frac{i}{\hbar}\left[\overrightarrow{\mathcal{P}}_{0}-\vec{p}_{\alpha}\right]_{j} & =0 \\
2 \sum_{k=1}^{D}\left[\mathbf{b}_{\beta}\right]_{j k}^{*}\left[\overrightarrow{\mathcal{Q}}_{t}-\vec{q}_{\beta}\right]_{k}-\frac{i}{\hbar}\left[\overrightarrow{\mathcal{P}}_{t}-\vec{p}_{\beta}\right]_{j} & =0
\end{aligned}
$$

meaning that the initial condition is on the initial manifold and the propagated point is on the final manifold.

This won't be true for any of the real off-center trajectories, but can use stability matrix:

$$
\binom{\delta \overrightarrow{\mathcal{P}}_{t}}{\delta \overrightarrow{\mathcal{Q}}_{t}}=\left(\begin{array}{ll}
\mathbf{M}_{\mathbf{1 1}} & \mathbf{M}_{\mathbf{1 2}} \\
\mathbf{M}_{\mathbf{2 1}} & \mathbf{M}_{\mathbf{2 2}}
\end{array}\right)\binom{\delta \overrightarrow{\mathcal{P}}_{0}}{\delta \overrightarrow{\mathcal{Q}}_{0}}
$$

Newton-Raphson Scheme

This generates the Newton-Raphson Scheme (after some algebra):

$$
\begin{aligned}
-\left[\overrightarrow{\mathcal{C}_{0}}\right]_{j}= & 2 \sum_{k=1}^{D}\left[\mathbf{b}_{\alpha}\right]_{j k}\left[\delta \overrightarrow{\mathcal{Q}}_{0}\right]_{k}+\frac{i}{\hbar}\left[\delta \overrightarrow{\mathcal{P}}_{0}\right]_{j} \\
-\left[\overrightarrow{\mathcal{C}}_{t}\right]_{j}= & 2 \sum_{k=1}^{D}\left[\mathbf{b}_{\beta}\right]_{j k}^{*}\left[\mathbf{M}_{\mathbf{2 1}} \delta \overrightarrow{\mathcal{P}}_{0}+\mathbf{M}_{\mathbf{2 2}} \delta \overrightarrow{\mathcal{Q}}_{0}\right]_{k}+ \\
& \frac{i}{\hbar}\left[\mathbf{M}_{\mathbf{1 1}} \delta \overrightarrow{\mathcal{P}}_{0}+\mathbf{M}_{\mathbf{1 2}} \delta \overrightarrow{\mathcal{Q}}_{0}\right]_{j}
\end{aligned}
$$

These equations are used iteratively. The first time through, they give a complex deviation to the off-center real trajectory in either the shearing or heteroclinic trajectory sums.

The Kicked Rotor

The classical Hamiltonian and mapping equations:

$$
\begin{array}{rlr}
H & =\frac{p^{2}}{2}-\frac{K}{4 \pi^{2}} \cos (2 \pi q) \sum_{n=-\infty}^{\infty} \delta(t-n) \\
p_{i+1} & =p_{i}-\frac{K}{2 \pi} \sin 2 \pi q_{i} & \bmod 1 \\
q_{i+1} & =q_{i}+p_{i+1} & \bmod 1
\end{array}
$$

The quantum unitary propagator is:

$$
\begin{aligned}
U_{n n^{\prime}} & =\frac{1}{N} \exp \left(\frac{i N K}{2 \pi} \cos \left(\frac{2 \pi\left(n^{\prime}+\alpha\right)}{N}\right)\right) \\
& \times \sum_{m=0}^{N-1} \exp \left(-\pi i \frac{(m+\beta)^{2}}{N}+\frac{2 \pi i(m+\beta)\left(n-n^{\prime}\right)}{N}\right)
\end{aligned}
$$

Chaotic Regime

Wave packets Real/complex trajectories Kicked rotor

Chaotic Regime (cont.)

\times off-center trajectories

+ saddle points

Wave packets Real/complex trajectories Kicked rotor

Near-integrable Regime

Wave packets Real/complex trajectories Kicked rotor

Near-integrable Regime (cont.)

$\times \quad$ off-center trajectory

+ saddle point

Generalized Gaussian wave packet dynamics

Conclusions

- GGWPD, the ultimate semiclassical approximation, has never been carried out for anything but a 1D Morse oscillator. Don't forget: the hyperplane Lagrangian manifolds extend to infinity and complex trajectories that run off to infinite momenta in finite times create Stokes surfaces.
- Classical transport for integrable and chaotic systems can be fully solved with shearing trajectory and heteroclinic trajectory sums, respectively.
- Each transport pathway (term in the sum) can be uniquely associated with a complex saddle point trajectory. A Newton-Raphson scheme converges rapidly to it. Thus real off-center trajectories can be used to find all saddle points associated with allowed processes.

Conclusions (cont.)

- Instead of searching the intersection points of two 2D surfaces embedded in a 4D space, GGWPD can be reduced to the intersection points of two D-1 surfaces embedded in a 2D-2 dimensional space followed by a Newton-Raphson scheme.
- Cutting off strongly Gaussian damped contributions is straightforward using the real off-center trajectories and so is avoiding Stokes phenomena.
- Improving implementation of GGWPD reduces to improving implementation of real off-center trajectory methods.
- It would be very interesting to develop an extension that finds saddle points for non-allowed processes.

