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Today’s Thread of Logic

1) Gaussian wave packet dynamics
a) Linearized wave packet dynamics (Heller, 1975-7)

b) Method of steepest descents - GGWPD (Huber, Heller, Littlejohn, 1988)

Saddle points – classical trajectories with complex (q,p)
Equivalence to complex, time-dependent WBK
Implementation challenges

c) Off-center real trajectory sums
Chaotic - heteroclinic orbits (Tomsovic, Heller, 1991-3)

Integrable - shearing orbits (Barnes, Nockleby, Tomsovic, Nauenberg, 1994)

2) Off-center real trajectories =⇒ complex saddle points
a) Geometry
b) Newton-Raphson equations

3) Illustration using a simple dynamical system
a) Kicked rotor
b) Chaotic regime
c) Near-integrable regime
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Linearized wave packet dynamics

For wave packets

φα(~x) =

(
2DDet(bα)

πD

) 1
4

e−(~x−~qα)
T ·bα·(~x−~qα)+ i

~~pα·(~x−~qα)

two typical dynamical quantities of interest are the time
propagation of φα(~x) and its overlap with a final state

Cβα(t) =
∫

d~x φ∗β(~x)UĤ(t, 0)φα(~x)

Linearizing the dynamics about the wave packet center
generates an approximation depending exclusively on classical
mechanical information.

The center of the wave packet, (~qα,~pα), is the initial condition
for the classical trajectory used in the approximation.
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Linearized wave packet dynamics (cont.)

Advantageous properties

Only requires a single classical trajectory whose initial
conditions are known, i.e. no root search. Can propagate,
and calculate stabilities and Maslov index.
Analytical dynamical expressions require only evaluating
Gaussian integrals.
Can be implemented in any number of degrees of freedom.
Can be quite accurate.

Limitations

Effectively, can only work up to an Ehrenfest time scale.
No way to improve the approximation without introducing
many complications.
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Wave packet propagation example

Ehrenfest time ends in upper right frame
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Method of steepest descents

The ultimate semiclassical approximation

Exponential arguments are complex functions, thus roots
are generally expected to be saddle points.
Saddle points are classical trajectories with complex initial
conditions ( ~Q0, ~P0).
Essential ambiguity of wave packet center:

2
D∑

k=1

[bα]jk
(
~Qα
)

k
+

i
~

(
~Pα
)

j
= 2

D∑
k=1

[bα]jk (~qα)k +
i
~
(~pα)j

equal to Lagrangian manifold condition ~P0( ~Q0) = ∇S0( ~Q0).
This approximation called generalized Gaussian wave
packet dynamics (GGWPD) turns out to be equivalent to a
complexified time-dependent WBK.
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Method of steepest descents (cont.)

Challenges:

Requires finding saddle points, which are intersections of
two 2D-dimensional infinite hyperplanes in 4D-dimensional
space. (D = number of degrees of freedom)
The geometry of complexified classical mechanics is rather
complicated. For example, some trajectories lead to infinite
momenta in finite times and generate Stokes phenomena.
The number of saddle points must increase at least linearly
with increasing time for integrable systems, and at least
exponentially fast for chaotic systems.
Implemented in a couple of works for a D = 1 Morse
oscillator, that’s it.
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Off-center real trajectories: heteroclinic orbits

Dynamics in chaotic (K-) systems is generally hyperbolic
and there is a convergence zone extendable to infinity
along the asymptotes.
Identify the unstable manifold of the phase point (~qα,~pα)
and the stable manifold of (~qβ,~pβ).
If “~” is small enough, all relevant classical transport
follows the unstable manifold away from (~qα,~pα) and the
stable manifold toward (~qβ,~pβ). The complete transport
problem is solved as a sum over heteroclinic orbits found at
the intersections of the two manifolds.
Whether one thinks about it this way or not, using a
stability analysis around a heteroclinic orbit constructs a
saddle that is just a complicated Gaussian integral.
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Heteroclinic chirp illustration
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Off-center real trajectories: shearing orbits

Dynamics in integrable systems generally involves
shearing locally.
All transport follows tori. To transport from the phase space
region locally surrounding (~qα,~pα) to the region
surrounding (~qβ,~pβ), one needs only to identify those tori
that intersect both regions.
Ideally in action-angle variables, construct the surfaces of
constant angle variables with varying actions that intersect
the points (~qα,~pα) and (~qβ,~pβ), respectively.
Propagate the former and find the intersections with the
latter; gives a complete solution to the classical transport
problem as a sum over shearing orbits.
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Geometrical considerations

A complex saddle point trajectory must satisfy the Lagrangian
manifold conditions:

2
D∑

k=1

[bα]jk
[
~Q0 −~qα

]
k
+

i
~

[
~P0 −~pα

]
j

= 0

2
D∑

k=1

[bβ]∗jk
[
~Qt −~qβ

]
k
− i

~

[
~Pt −~pβ

]
j

= 0

meaning that the initial condition is on the initial manifold and
the propagated point is on the final manifold.

This won’t be true for any of the real off-center trajectories, but
can use stability matrix:(

δ ~Pt

δ ~Qt

)
=

(
M11
M21

M12
M22

)(
δ ~P0

δ ~Q0

)
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Newton-Raphson Scheme

This generates the Newton-Raphson Scheme (after some
algebra):

−
[
~C0

]
j

= 2
D∑

k=1

[bα]jk
[
δ ~Q0

]
k
+

i
~

[
δ ~P0

]
j

−
[
~Ct

]
j

= 2
D∑

k=1

[bβ]∗jk
[
M21δ ~P0 + M22δ ~Q0

]
k
+

i
~

[
M11δ ~P0 + M12δ ~Q0

]
j

These equations are used iteratively. The first time through,
they give a complex deviation to the off-center real trajectory in
either the shearing or heteroclinic trajectory sums.
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The Kicked Rotor

The classical Hamiltonian and mapping equations:

H =
p2

2
− K

4π2 cos (2πq)
∞∑

n=−∞
δ (t − n)

pi+1 = pi −
K
2π

sin 2πqi mod 1

qi+1 = qi + pi+1 mod 1

The quantum unitary propagator is:

Unn′ =
1
N

exp
(

iNK
2π

cos
(

2π(n′ + α)

N

))
×

N−1∑
m=0

exp
(
−πi

(m + β)2

N
+

2πi(m + β)(n− n′)
N

)
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Chaotic Regime
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Chaotic Regime (cont.)
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Near-integrable Regime
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Near-integrable Regime (cont.)
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Conclusions

GGWPD, the ultimate semiclassical approximation, has
never been carried out for anything but a 1D Morse
oscillator. Don’t forget: the hyperplane Lagrangian
manifolds extend to infinity and complex trajectories that
run off to infinite momenta in finite times create Stokes
surfaces.
Classical transport for integrable and chaotic systems can
be fully solved with shearing trajectory and heteroclinic
trajectory sums, respectively.
Each transport pathway (term in the sum) can be uniquely
associated with a complex saddle point trajectory. A
Newton-Raphson scheme converges rapidly to it. Thus
real off-center trajectories can be used to find all saddle
points associated with allowed processes.
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Conclusions (cont.)

Instead of searching the intersection points of two 2D
surfaces embedded in a 4D space, GGWPD can be
reduced to the intersection points of two D−1 surfaces
embedded in a 2D−2 dimensional space followed by a
Newton-Raphson scheme.
Cutting off strongly Gaussian damped contributions is
straightforward using the real off-center trajectories and so
is avoiding Stokes phenomena.
Improving implementation of GGWPD reduces to
improving implementation of real off-center trajectory
methods.
It would be very interesting to develop an extension that
finds saddle points for non-allowed processes.
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