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Mean Field Games

[Hawk and dove]

. Hawk Dove
A simple game:
V-C)/2,
2 players Hawk EV-C;/Z V.0
2 strategies Dove oV V/2, V/2

U

* Asthe number of players and strategies becomes large, the
study of such games becomes quickly intractable.
* However:
» « continuum » of strategy
» very large number of « small » players

- Mean Field (differentiable) Games




General structure (e.g: model of population distribution) ‘

[Guéant, Lasry, Lions (2011)]

e Nagentsi=1,2,--- N (N>1)

e state of agent i — real vector X' (here just physical space)

N
1 :
m(x,t) = N E d(x — Xj) density of agents
1

e agent’s dynamic _ | .
dX; = a;dt + odW,;

dW} = white noise
drift a; = control parameter

e agent tries to optimize (by the proper choice of a!) the cost function

[ e SR + giml(x7)



Mean Field Game = coupling between a (collective)
stochastic motion and an (individual) optimization problem
through the mean field ¢[m](x,t)

g glml(x) = f(x) + 1 [ dymiy.t)exp [~(y —x))?/257]

Examples of mean field games

» Pedestrian crowds [Dogbé (2010), Lachapelle & Wolfram (2011)]

» Production of an exhaustible resource [Guéant, Lasry, Lions (2011)]
(agents = firms, X = yearly production)
» Order book dynamics [Lasry et al. (2015)]

(agents = buyers or sellers, X =value of the sell or buy order )



Two main avenues of research

» Proof of existence and uniqueness of solutions

[cf Cardaliaguet’s notes from Lions college de France lectures]

» Numerical schemes to compute exact solutions of the

problem

[eg: Achdou & Cappuzzo-Dolcetta (2010), Lachapelle &
Wolfram (2011), etc ...]

understanding of the MFG (extract characteristic scales,
find explicit solutions in limiting regimes, etc..)

: Our (physicist) approach : develop a more “qualitative”




For starters : study of a simple toy model
“At what time does the meeting start ?”:

[O. Guéant, J.M. Lasry, P.L. Lions]

t = official time of the seminar
7, = time at which the agent arrives in the seminar room
T' = actual times at which the seminar begins

(T determined through a quorum condition)

cost
c(7y) = offy —tl4 + BT — Ty + [T — 7]+
concerns fOf desire not to reluctance to
the agent’s useless waiting

e miss the begining



> = parameters of the problem

~+ =2 @ 9
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~
]

unknown

Shape of the cost function

Two other parameters to come

strenght of the noise

Q
It

mo(x) = initial density of agents



Agents’ dynamics & optimization
Seminar room

dX! = aldt + ocdW}
(dW} = white noise) m(z, t=0) 0

drift a; has a quadratique cost : 5a;

_ 1 [
c(t,T,7;) + = / a(’r)gd'r] (value function)
¢

— u[X!,t] = min E 5

a(.)

1
Bellman: u[X¢,t] =min K liafét + u| X1 5t t+5t]]

Q¢

1
—  Oyu 4 min [§a2 + a@mu] + %(‘ﬁxu =0 = (a = —0,u)

1
H.J.B. Opu — 5(83;11,)2 + %aimu =0  backward propagation

boundary condition : u(zx=0,-) = c(-)




N

In practice, one must thus solve the system of coupled PDE :

- — — % — ()

(ou 1 [ou\’ 0_2 @
ot 2 2 0x? (Hamilton-Jacobi-Bellman)

L u(r=0,t) = c(t; T, 1)

(Om  Oam o2 0*m

EJF or 2 Ox2 %
m(z=0,t) =0

(Kolmogorov) .

\ m(x,t=0) = mo(x)

Kolmogorov coupled to HJB through the drift a(x,t) = —0,u(x,t)

HJB coupled to Kolmogorov through the quorum condition

(N(T):/O m(x,T) =0 (if T > t)

9 — o0

<0 (if T =1t)

‘mean field” =7T'



NB : system of coupled PDE in the generic case

ou 1 /0u\’ o20%u : :
{ 3 <%> + - 5 = —Vg[m|(z,1t) (Hamilton-Jacobi-Bellman)

(Om  Oam o2 0*m

E—I_ ox 2 Ox? %
0

(Kolmogorov) .

Kolmogorov coupled to HJB through the drift a(x,t) = —0,u(x,t)

HJB coupled to Kolmogorov through the mean field g[m]||z,t)



General strategy

Let
G(z,tlzg) = solution for a point source mg(x) = d(x — z¢)
p(xg,t) = /0 dx G(x,t|xo)
- 0
Kolmogorov equation linear = m(x,t) = / dro G(x,t|xg)mo(zg) -

0
Quorum condition reads / dxzo p(xo, T)mo(xo) = 0 ()

e first step : compute p(xg,T) for arbitrary 7.

Two steps process

e second step : solve the self-consistent equation (*)




Hamilton Jacobi Bellman (HJB) equation
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o = oo |limit

ou o2 0%u e :
—+ —— =0 (backward diffusion equation

ot 2 0x?
ith iy
w(zx=0,t) = c(t; T, 1) with strange boundary conditions)

One way to solve this : go back to original optimization pb

u(z,t) = min{ E
ai(t)

distribution of
first passage

lim u(z,t) = Ec(T)] = /OO dr é(1)P(1) At x=0

g— 00 t
0




Arbitrary o

Cole-Hopf transformation :|u(z,t) = —0?In ¢(z, t)

( é)gb

0.2 82(.5 B

Ot

kgb(ztczo,t) = ¢ o2

=0
2 Ox2
c(t)

c(t) =aft — ]+ + B[t — T+ +[T — t]+

c(t+7)

T

b, 1) =—:c/000 ©

Go(x,7) d7

1 o x>
X —_—
V2ot P 202t



Kolmogorov equation

’8m+8am_0282m_0
ot ox 2 Ox2
m(z=0,t) =0

\ m(z,t=0) = mg(x)

a(x,t) = —0,u(x,t)

Igor’s magical trick m(x,t) = exp (—u(:;t)) ['(x,t)
4 2 2 o2
2o~ L2 r—p| 2w _L(ow) o du
ool = 5ol =1 (at > (83:) 3 8x2)
. ;\?_) >y
¢(z,1)

G(z,tlzg) = x G2PS(z, t|20)

Cb(CCOJ t:O)

G (z,t|z0) = (Go(, t|x0) — Go(z,t| — 70))



Self consistency

° —
f dxo p(zo, T )mo(zo) = 0

— 00

(é a priori small)

p(zo,t) = / dx G(x,t|zo)

— 0

mean position (x
mo(xg) characterized by { .p (o)
variance >,




“phase diagram” of the small Z regime ‘
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Cut at smallo
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Cut at largeo
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Summary for the toy model

» Relevant velocity scales related to the slope of the cost

function c(t).

(a0 =V2(a+8) a2 =+/2(a—7))

» Limiting regimes :

. o zo] < g
> Convective vs Diffusive : tarift = - > taig = o2
0,2
[ ] << 7
» Close vs far: tavitt, taig = >t

> Etc ..

» “Phase diagram”


http://fr.arxiv.org/abs/1503.01591

Does it actually help us organizing a seminar ?



Does it actually help us organizing a seminar ?

Of course not ...

» Cost function presumably not the best one (should at least

include the starting time).
» Geometry a bit simplistic.

» Dynamics = some version of the spherical cow.



Does it actually help us organizing a seminar ?

Of course not ...

» Cost function presumably not the best one (should at least

include the starting time).
» Geometry a bit simplistic.

» Dynamics = some version of the spherical cow.

Well .... this is just a toy model



Going toward more relevant problems

Under what condition can a MFG model teach us something ?

» Dynamics, control parameter and cost function should bare
some resemblance with reality (cf Lucas & Prescott model, or

book order model).

» The optimization part should be “simple enough” (you may
assume that agents are ‘rational’, you cannot expect all of

them to own a degree in applied math).



Preference for
present time

Function to optimize: / dTe@T t) li(ai)z + g|m|(XL, T)
¢

Two "simple” limiting cases :
e \ — 00 : optimization on m(z,t) (¢ = now).

e \ — 0 : optimization on ergodic m*(z)

Work in progress :

(4%

e Characterize these regimes and see how much one can “in-
tegrate out” the the optimization part of the game.

e Investigate how chaos may increase the speed at which the
system relaxes to its ergodic state
— MGF on a compact surface of const negative curvature.



