Asymmetric backscattering in deformed microcavities: fundamentals and applications

Jan Wiersig

Otto-von-Guericke-Universität Magdeburg: J. Kullig, A. Eberspächer, J.-B. Shim (now Liège)
Collaborations: S. W. Kim (Busan), M. Hentschel (Ilmenau), J.-W. Ryu (Daegu), S. Shinohara (Kyoto),
DFG
H. Schomerus (Lancaster), H. Cao (Yale), R. Sarma (Yale), L. Ge (New York)

Introduction to deformed microcavities

Asymmetric backscattering: fundamentals

Asymmetric backscattering: applications

Introduction to deformed microcavities

Introduction to deformed microcavities

Microdisk
Light confinement by total internal reflection

P. Michler et al.

Optical modes: solutions of Maxwell's equations with harmonic time dependence
High $Q=\omega \tau$ with frequency ω and lifetime τ
Applications: microlasers, single-photon sources, sensors, filters, ...

Introduction to deformed microcavities

Open quantum billiards

J.U. Nöckel und A.D. Stone, Nature 385, 45 (1997)

Introduction to deformed microcavities

Directed light emission
Limaçon of Pascal
J. Wiersig and M. Hentschel, PRL 100, 033901 (2008)

$$
\rho(\phi)=R(1+\varepsilon \cos \phi)
$$

■ unidirectional emission along the unstable manifold of the chaotic saddle

Introduction to deformed microcavities

Directed light emission
Limaçon of Pascal
J. Wiersig and M. Hentschel, PRL 100, 033901 (2008)

$$
\rho(\phi)=R(1+\varepsilon \cos \phi)
$$

■ unidirectional emission along the unstable manifold of the chaotic saddle Shortegg
(a)

M. Schermer, S. Bittner, G. Singh, C. Ulysee, M. Lebental, and J. Wiersig, APL 106, 101107 (2015)

Introduction to deformed microcavities

Non-Hermitian phenomena
Optical microcavities are open wave systems
■ mode frequencies ($\widehat{=}$ energy eigenvalues) $\in \mathbb{C}$
■ modes ($\widehat{=}$ energy eigenstates) are nonorthogonal

- modes may not form a complete basis

Introduction to deformed microcavities

Non-Hermitian phenomena
Optical microcavities are open wave systems
$■$ mode frequencies ($\widehat{=}$ energy eigenvalues) $\in \mathbb{C}$
■ modes ($\widehat{=}$ energy eigenstates) are nonorthogonal

- modes may not form a complete basis

Exceptional point (EP)

Point in parameter space at which two (or more) eigenvalues and eigenstates of a non-Hermitian linear operator coalesce. EP \neq diabolic point
T. Kato, Perturbation Theory for Linear Operators (1966)

Introduction to deformed microcavities

Non-Hermitian phenomena
Optical microcavities are open wave systems
\square mode frequencies ($\widehat{=}$ energy eigenvalues) $\in \mathbb{C}$
■ modes ($\widehat{=}$ energy eigenstates) are nonorthogonal

- modes may not form a complete basis

Exceptional point (EP)

Point in parameter space at which two (or more) eigenvalues and eigenstates of a non-Hermitian linear operator coalesce. EP \neq diabolic point
T. Kato, Perturbation Theory for Linear Operators (1966)
microwave cavity C. Dembowski et al., PRL 86, 787 (2001) deformed microcavity (liquid jet containing laser dyes) S.B. Lee et al., PRL 103, 134101 (2009)

Introduction to deformed microcavities

2D mode equation
Effective index approximation

$$
\begin{array}{r}
{\left[\nabla^{2}+n(x, y)^{2} k^{2}\right] \psi(x, y)=0} \\
\operatorname{Re}\left[\psi(x, y) e^{-i \omega t}\right]= \begin{cases}E_{Z} & \text { TM } \\
H_{z} & \text { TE }\end{cases}
\end{array}
$$

Continuity conditions at the cavity's boundary
TM : ψ and $\partial \psi$
TE : ψ and $\frac{1}{n^{2}} \partial \psi$

Outgoing wave condition at infinity
$\Longrightarrow \omega \in \mathbb{C}$, quasibound state with lifetime
$\tau=-\frac{1}{2 \operatorname{lm}(\omega)}$

Introduction to deformed microcavities

2D mode equation

Effective index approximation

$$
\begin{gathered}
{\left[\nabla^{2}+n(x, y)^{2} k^{2}\right] \psi(x, y)=0} \\
\operatorname{Re}\left[\psi(x, y) e^{-i \omega t}\right]= \begin{cases}E_{z} & \mathrm{TM} \\
H_{z} & \mathrm{TE}\end{cases}
\end{gathered}
$$

Continuity conditions at the cavity's boundary
TM : ψ and $\partial \psi$
TE : ψ and $\frac{1}{n^{2}} \partial \psi$

Outgoing wave condition at infinity
$\Longrightarrow \omega \in \mathbb{C}$, quasibound state with lifetime $\tau=-\frac{1}{2 \operatorname{lm}(\omega)}$

Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003) S-matrix approach/wave matching e.g. M. Hentschel and K. Richter, PRE 66, 056207 (2002) Review on deformed microcavities H. Cao and J. Wiersig, RMP 87, 61 (2015)

Asymmetric backscattering:
 Fundamentals

Asymmetric backscattering: Fundamentals

Asymmetric backscattering: Fundamentals

G. D. Chern et al., APL 83, 1710 (2003)
S.-Y. Lee et al., PRL 93, 164102 (2004)

Angular momentum representation (inside the cavity)

$$
\psi(r, \phi)=\sum_{m=-\infty}^{\infty} \alpha_{m} J_{m}(n k r) \exp (i m \phi)
$$

Chirality: mainly traveling wave instead of standing wave
Experimental confirmation M. Kim et al., Opt. Lett. 39, 2423 (2014)

Asymmetric backscattering: Fundamentals

J. Wiersig, S.W. Kim, and M. Hentschel, PRA 78, 053809 (2008)

TE polarization, $n=2$, and small deformation $\varepsilon=0.04$ (spiral has been flipped)

$\Omega=\frac{\omega}{c} R=k R=41.4674-i 0.03419$

$\Omega=41.4625-i 0.03469 ; \quad Q=\frac{\mathrm{Re}(k R)}{2 \operatorname{lm}(k R)}$

Asymmetric backscattering: Fundamentals

J. Wiersig, S.W. Kim, and M. Hentschel, PRA 78, 053809 (2008)

TE polarization, $n=2$, and small deformation $\varepsilon=0.04$ (spiral has been flipped)
 copropagation: both modes have the same dominant propagation direction

Asymmetric backscattering: Fundamentals

- chirality

■ copropagation

Asymmetric backscattering: Fundamentals

- chirality

■ copropagation

Asymmetric backscattering: Fundamentals

- chirality
- copropagation

Asymmetric backscattering: Fundamentals

- chirality
- copropagation

Chirality

$$
\alpha=1-\frac{\min \left(\sum_{m=-\infty}^{-1}\left|\alpha_{m}\right|^{2}, \sum_{m=1}^{\infty}\left|\alpha_{m}\right|^{2}\right)}{\max \left(\sum_{m=-\infty}^{-1}\left|\alpha_{m}\right|^{2}, \sum_{m=1}^{\infty}\left|\alpha_{m}\right|^{2}\right)} \approx\left\{\begin{array}{l}
0.978 \\
0.967
\end{array}\right.
$$

Asymmetric backscattering: Fundamentals

$\Omega=41.4674-i 0.03419$

$\Omega=41.4625-i 0.03469$

Normalized overlap integral

$$
S=\frac{\left|\int_{\mathcal{C}} d x d y \psi_{1}^{*} \psi_{2}\right|}{\sqrt{\int_{\mathcal{C}} d x d y \psi_{1}^{*} \psi_{1}} \sqrt{\int_{\mathcal{C}} d x d y \psi_{2}^{*} \psi_{2}}} \approx 0.972 \quad \text { almost collinear! }
$$

Asymmetric backscattering: Fundamentals

Asymmetric Limaçon cavity

$$
\rho=R\left[1+\varepsilon_{1} \cos \phi+\varepsilon_{2} \cos (2 \phi+\delta)\right] \text { J. Wiersig et al., PRA 84, } 023845 \text { (2011) }
$$

Asymmetric backscattering: Fundamentals

A toy model

How to explain the chirality, copropagation, and nonorthogonality?

Asymmetric backscattering: Fundamentals

A toy model

How to explain the chirality, copropagation, and nonorthogonality?
asymmetric backscattering of CW and CCW traveling waves

Asymmetric backscattering: Fundamentals

A toy model

How to explain the chirality, copropagation, and nonorthogonality? asymmetric backscattering of CW and CCW traveling waves

Effective non-Hermitian Hamiltonian in (CCW,CW) basis

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) \quad \text { with } \Omega, A, B \in \mathbb{C} \text { and }|A| \neq|B|
$$

Asymmetric backscattering: Fundamentals

How to explain the chirality, copropagation, and nonorthogonality? asymmetric backscattering of CW and CCW traveling waves

Effective non-Hermitian Hamiltonian in (CCW,CW) basis

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) \quad \text { with } \Omega, A, B \in \mathbb{C} \text { and }|A| \neq|B|
$$

open quantum/wave systems with weak CW-CCW coupling and no mirror symmetries J. Wiersig, PRA 89, 012119 (2014)

Asymmetric backscattering: Fundamentals

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) ;|A| \neq|B|
$$

Complex eigenvalues and (right hand) eigenvectors

$$
\begin{gathered}
\Omega_{ \pm}=\Omega \pm \sqrt{A B} \\
\vec{\psi}_{ \pm}=\binom{\psi_{\mathrm{ccw}, \pm}}{\psi_{\mathrm{cw}, \pm}}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
\end{gathered}
$$

Asymmetric backscattering: Fundamentals

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) \quad ;|A| \neq|B|
$$

Complex eigenvalues and (right hand) eigenvectors

$$
\begin{gathered}
\Omega_{ \pm}=\Omega \pm \sqrt{A B} \\
\vec{\psi}_{ \pm}=\binom{\psi_{\mathrm{ccw}, \pm}}{\psi_{\mathrm{cw}, \pm}}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
\end{gathered}
$$

Asymmetric backscattering: Fundamentals

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) ;|A| \neq|B|
$$

Complex eigenvalues and (right hand) eigenvectors

$$
\begin{gathered}
\Omega_{ \pm}=\Omega \pm \sqrt{A B} \\
\vec{\psi}_{ \pm}=\binom{\psi_{\mathrm{cw}, \pm}}{\psi_{\mathrm{cw}, \pm}}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
\end{gathered}
$$

$|A|>|B|:$

- CCW component > CW component
\Longrightarrow chirality
\Longrightarrow copropagation
\Longrightarrow nonorthogonality

Asymmetric backscattering: Fundamentals

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) ;|A| \neq|B|
$$

Complex eigenvalues and (right hand) eigenvectors

$$
\begin{gathered}
\Omega_{ \pm}=\Omega \pm \sqrt{A B} \\
\vec{\psi}_{ \pm}=\binom{\psi_{\mathrm{ccw}, \pm}}{\psi_{\mathrm{cw}, \pm}}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
\end{gathered}
$$

$|A|>|B|:$

- CCW component > CW component
\Longrightarrow chirality
\Longrightarrow copropagation
\Longrightarrow nonorthogonality
$|A|<|B|: \mathrm{CW} \leftrightarrow \mathrm{CCW}$

Asymmetric backscattering: Fundamentals

Effective Hamiltonian \Longrightarrow relation between overlap and chirality

$$
\alpha=\frac{2 S}{1+S}
$$

Asymmetric backscattering: Fundamentals

Effective Hamiltonian \Longrightarrow relation between overlap and chirality

$$
\alpha=\frac{2 S}{1+S}
$$

Asymmetric Limaçon cavity

Effective Hamiltonian explains the relation between chirality and nonorthogonality

Asymmetric backscattering: Fundamentals

Exceptional point

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) \quad ; \quad \Omega_{ \pm}=\Omega \pm \sqrt{A B} \quad ; \quad \vec{\psi}_{ \pm}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
$$

Fully asymmetric backscattering: $B \rightarrow 0$ with $A \neq 0$

$$
\begin{aligned}
& H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
0 & \Omega
\end{array}\right) ; \quad \Omega_{ \pm}=\Omega \quad ; \quad \vec{\psi}=\binom{1}{0} \\
& \quad \text { Jordan block }
\end{aligned}
$$

- splitting $\rightarrow 0$

■ only one linearly independent eigenvector $\hat{=}$ CCW traveling-wave mode

- exceptional point

Asymmetric backscattering: Fundamentals

Exceptional point

$$
H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
B & \Omega
\end{array}\right) \quad ; \quad \Omega_{ \pm}=\Omega \pm \sqrt{A B} \quad ; \quad \vec{\psi}_{ \pm}=\binom{\sqrt{A}}{ \pm \sqrt{B}}
$$

Fully asymmetric backscattering: $B \rightarrow 0$ with $A \neq 0$

$$
\begin{aligned}
& H_{\text {eff }}=\left(\begin{array}{cc}
\Omega & A \\
0 & \Omega
\end{array}\right) ; \quad \Omega_{ \pm}=\Omega ; \quad \vec{\psi}=\binom{1}{0} \\
& \quad \text { Jordan block }
\end{aligned}
$$

- splitting $\rightarrow 0$

■ only one linearly independent eigenvector $\hat{=}$ CCW traveling-wave mode

- exceptional point
$A \rightarrow 0$ with $B \neq 0: \mathrm{CW} \leftrightarrow \mathrm{CCW}$

Asymmetric backscattering: Fundamentals

Disk with two scatterers

complex-square-root topology at EP due to fully asymmetric backscattering

Asymmetric backscattering: Fundamentals

Frobenius-Perron operator for deformed microdisks

Ray dynamics: chirality \checkmark S.-Y. Lee et al., PRL 93, 164102 (2004)
What about copropagation and nonorthogonality? ongoing work by J. Kullig

Asymmetric backscattering: Fundamentals

Frobenius-Perron operator for deformed microdisks

Ray dynamics: chirality \checkmark S.-Y. Lee et al., PRL 93, 164102 (2004)
What about copropagation and nonorthogonality? ongoing work by J. Kullig
discrete time evolution of phase-space density ρ with Frobenius-Perron operator \mathcal{F}

$$
\rho_{n+1}(s, p)=\mathcal{F} \rho_{n}(s, p)
$$

for maps see e.g. J. Weber et al., PRL 85, 3620 (2000), K. Frahm and D. Shepelyansky, EPL 75, 299 (2010)

Asymmetric backscattering: Fundamentals

Ray dynamics: chirality \checkmark S.-Y. Lee et al., PRL 93, 164102 (2004)
What about copropagation and nonorthogonality? ongoing work by J. Kullig
discrete time evolution of phase-space density ρ with Frobenius-Perron operator \mathcal{F}

$$
\rho_{n+1}(s, p)=\mathcal{F} \rho_{n}(s, p)
$$

for maps see e.g. J. Weber et al., PRL 85, 3620 (2000), K. Frahm and D. Shepelyansky, EPL 75, 299 (2010)

■ weight to incorporate reflectivity $\Longrightarrow \mathcal{F}$ is sub-unitary

the two largest eigenvalues are nearly degenerate (eigenstate pair)

Asymmetric backscattering: Fundamentals

Frobenius-Perron eigenstate pair show chirality, copropagation, and nonorthogonality

Asymmetric backscattering:

 Applications
Asymmetric backscattering: Applications

Microcavity sensor for single-particle detection

F. Vollmer et al., PNAS 105, 20701 (2008)

Measure frequency shift \Longrightarrow particle detection

Asymmetric backscattering: Applications

Microcavity sensor based on frequency-splitting detection
Measure frequency splitting of initially degenerate modes (diabolic point) J. Zhu et al., Nature Photonics 4, 46 (2010)

Asymmetric backscattering: Applications

Microcavity sensor based on frequency-splitting detection
Measure frequency splitting of initially degenerate modes (diabolic point) J. Zhu et al., Nature Photonics 4, 46 (2010)

Problem: initial splitting due to fabrication imperfections

Asymmetric backscattering: Applications

Microcavity sensor based on frequency-splitting detection
Measure frequency splitting of initially degenerate modes (diabolic point)
J. Zhu et al., Nature Photonics 4, 46 (2010)

Problem: initial splitting due to fabrication imperfections

Asymmetric backscattering: Applications

Conventional degeneracy vs exceptional point
J. Wiersig, PRL 112, 203901 (2014)

Which one is better for sensing?

Asymmetric backscattering: Applications

Conventional degeneracy vs exceptional point
J. Wiersig, PRL 112, 203901 (2014)

conventional (DP)

Which one is better for sensing?
Apply a perturbation of strength ϵ to a (two-fold) degeneracy

$$
\Delta \Omega_{\mathrm{DP}}=\mathcal{O}(\varepsilon)
$$

$$
\begin{gathered}
\Delta \Omega_{\mathrm{EP}}=\mathcal{O}(\sqrt{\varepsilon}) \\
\text { T. Kato (1966) }
\end{gathered}
$$

Asymmetric backscattering: Applications

Conventional degeneracy vs exceptional point
J. Wiersig, PRL 112, 203901 (2014)

Which one is better for sensin!
Apply a perturbation of strength ϵ to a (two-fold) degenera

$$
\Delta \Omega_{\mathrm{DP}}=\mathcal{O}(\varepsilon)
$$

T. Kato (1966)

Asymmetric backscattering: Applications

Conventional degeneracy vs exceptional point
J. Wiersig, PRL 112, 203901 (2014)

Which one is better for sensin!
Apply a perturbation of strength ϵ to a (two-fold) degenere $\begin{gathered}\text { oे } \\ \text {. }\end{gathered}$

$$
\Delta \Omega_{\mathrm{DP}}=\mathcal{O}(\varepsilon)
$$

T. Kato (1966)

Enhancement factor of sensitivity for splitting detection

$$
\frac{\Delta \Omega_{\mathrm{EP}}}{\Delta \Omega_{\mathrm{DP}}}=\mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right) \quad \text { for sufficiently small } \varepsilon
$$

Asymmetric backscattering: Applications

Conventional degeneracy vs exceptional point
J. Wiersig, PRL 112, 203901 (2014)

Which one is better for sensin!
Apply a perturbation of strength ϵ to a (two-fold) degenere $\begin{gathered}\text { 흔 }\end{gathered}$

$$
\Delta \Omega_{\mathrm{DP}}=\mathcal{O}(\varepsilon)
$$

$$
\Delta \Omega_{\mathrm{EP}}
$$

T. Kato (1966)

Enhancement factor of sensitivity for splitting detection

$$
\frac{\Delta \Omega_{\mathrm{EP}}}{\Delta \Omega_{\mathrm{DP}}}=\mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right) \quad \text { for sufficiently small } \varepsilon
$$

Price to pay: $\Delta \Omega_{\mathrm{EP}} \in \mathbb{C} \Longrightarrow$ frequency and linewidth splitting

Asymmetric backscattering: Applications

$E P$ is due to fully asymmetric backscattering

Asymmetric backscattering: Applications

■ 3 to 3.5 fold enhancement of sensitivity
■ Splitting $|\Delta \Omega|$ is nearly independent on β

Asymmetric backscattering: Applications

■ 3 to 3.5 fold enhancement of sensitivity
■ Splitting $|\Delta \Omega|$ is nearly independent on β
Sensitivity of sensors based on frequency splitting detection can be enhanced at an EP

Asymmetric backscattering: Applications

Optical gyroscopes

Sagnac effect: rotations leads to a frequency splitting of counterpropagating waves

Asymmetric backscattering: Applications

Optical gyroscopes

Sagnac effect: rotations leads to a frequency splitting of counterpropagating waves

EP does not help here

Asymmetric backscattering: Applications

Optical gyroscopes

Sagnac effect: rotations leads to a frequency splitting of counterpropagating waves

EP does not help here
R. Sarma, L. Ge, J. Wiersig, and H. Cao, PRL 114, 053903 (2015)
 Asymmetric limaçon: chirality and copropagation

\Longrightarrow far-field pattern is a sensitive measure of rotation

Asymmetric backscattering: Applications

Optical gyroscopes

Sagnac effect: rotations leads to a frequency splitting of counterpropagating waves

EP does not help here
R. Sarma, L. Ge, J. Wiersig, and H. Cao, PRL 114, 053903 (2015)
 Asymmetric limaçon: chirality and copropagation

\Longrightarrow far-field pattern is a sensitive measure of rotation
3 orders of magnitude more sensitive than the Sagnac effect!

Summary

Fundamentals

Applications

- enhancing the sensitivity of microcavity sensors for particle detection
- enhancing the sensitivity of microcavity gyroscopes

Bonus

Direct observation of asymmetric backscattering

FDTD simulations of a waveguide-coupled microcavity Johannes Kramer, diploma thesis 2014

Bonus

■ "Irreversible coupling by use of dissipative optics" (theory)
M. Greenberg and M. Orenstein, Opt. Lett. 29, 5 (2004), Opt. Express 12, 4013 (2004)

■ "Unidirectional invisibility induced by PT-symmetric periodic structures" (theory) Z. Lin et al., PRL 106, 213901 (2011)

■ "Nonreciprocal light propagation" (experiment)
L. Feng et al., Science 333, 729 (2011)

■ "Unidirectional reflectionless light transport" (experiment)
L. Feng et al., Opt. Express 22, 1760 (2014)

Bonus

Boundary element method for dielectric microcavities
J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003)

2D PDE \rightarrow 1D boundary integral equations

$$
\psi\left(\mathbf{r}^{\prime}\right)=\oint_{\Gamma_{j}} d s\left[\psi(s) \partial G\left(s, \mathbf{r}^{\prime} ; k\right)-G\left(s, \mathbf{r}^{\prime} ; k\right) \partial \psi(s)\right]
$$

with (outgoing) Green's function

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime} ; k\right)=-\frac{i}{4} H_{0}^{(1)}\left(n_{j} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
$$

Bonus

Boundary element method for dielectric microcavities
J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003)

2D PDE \rightarrow 1D boundary integral equations

$$
\psi\left(\mathbf{r}^{\prime}\right)=\oint_{\Gamma_{j}} d s\left[\psi(s) \partial G\left(s, \mathbf{r}^{\prime} ; k\right)-G\left(s, \mathbf{r}^{\prime} ; k\right) \partial \psi(s)\right]
$$

with (outgoing) Green's function

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime} ; k\right)=-\frac{i}{4} H_{0}^{(1)}\left(n_{j} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
$$

■ outgoing wave condition $\rightarrow \Gamma_{\infty}$ does not contribute

Bonus

Boundary element method for dielectric microcavities
J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003)

2D PDE \rightarrow 1D boundary integral equations

$$
\psi\left(\mathbf{r}^{\prime}\right)=\oint_{\Gamma_{j}} d s\left[\psi(s) \partial G\left(s, \mathbf{r}^{\prime} ; k\right)-G\left(s, \mathbf{r}^{\prime} ; k\right) \partial \psi(s)\right]
$$

with (outgoing) Green's function

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime} ; k\right)=-\frac{i}{4} H_{0}^{(1)}\left(n_{j} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
$$

Γ_{∞}

- outgoing wave condition $\rightarrow \Gamma_{\infty}$ does not contribute
- spurious solutions: interior Dirichlet problem with $n_{j}=1$

Bonus

Boundary element method for dielectric microcavities
J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003)

2D PDE \rightarrow 1D boundary integral equations

$$
\psi\left(\mathbf{r}^{\prime}\right)=\oint_{\Gamma_{j}} d s\left[\psi(s) \partial G\left(s, \mathbf{r}^{\prime} ; k\right)-G\left(s, \mathbf{r}^{\prime} ; k\right) \partial \psi(s)\right]
$$

with (outgoing) Green's function

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime} ; k\right)=-\frac{i}{4} H_{0}^{(1)}\left(n_{j} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
$$

■ outgoing wave condition $\rightarrow \Gamma_{\infty}$ does not contribute
■ spurious solutions: interior Dirichlet problem with $n_{j}=1$

- discretization $0=M\left(k_{\text {res }}\right) \vec{x}$ with $\vec{x}=\left(\left.\partial \psi\right|_{s_{1}}, \ldots,\left.\psi\right|_{s_{1}}, \ldots\right)$

Bonus

Boundary element method for dielectric microcavities
1 initial guess k_{0}

$$
0=M\left(k_{0}+\delta k\right) \vec{x} \approx\left[M\left(k_{0}\right)+\delta k M^{\prime}\left(k_{0}\right)\right] \vec{x}
$$

\Longrightarrow generalized eigenvalue equation

$$
M\left(k_{0}\right) \vec{x}=-\delta k M^{\prime}\left(k_{0}\right) \vec{x}
$$

Bonus

Boundary element method for dielectric microcavities
1 initial guess k_{0}

$$
0=M\left(k_{0}+\delta k\right) \vec{x} \approx\left[M\left(k_{0}\right)+\delta k M^{\prime}\left(k_{0}\right)\right] \vec{x}
$$

\Longrightarrow generalized eigenvalue equation

$$
M\left(k_{0}\right) \vec{x}=-\delta k M^{\prime}\left(k_{0}\right) \vec{x}
$$

2 find eigenvector \vec{x} with smallest eigenvalue $|\delta k|$
3 $k_{1}=k_{0}+\delta k$
4 iterate until δk is small enough

Bonus

Boundary element method for dielectric microcavities
1 initial guess k_{0}

$$
0=M\left(k_{0}+\delta k\right) \vec{x} \approx\left[M\left(k_{0}\right)+\delta k M^{\prime}\left(k_{0}\right)\right] \vec{x}
$$

\Longrightarrow generalized eigenvalue equation

$$
M\left(k_{0}\right) \vec{x}=-\delta k M^{\prime}\left(k_{0}\right) \vec{x}
$$

2 find eigenvector \vec{x} with smallest eigenvalue $|\delta k|$
(3) $k_{1}=k_{0}+\delta k$

4 iterate until δk is small enough
stadium (3772 resonances)
J. Wiersig and J. Main, PRE 77, 036205 (2008)

Normalized frequency $\Omega=\frac{\omega}{c} R=k R$

Bonus

What does the coalescence of two eigenstates mean dynamically?

Eigenvalue equation

$$
E_{j}\left|\phi_{j}\right\rangle=H_{\text {eff }}\left|\phi_{j}\right\rangle
$$

Bonus

What does the coalescence of two eigenstates mean dynamically?
Eigenvalue equation

$$
E_{j}\left|\phi_{j}\right\rangle=H_{\text {eff }}\left|\phi_{j}\right\rangle
$$

Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=H_{\text {eff }}|\psi\rangle
$$

Bonus

What does the coalescence of two eigenstates mean dynamically?
Eigenvalue equation

$$
E_{j}\left|\phi_{j}\right\rangle=H_{\text {eff }}\left|\phi_{j}\right\rangle
$$

Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=H_{\text {eff }}|\psi\rangle
$$

2-by-2 Hamiltonian at EP

■ eigenvalue equation: one solution

$$
\vec{\phi}_{\mathrm{EP}}, E_{\mathrm{EP}}
$$

Bonus

What does the coalescence of two eigenstates mean dynamically?
Eigenvalue equation

$$
E_{j}\left|\phi_{j}\right\rangle=H_{\text {eff }}\left|\phi_{j}\right\rangle
$$

Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=H_{\text {eff }}|\psi\rangle
$$

2-by-2 Hamiltonian at EP

- eigenvalue equation: one solution

$$
\vec{\phi}_{\mathrm{EP}}, E_{\mathrm{EP}}
$$

■ Schrödinger equation: two solutions

$$
\begin{aligned}
\vec{\psi}_{1}(t) & =\vec{\phi}_{\mathrm{EP}} e^{-i E_{\mathrm{EPP}} t} \\
\vec{\psi}_{2}(t) & =\left(\vec{\phi}_{0}+t \overrightarrow{\phi E P}\right) e^{-i E_{\mathrm{EP}} t}
\end{aligned}
$$

B. Dietz et al., PRE 75, 027201 (2007), W. D. Heiss, Eur. Phys. J. D 60, 257 (2010)

Bonus

Experimental confirmation of chirality

M. Kim et al., Opt. Lett. 39, 2423 (2014)

