Systems with off-diagonal disorder on a lattice -2

Jakub Zakrzewski

Marian Smoluchowski Institute of Physics
Jagiellonian University in Kraków

With

Julia Stasińska, Maciej Lewenstein (ICFO),
Omjyotti Dutta, Mateusz Łącki, Jan Major, Arkadiusz Kosior, Marcin Płodzień

Luchon, March 2015

What is to come

- Supplement to Karol Zyczkowski talk
- Optical lattice and Bose-Hubbard model
- BH with Gavish-Castin disorder and density dependent tunnelings
- Periodically modulated interactions
- ?

Supplement to Karol's talk

Marek Kuś 60th birthday
Organized by Centre for Theoretical Physics, together with Institute of Physics and Department of Physics, University of Warsaw
The Symposium will be held on 24-25 April in Warsaw.
Detailed info on the website:
http://www.cft.edu.p//SymposiumMarek/

Supplement to Karol's talk-2 - IF UJ

Optical lattice

$$
V(x)=-\vec{d} \cdot \vec{E}=-\alpha|E(x)|^{2} \propto \frac{I(x)}{\delta} \quad V(x)=V_{0} \cos ^{2}(k x)
$$

Bose-Hubbard model ${ }^{1}$

$$
\hat{H}=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

J - tuneling, hopping U - on-site interaction,

$$
J \gg U-
$$

superfluid, gapless

$$
J \ll U
$$

Mott insulator gap $<=U$
(after Greiner et al. (2002)
${ }^{1}$ H.A. Gersch and G. C. Knollman, Phys. Rev. 129, 959 (1963).

Typical Bose-Hubbard with disorder

$$
\hat{H}=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\sum_{i} \mu_{i} \hat{n}_{i}
$$

with μ_{i} random

- uniform disorder Fisher et al 1989, Schulz-Giamarchi 1988 gapless insulator Bose glass phase (BG)
- BG separates MI from SF always (no direct MI-SF transition -"theorem of inclusions" - Pollet 2009)
- Gavish-Castin disorder $V \hat{n}_{i} \hat{M}_{i} . M$ particles heavy and immobile $\rightarrow V \mu_{i} \hat{n}_{i}$ with binary μ_{i}.
- MI with non integer filling (due to impurities)
- MI survives for arbitrary disorder strength

Bose-Hubbard with off-diagonal binary disorder²

For diagonal disorder

$$
\hat{H}=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\sum_{i}\left(\mu-\gamma \omega_{i}\right) \hat{n}_{i}
$$

But interaction induced tunnelings yield

$$
\hat{H}_{2}=-J \sum_{\langle i, j\rangle}\left[1+\alpha\left(\omega_{i}+\omega_{j}\right)\right] \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\sum_{i}\left(\mu-\gamma \omega_{i}\right) \hat{n}_{i}
$$

Origin: two-body interactions. Typically $|\gamma|>\alpha$.

Off diagonal disorder

- Mean field approach 1D, 2D: local mean field $\psi_{i}=\left\langle\hat{b}_{i}\right\rangle$

[^0]
Bose-Hubbard with off-diagonal binary disorder-2

Denoting $\bar{J}:=J / U$ etc. standard perturbative in \bar{J} approach:
with random matrix

$$
\psi_{i}=\sum_{\langle j\rangle_{i}} \bar{J} \mathcal{R}_{i j} \psi_{j},
$$

$$
\mathcal{R}_{i j}=\left[1+\alpha\left(\omega_{i}+\omega_{j}\right)\right]\left(\frac{\bar{n}_{i}+1}{\bar{n}_{i}-\bar{\mu}+\bar{\gamma} \omega_{i}}-\frac{\bar{n}_{i}}{\left(\bar{n}_{i}-1\right)-\bar{\mu}+\bar{\gamma} \omega_{i}}\right),
$$

for $\bar{n}_{i}-\left(1-\bar{\gamma} \omega_{i}\right)<\bar{\mu}<\bar{n}_{i}+\bar{\gamma} \omega_{i}$.
If $\operatorname{det}(\bar{J} \mathcal{R}-\mathbf{1}) \neq 0$ then $\psi_{i}=0 \mathrm{MI}$ border: $\bar{J} \max [\lambda(\mathcal{R})]=1$. In thermodynamic limit MI border from assuming all ω_{i} identical (Mering-Fleishhauer). In 1D spectrum analytic - Toeplitz matrix ${ }^{2} \bar{J} \max \left[\sqrt{X_{i}^{+} X_{i}^{-}}\right]=1$ with $X_{i}^{ \pm}:=\mathcal{R}_{i, i \pm 1}$

Bose-Hubbard with off-diagonal binary disorder-3

8

Bose-Hubbard with off-diagonal binary disorder-4

 Variance of eigenvalues:

- for a given p exists a single μ for which the matrix non random - this givces a tip of MI lobe
- direct MI-SF transition not violating "inclusion theorem" for diagonal binary disorder
- off-diagonal disorder - only via Bose glass phase, BG more prominient
- still BG regions small for moderate off-diagonal disorder
- Can we produce strong off-diagonal disorder?

Periodically modulated parameters

Gaston Floquet theorem (1883). In modern formulation similar to (younger) Bloch theorem. Consider Hamiltonian with periodic time dependence: $\mathcal{H}(t)=\mathcal{H}(t+T)$. Stationary states

$$
\begin{equation*}
\left|\psi_{i}(t)\right\rangle=\sum_{i} e^{-i e_{i} t}\left|u_{i}(t)\right\rangle \tag{1}
\end{equation*}
$$

Where e_{i} are called quasienergies and $\left|u_{i}(t)\right\rangle=\left|u_{i}(t+T)\right\rangle$. $\left.\left|u_{i}\right\rangle\right\rangle$ are eigenstates to eigenenergy e_{i} in extended phase space for $H-\partial_{t}$. The corresponding scalar product involves integration over the period.

Effective Hamiltonian

Hamiltonian in the extended space has a block structure:

- $\mathcal{H}_{\text {eff }}$ is time-averaged Hamiltonian in F. basis
- V for big ω is negligible
- As blocks differ only by energy shift we can consider one only.

Side remark: With resonant coupling of Bloch bands:
A. Przysiezna, O. Dutta, and JZ, Rice-Mele model with topological solitons in an optical lattice New J. Phys. 17, 013018(2015)
O. Dutta, A. Przysiezna, and JZ, Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice arXiv:1405.2565

Bose-Hubbard model with time-modulated energies

Bose-Hubbard Hamiltonian (no interactions) first:

$$
\begin{equation*}
H=\sum_{i} \varepsilon_{i}(t) n_{i}-J\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right) \tag{2}
\end{equation*}
$$

On-site energies are time dependent: $\varepsilon_{i}(t)=\epsilon_{i}(1+\delta \sin (\omega t))$.
If $\omega \gg J$ we can find effective time-independent Hamiltonianian:

$$
\begin{equation*}
\mathcal{H}_{e f f}=\sum_{i} \epsilon_{i} n_{i}-J_{i}^{e f f}\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right) \tag{3}
\end{equation*}
$$

Where:

$$
J_{i}^{\text {eff }}=J \mathcal{J}_{0}\left(\frac{\delta}{\omega}\left(\epsilon_{i+1}-\epsilon_{i}\right)\right)
$$

When it is interesting?

Superlattice

Change of tunneling
amplitude between types od sites.
(Morais Smith)

External

potential
WWW
"Classical" shaken lattice is effectively of this type.
(Eckardt, Weiss, Holthaus)

Disorder

WMON
Creation of off-diagonal disorder

Disorder in optical lattice

Everything can be simulated with cold atoms

- how can we create a disordered potential?

Incommensurate lat.

Speckle potential

- Controllable
- Big setup

- Easy to create
- Not really a disorder!
Aubry-André not Anderson

Frozen particles

- uncontrollable (or by Y. Castin only)
- Binary disorder

Binary disorder

Recipe as before:

- Put some fermions/hardcore bosons into a lattice
- Let them evolve
- "Freeze" them to create disorder pattern
- Put another atoms interacting with the frozen ones

On-site energies:

$$
\epsilon_{i}=V n_{i}^{t}
$$

For $n_{i}^{f} \in\{0,1\}$
$\Rightarrow \epsilon_{i} \in\{0, V\}$

Periodically modulated (interspecies) interaction ${ }^{3}$

If we modulate periodically the interspecies interaction strength:

$$
\begin{equation*}
V \rightarrow V_{0}+V_{1} \sin (\omega t), \tag{4}
\end{equation*}
$$

effectively we modulate on-site energies.
\Rightarrow We get renormalized tunneling (for $\omega \gg J$).

Effective time independent Hamiltonian

Effective Hamiltonian:

$$
\begin{gathered}
\mathcal{H}_{\text {eff }}=\sum_{i}\left(V_{0} n_{i}^{f}\right) n_{i}-J \mathcal{J}_{0}\left(\frac{V_{1}\left(n_{i+1}^{t}-n_{i}^{f}\right)}{\omega}\right)\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right) \\
\epsilon_{i}=\left\{\begin{array}{cc}
0, & \text { if } n_{i}^{f}=0 \\
V_{0}, & \text { if } n_{i}^{t}=1
\end{array}, \quad J_{i}^{\text {eff }}=\left\{\begin{array}{cc}
J, & \text { if } n_{i}^{f}=n_{i+1}^{f} \\
J^{\prime}=J \mathcal{J}_{0}\left(V_{1} / \omega\right), & \text { if } n_{i}^{t} \neq n_{i+1}^{t}
\end{array}\right.\right.
\end{gathered}
$$

For uncorrelated disorder states localization at all energies (1D). So DRDM (Dual Random Dimer Model) - no two adjacent sites can be occupied by frozen particles

Delocalized resonance modes (Schaff, Akdeniz, Vignolo 2010)

Approximation of the localization length

$$
J_{i} \psi_{i+1}+J_{i-1} \psi_{i-1}+\left(\epsilon_{i}-E\right) \psi_{i}=0
$$

Let: $\psi_{i}=\phi_{i} \eta_{i}$, where $\eta_{i}=1 /\left(J_{i} \eta_{i-1}\right)$, then:

$$
\phi_{i+1}+\phi_{i-1}+\tilde{V}_{i} \phi_{i}=0
$$

where $\tilde{V}_{i}=\left|\eta_{i}\right|^{2}\left(\epsilon_{i}+E\right)$ is a new effective diagonal disorder. For DRDM: $\eta_{i}=1 / J_{i}^{\text {eff }}$. Mapping onto kicked oscillator ${ }^{4}$ yields perturbative localization length

$$
\begin{aligned}
\lambda^{-1} & =\frac{\rho}{(1+\rho)^{2}} \frac{\left(V_{0}+2\left(1-J^{\prime 2}\right) \cos (k)\right)^{2}}{8 \sin ^{2}(k)} \\
& \times\left(1-2 \frac{\rho(\rho+\cos (2 k))}{1+\rho^{2}+2 \rho \cos (2 k)}\right)
\end{aligned}
$$

where $\rho=\tilde{\rho} /(1-\tilde{\rho})$ and $\tilde{\rho}$ - the density of frozen particles.
${ }^{4}$ L. Tessieri and F. Izrailev Physica E9, 405 (2001).

Transparent modes

Delocalized mode exists for:

$$
\cos \left(k_{t}\right)=\frac{V_{0}}{2\left(1-J^{\prime}\right)^{2}}
$$

if condition:

$$
V_{0}<2\left(1-J^{\prime}\right)^{2}
$$

is fulfilled.

Localization length. Left panel:
$\left\{V_{0}=0.05, J^{\prime}=0.95\right\}$ (black) and $\left\{V_{0}=0.1, J^{\prime}=0.9\right\}$ (red). Right panel: $\left\{V_{0}=0.1, J^{\prime}=0.1\right\}$

Band pass filter?

Transparent mode position $\cos \left(k_{t}\right)=\frac{V_{0}}{2\left(1-J^{\prime}\left(V_{1}, \omega\right)\right)^{2}}$ can be chosen by changing interaction (V_{0}, V_{1}) or modulation frequency ω.

Only particles with chosen quasimomentum leave the disordered region.

Long-range hoppings

What if we add next-nearest neighbor hoppings to our Hamiltonian?

$$
\mathcal{H}_{\text {eff }}=\sum_{i} \epsilon_{i} n_{i}-J_{i}^{\text {eff }}\left(b_{i}^{\dagger} b_{i+1}+\text { h.c. }\right)+\bar{J}_{i}^{\text {eff }}\left(b_{i}^{\dagger} b_{i+2}+\text { h.c. }\right)
$$

Solid line for $\bar{J}=0.01 \mathrm{~J}$.

Mechanism

With nearest neighbor hopping

If particle resonantly passes one obstacle it will pass all of them.

With NEXT-nearest neighbor hopping

If frozen particles are separated by at least two sites, resonance reappears.

Summary

- Off-diagonal disorder may be interesting
- It may be controlled using periodically modified interactions
- Future plans: Realization of random tunneling phases random gauge fields

Recent review on Hubbard: O. Dutta et al. arXiv:1406.0181, Rep. Prog. Phys. in press

Financed: MAESTRO ST-2 DEC-2012/04/A/ST2/00088 http://chaos.if.uj.edu.pl/AOD/maestro/

```
Narodowe Centrum NaukI
```


Many-body Anderson localization in 1D

D. Delande, C. Mueller, K. Sacha, M. Płodzień, S. Avazbaev, JZ Effects for BEC with interactions

- Effective one body (EOB) approach: Phys. Rev. Lett. 103210402 (2009)
- Full many body solution: New J. Phys. 15045021 (2013)

$$
\left[-\frac{1}{2} \partial_{z}^{2}+V(z)+g|\phi(z)|^{2}\right] \phi(z)=\mu \phi(z), \quad\langle\phi \mid \phi\rangle=N
$$

Experiments in the non-interacting limit...
J. Billy et al., Nature 453, 891 (2008)
G. Roati et al., Nature 453, 895 (2008)

Bright solitons in a BEC

Gross-Pitaevskii equation:

$$
\begin{align*}
& {\left[-\frac{1}{2} \partial_{z}^{2}+g\left|\phi_{0}\right|^{2}\right] \phi_{0}=\mu \phi_{0}, \quad g<0 \quad\langle\phi \mid \phi\rangle=N} \\
& \phi_{0}(z-q)=\sqrt{\frac{N}{2 \xi}} \frac{\exp (-i \theta)}{\cosh \left(\frac{z-q}{\xi}\right)}, \tag{5}\\
& \xi=\frac{-2}{N g} \quad \mu=-\frac{N^{2} g^{2}}{8} \tag{6}
\end{align*}
$$

Yet full exact many-body solution - uniform

Bright solitons in a BEC

Gross-Pitaevskii equation:

$$
\begin{align*}
{\left[-\frac{1}{2} \partial_{z}^{2}+g\left|\phi_{0}\right|^{2}\right] \phi_{0}=\mu \phi_{0}, } & g<0
\end{align*} \quad\langle\phi \mid \phi\rangle=N
$$

Yet full exact many-body solution - uniform
The position of the center of mass should be treated quantum mechanically. q - position operator for N particle soliton.

Bright soliton in a BEC

The effective Hamiltonian

If we add weak disorder potential $V(z)$, the effective Hamiltonian describing center of mass motion reads:

$$
\hat{H}_{\mathrm{eff}} \approx \frac{p^{2}}{2 N}+\int d z V(z)\left|\phi_{0}(z-q)\right|^{2} .
$$

- Simple arguments:

Substitution of a time-dependent bright soliton solution $\sim e^{i p z} \phi_{0}(z-q)$ to the energy functional

$$
\begin{aligned}
E & =\int d z\left[\frac{1}{2}\left|\partial_{z} \phi\right|^{2}+\frac{g}{2}|\phi|^{4}-\mu|\phi|^{2}+V(z)|\phi|^{2}\right] \\
& =\frac{p^{2}}{2 N}+\int d z V\left|\phi_{0}(z-q)\right|^{2}
\end{aligned}
$$

Bright solitons in a BEC

The effective Hamiltonian

- Bogoliubov theory: (J. Dziarmaga, (2004) for $V=0$)

$$
\begin{gathered}
\hat{H} \approx \sum_{n, E_{n}>0} E_{n} \hat{b}_{n}^{\dagger} \hat{b}_{n}+\frac{\hat{p}^{2}}{2 N}+\int d z V(z)\left|\phi_{0}(z-q)\right|^{2} \\
N V_{0} \ll E_{1}=|\mu|=\frac{N^{2} g^{2}}{8},
\end{gathered}
$$

Weak perturbation cannot populate internal excited states of the soliton. Shape preserved

Bright solitons in a BEC

Anderson localization

- $V(z)$ is optical speckle potential with correlation length $\sigma_{0} \ll \xi$.
- To the second order (Born approximation) in the potential strength V_{0}, inverse localization length, valid for $\gamma(k) \ll k$,

$$
\gamma(k) \approx \frac{N^{2}}{k^{2}} \pi \sigma_{0} V_{0}^{2}\left(\frac{N \pi k \xi}{\sinh (\pi k \xi)}\right)^{2}
$$

$$
N V_{0}=10^{-2}|\mu|, \sigma_{0}=0.3 \xi, N=100
$$

Many-body approach to Anderson localization

Motivation

Any many body effect omitted in the former effective CM quantization approach could destroy the phase coherence and the wavefunction.
Full many body test required

$$
\hat{H}=\int d z \hat{\psi}^{\dagger}(z)\left[-\frac{1}{2} \frac{\partial^{2}}{\partial z^{2}}+V(z)\right] \hat{\psi}(z)+\frac{g}{2} \int d z \hat{\psi}^{\dagger}(z) \hat{\psi}^{\dagger}(z) \hat{\psi}(z) \hat{\psi}(z)
$$

Discretization (3-point kinetic energy) gives Bose-Hubbard Hamiltonian:

$$
H=\sum_{l}\left[-J\left(a_{l}^{\dagger} a_{l+1}+\text { h.c. }\right)+\frac{U}{2} a_{l}^{\dagger} a_{l}^{\dagger} a_{l} a_{l}+V_{l} a_{l}^{\dagger} a_{l}\right]
$$

$J=\frac{1}{2 \delta^{2}}, U=\frac{g}{\delta}$ and $V_{l}=V\left(z_{l}\right), z_{l}=1 \delta$
B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007)

Many-body approach to Anderson localization

Technicalities

- space restricted to $2 K+1=1921$ points $[-K \delta, K \delta]$
- Matrix product state (MPS) cvariational representation

$$
|\psi\rangle=\sum_{\alpha_{1}, \ldots, \alpha_{M} ; i_{1}, \ldots, i_{M}} \Gamma_{1 \alpha_{1}}^{[1], i_{1}} \lambda_{\alpha_{1}}^{[1]} \Gamma_{\alpha_{1} \alpha_{2}}^{[2], i_{2}} \ldots \Gamma_{\alpha_{n-1} 1}^{[M], i_{M}}\left|i_{1}, \ldots, i_{M}\right\rangle
$$

$\Gamma^{\left[l, i_{l}\right.}$ - site dependent tensors, $\lambda^{[/]}$- bond vectors

- We find a quasi-exact many body ground state - bright soliton in a shallow trap (imaginary time propagation TEBD)
- Trap is removed, disorder turned on, real time propagation with TEBD
- Reliable calculations for $N=25$ particles

Many-body approach to Anderson localization

Technicalities

- Unit of length - soliton size ξ - Unit of time ξ^{2}
- Initial harmonic oscillator $\omega=0.025 / \xi^{2}$ (not to disturb the soliton shape yet to confine CM to a distance slightly larger than ξ)
- strength of the random potential comparable to soliton energy $\omega / 4$ i.e. $V_{0}=2.5 \times 10^{-4}$
- correlation of the disorder $\sigma_{0}=0.4 \xi$
- discretization $\delta=\xi / 5$ tests on smaller...
- time step (Trotter errors!) $d t=0.008 \xi^{2}$
- $N_{\max }=14$ (needed!) despite $N \delta / 2 \xi=2.5$ for $N=25$
- $\chi=30$ (small possible) dimension per site 450 (1921 sites)

Many-body approach to Anderson localization

Tests

- $\chi, N_{\max }, d t, \ldots$.
- entropy of entanglement growth

$$
S=\sup _{I} S_{I}=\sup _{I}\left[-\sum\left(\lambda_{\alpha}^{[/]}\right)^{2} \ln \left(\lambda_{\alpha}^{[/]}\right)^{2}\right]
$$

Many-body approach to Anderson localization

Results

- Atomic density in time

96 realizations of disorder

Many-body approach to Anderson localization

 Results- One body density matrix $\left\langle\psi^{\dagger}(z) \psi\left(z^{\prime}\right)\right\rangle$

Transverse width $\approx \xi$. Largest eigenvalue $=$ condensate fraction $=0.14$!

Many-body approach to Anderson localization

Simulation of the measurement

- From MPS repesentation $\rightarrow \rho^{[/]}$by contraction of tensors..
- Choose n_{l} according to the statistical distribution
- Project MPS on subspace with that n_{l} on / site and normalize
- Repeat scanning other sites till reaching N

Many-body approach to Anderson localization

Comparison with effective one body of 2009

- Let us compare CM densities coming from both approaches

96 versus 10000 realizations of disorder for EOB. Dotted 1/q.

Conclusions:

- AL for attractive interactions in 1D disorder
- Excellent agreement between full many body and EOB description
- Full simulation of the experiment including the measurements possible.

[^0]: ${ }^{2}$ J. Stasinska et al Phys. Rev. A 2014

