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Random matrices:
applications in quantum & classical physics

A) Quantum Chaos and Unitary Dynamics:

’Quantum chaology’

Quantum analogues of classically chaotic dynamical systems can be
described by random matrices

a) autonomous systems – Hamiltonians:
Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE)

b) periodic systems – evolution operators:
Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)
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Random Matrices & Universality

Universality classes

Depending on the symmetry properties of the system one uses ensembles
form
orthogonal (β = 1);
unitary (β = 2) and
symplectic (β = 4) ensembles.

The exponent β determines the level repulsion,

P(s) ∼ s
β

for s → 0 where s stands for the (normalised) level spacing,
si = φi+1 − φi .

see e.g. F. Haake, Quantum Signatures of Chaos
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Wigner Semicircle Law

Spectral density P(x) for random hermitian matrices

can be obtained by integrating out all eigenvalues but one from jpd.
For all three Gaussian ensembles of Hermitian random matrices one
obtains (asymptotically, for N → ∞) the Wigner Semicircle Law (1955)

P(x) =
1

2π

√

2 − x2

where x denotes a normalized eigenvalue, xi = λi/
√

N
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Extremal eigenvalues & Tracy–Widom Law

Statistics of extremal cases - the largest eigenvalue xmax

The normalized largest eigenvalue (”s” of Tracy–Widom)

s := (xmax − 2
√

N)N−1/6

of a GUE random matrix is (asymptotically) distributed according to the
Tracy-Widom law (1994)

F2(s) = det(1 − K ) ,

where K is the integral operator with the Airy kernel

K (x , y) =
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
.

The scaling behaviour of the finite size effect (as N−1/6)
is due to Bowick & Brezin (1991) and Forrester (1991).
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Tracy–Widom distributions

Tracy–Widom distributions Fβ(s)

Distributions Fβ(s) and the largest eigenvalue
of random GUE matrices
(image by A. Edelman)
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Level spacing distribution P(s)

Nearest neighbour spacing s

si = xi+1−xi

∆ (”s” of Wigner), where ∆ is the mean spacing
a) Gaussian ensembles for N = 2 ⇒ Wigner surmise

β = 1 GOE (orthogonal) P1(s) = π
2 s exp(−π

4 s2)

β = 2 GUE (unitary) P2(s) = 32
π2 s

2 exp(− 4
π s2)

β = 4 GSE (symplectic) P4(s) = 218

36π3 s
4 exp(− 64

9π s2)

These distributions derived for N = 2 work well also for Gaussian
ensembles in the asymptotic case, N → ∞.

Random unitary matrices & Circular ensembles of Dyson

Uniform density of phases along the unit circle, P(φ) = 1/2π.
Phase spacing, si = N

2π [φi+1 − φi ] since ∆ = 2π/N.
For large matrices the level spacing distributions for Gaussian ensembles
(Hermitian matrices) and circular ensembles (unitary matrices) coincide.
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Extremal spacings
for random unitary matrices. Consider

a) Minimal spacing smin = minj{sj}N
j=1 (how close to degeneracy?)

and b) Maximal spacing smax = maxj{sj}N
j=1

Minimal spacing distribution for N = 4 random unitary matrices

Two qubits & random local gates

Analytical results P2⊗2(t) for CUE(2) ⊗ CUE(2) case, where t = smin

P2⊗2(t) =
1

4π

(

2π(1−t)
(

4−cos(
πt

2
)
)

−3 sin(
πt

2
)+8 sin(πt)−3 sin(

3πt

2
)
)

CUE, β = 2, CUE(4), P
(2)
4 (t) = ...

explicit result to long to reproduce it here...

Poisson ensemble, β = 0, CPE(4), P
(0)
4 (t) = 3(1 − t)2.
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Minimal spacing P(smin) for N = 4 unitary matrices

Comparison of spacing distribution P(smin) for

a) Poisson CPE(4), b) CUE(2) ⊗ CUE(2), c) CUE(4).
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0
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3

S
min

 

 

CPE
4

CUE
2 ⊗  2

CUE
4

P

mean values: 〈smin〉CPE4 = 1/4, 〈smin〉CUE2⊗CUE2 ≈ 0.4,
〈smin〉CUE4 ≈ 0.54

Smaczyński, Tkocz, Kuś, Życzkowski Phys. Rev. E (2013)
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Minimal spacing P(smin) for large unitary matrices

(here N = 100)

Minimal spacing distribution P(smin) for

0) Poisson CPE(N), P0(smin) = A0Ne−Nsmin

1) COE(N), P1(smin) = 2A2
1Nsmine

−A2
1Ns2

min

2) CUE(N), P2(smin) = 3A3
2Ns2

mine
−A3

2Ns3
min .
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Average minimal spacing 〈smin〉 for large unitary
matrices

Approximation of independent spacings

Assume spacings sj described by the distribution Pβ(s) are independent.

Minimal spacing

Since for small spacings Pβ(s) ∼ sβ so the integrated distribution

I (s) =
∫ s

0 P(s ′)ds ′ behaves as Iβ(s) ∼ s1+β

Matrix of order N yields N spacings sj . The minimal spacing smin occurs
for such an argument that Iβ(smin) ≈ 1/N.

Thus (smin)
1+β ≈ 1/N =⇒ smin ≈ N

− 1
β+1
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Average maximal spacing 〈smax〉

Approximation of independent spacings

Assume spacings sj described by the distribution Pβ(s) are independent.

Mean maximal spacing for COE

Since for large spacings Pβ(s) ∼ s1 exp(−s2) so the integrated
distribution

I1(s) =
∫ s

0 P(s ′)ds ′ behaves as I1(s) ∼ − exp(−s2)

Matrix of order N yields N spacings sj . The maximal spacing smax occurs
for such an argument that 1 − I1(smax) ≈ 1/N.

Thus exp[−(smax)
2] ≈ 1/N =⇒ smax ≈

√
lnN

Smaczyński, Tkocz, Kuś, Życzkowski Phys. Rev. E (2013)

Some of these results (and some other) appeared in a preprint
arXiv:1010.1294 ”Extreme gaps between eigenvalues of random
matrices” by Ben Arous and Bourgade.
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Classical probabilistic dynamics & Markov chains

Stochastic matrices

Classical states: N-point probability distribution, p = {p1, . . . pN},
where pi ≥ 0 and

∑N
i=1 pi = 1

Discrete dynamics: p′
i = Sijpj , where S is a stochastic matrix of size N

and maps the simplex of classical states into itself, S : ∆N−1 → ∆N−1.

Frobenius–Perron theorem

Let S be a stochastic matrix:
a) Sij ≥ 0 for i , j = 1, . . . ,N,

b)
∑N

i=1 Sij = 1 for all j = 1, . . . ,N.
Then
i) the spectrum {zi}N

i=1 of S belongs to the unit disk,
ii) the leading eigenvalue equals unity, z1 = 1,
iii) the corresponding eigenstate pinv is invariant, Spinv = pinv.
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B) Quantum Chaos & Nonunitary Dynamics

Quantum operation: linear, completely positive trace preserving map

positivity: Φ(ρ) ≥ 0, ∀ρ ∈ MN

complete positivity: [Φ ⊗ 1K ](σ) ≥ 0, ∀σ ∈ MKN and K = 2, 3, ...

Enviromental form (interacting quantum system !)

ρ′ = Φ(ρ) = TrE [U (ρ ⊗ ωE ) U†] .

where ωE is an initial state of the environment while UU† = 1.

Kraus form

ρ′ = Φ(ρ) =
∑

i AiρA
†
i , where the Kraus operators satisfy

∑

i A
†
i Ai = 1, which implies that the trace is preserved.
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Quantum stochastic maps (trace preserving, CP)

Superoperator Φ : MN → MN

A quantum operation can be described by a matrix Φ of size N2,

ρ′ = Φρ or ρmµ
′ = Φmµ

nν
ρnν .

The superoperator Φ can be expressed in terms of the Kraus operators Ai ,
Φ =

∑

i Ai ⊗ Āi .

Dynamical Matrix D: Sudarshan et al. (1961)

obtained by reshuffling of a 4–index matrix Φ is Hermitian,

Dmn
µν

:= Φmµ
nν

, so that DΦ = D
†
Φ =: ΦR .

Theorem of Choi (1975). A map Φ is completely positive (CP)
if and only if the dynamical matrix DΦ is positive, D ≥ 0.
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Spectral properties of a superoperator Φ

Quantum analogue of the Frobenious-Perron theorem

Let Φ represent a stochastic quantum map, i.e.
a’) ΦR ≥ 0; (Choi theorem)
b’) TrAΦR = 1 ⇔ ∑

k Φkk
ij

= δij . (trace preserving condition)

Then
i’) the spectrum {zi}N2

i=1 of Φ belongs to the unit disk,
ii’) the leading eigenvalue equals unity, z1 = 1,
iii’) the corresponding eigenstate (with N2 components) forms a matrix ω
of size N, which is positive, ω ≥ 0, normalized, Trω = 1, and is invariant
under the action of the map, Φ(ω) = ω.

Classical case

In the case of a diagonal dynamical matrix, Dij = diδij reshaping its
diagonal {di} of length N2 one obtains a matrix of size N, where Sij = Dii

jj

,

of size N which is stochastic and recovers the standard F–P theorem.
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Decoherence for quantum states and quantum maps

Quantum states → classical states = diagonal matrices

Decoherence of a state: ρ → ρ̃ = diag(ρ)

Quantum maps → classical maps = stochastic matrices

Decoherence of a map: The Choi matrix becomes diagonal,
D → D̃ = diag(D) so that the map Φ = DR → D̃R → S

where for any Kraus decomposition defining Φ(ρ) =
∑

i AiρA
†
i the

corresponding classical map S is given by the Hadamard product,

S =
∑

i

Ai ⊙ Āi

If a quantum map Φ is trace preserving,
∑

i A
†
i Ai = 1

then the classical map S is stochastic,
∑

j Sij = 1.

If additionally a quantum map Φ is unital,
∑

i AiA
†
i = 1

then the classical map S is bistochastic,
∑

j Sij =
∑

i Sij = 1.
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Interacting quantum dynamical systems

Generalized quantum baker map with measurements

a) Quantisation of Balazs and Voros applied for the asymmetric map

B = F
†
N

[

FN/K 0

0 FN(K−1)/K

]

, where N/K ∈ N.

where FN denotes the Fourier matrix of size N. Then ρ′ = BρiB
†

b) M measurement operators projecting into orthogonal subspaces
Kraus form: ρi+1 =

∑M
i=1 Piρ

′Pi

c) vertical shift by ∆/2 ( Loziński, Pakoński, Życzkowski 2004)

Standard classical model K = 2, dynamical entropy H = ln 2;
Asymmetric model, K > 2, entropy decreases to zero as K → ∞.

Classical limit: N → ∞ with K ≤ N.
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Exemplary spectra of superoperator for L–fold generalized baker map BL

& measurement with M Kraus operators for N = 64 and M = 2:
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a) weak chaos (K = 64 and L = 1),
b) strong chaos (K = 4 and L = 4) – ’universal’ behaviour:
λ1 = 1 and uniform Girko disk of eigenvalues of radius R,

(described by real Ginibre ensemble).
c) weak chaos (K = 32 and L = 32).
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s–steps propagators (”s” of Fuss–Catalan)

Exemplary spectra of superoperator Φs for s–steps non-unitary evolution

i) spectral properties of 1–step propagator Φ coincide with these of real
random Ginibre matrices (uniform disk apart of the real axis)

ii) properties of s–step propagators Φs are similar as products of random
matrices:
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a) the radial density of complex eigenvalues r = |z | of Φs

behaves asymptotically as the algebraic law for
products of s random Ginibre matrices

of Burda et al. 2010: Ps(r) ∼ r
−1+2/s

with an error-function Ansatz (red line) describing the finite N effects.
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b) the squared singular values of Φs

can be described by Fuss-Catalan distribution of order t = s − 1.

Let x = N2λ, where λ is an eigenvalue of Φs(Φs)†. Then

s = 2, t = 1 (Wishart)

P1(x) =

√
1−x/4

π
√

x
x ∈ [0, 4],

Marchenko–Pastur distrib.
(with moments given by the
Catalan numbers);

s ≥ 3, t ≥ 2, the
Fuss–Catalan distrib. Pt(x)
for x ∈ [0, (t + 1)t+1/tt ]
(with moments given by the
Fuss–Catalan numbers)
expicitely derived in
Penson, K. Ż., 2011,
M lotkowski 2013
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Concluding Remarks

Random Matrices: a) offer a useful tool applicable in several
branches of science including physics !
b) display (asymptotically) universal properties, which depend on
the symmetry with respect to orthogonal / unitary / symplectic
transformations

Quantum Chaos:
a) in case of closed systems one studies unitary evolution operators
and characterizes their spectral properties,
b) for open, interacting systems one analyzes non–unitary time
evolution described by quantum stochastic maps.

We analyzed spectral properties of quantum stochastic maps and
formulated a quantum analogue of the Frobenius-Perron theorem.

Non–unitary dynamics: in case of strong chaos and large
interaction with the environment the superoperators can be described
by real random Ginibre matrices, while s–step propagators
correspond to products (powers) of non-hermitian random matrices.
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