Magnetoplasmons in graphene and topological insulator ribbon arrays

Zhigang Jiang School of Physics Georgia Institute of Technology

WYU38 4 Apr 2012 1024 * 768 Width = 2.423 µm Scan Rot = Off Stage at T = 0.0 ° Scan Speed = 1 Line Avg

ed = 1 InLens N = 5 WD = 6.2 mm 2.00 kV 109.75 K X Aperture Size = 30.00 µm Out Dev.

OUTLINE:

- Introduction to graphene and graphene-based tunable plasmonics and optoelectronics
- THz near-field imaging of surface plasmon waves in graphene micro-structures
- Dirac plasmons in graphene nanoribbons:
 (1) Upper-hybrid mode between cyclotron resonance and plasmon resonance
 (2) Peculiar ∝(1/WB) scaling behavior
- Magnetoplasmons in topological insulators

 (1) Tunable upper-hybrid mode
 (2) Effective mass, m* ~ 0.23 m_e

Introduction: Graphene plasmonics

Georgialnstitu of Technology

Why graphene plasmonics?

	Light confinement λ _{IR} / λ _{plasmon}	Propagation loss-length	Tunability
Ag/Si	~20	~0.1 $\lambda_{plasmon}$	Limited
Graphene	~200	~10 $\lambda_{plasmon}$	$\omega_p \propto n^{1/4} W^{-1/2}$

M. Jablan et al. PRB **80**, 245435 (2009)

J. Christensen et al. ACS Nano 6, 431 (2012)

Plasmon dispersion in graphene

B. Wunsch et al. New J. of Phys. 8, 318 (2006)
E.H. Hwang et al. PRB 80, 205405 (2007)
R. Roldán et al. Semicond. Sci. Technol. 25, 034005 (2010)

Plasmon dispersion in graphene

$$\omega_p \approx \sqrt{\frac{2e^2 E_F}{\epsilon}q + \gamma v_F^2 q^2}$$

B. Wunsch et al. New J. of Phys. 8, 318 (2006)
E.H. Hwang et al. PRB 80, 205405 (2007)
R. Roldán et al. Semicond. Sci. Technol. 25, 034005 (2010)

Tunable plasmons in graphene

Georgia Institut of Technology

L. Ju et al. Nat. Nanotechnol. 6, 630 (2011)

Tunable plasmons in graphene

H. Yan et al. Nat. Nanotechnol. 7, 330 (2012)

Georgia Institut of Technology

Tunable plasmons in graphene

H. Yan et al. Nano Lett. 12, 3766 (2012)
I. Crassee et al. Nano Lett. 12, 2470 (2012)
I. Petković et al. PRL 110, 016801 (2013)
N. Kumada et al. PRL 113, 266601 (2014)

Georgialnstitute of **Tech**nology

Near-field study of graphene plasmons

@ mid-IR spectral range

J. Chen et al. Nature **487**, 77 (2012) Z. Fei et al. Nature **487**, 82 (2012)

Georgialnstitute of Technology

Epitaxial graphene grown on SiC

THz near-field imaging

O. Mitrofanov et al. invited paper to Solid State Commun. (2015)

THz near-field imaging

THz near-field imaging

of **Technology**

O. Mitrofanov et al. invited paper to Solid State Commun. (2015) O. Mitrofanov et al. APL **103**, 111105 (2013)

Charge neutral top layers on C-face

 $E_F \sim 17 \text{ meV}$ $n \sim 1.9 \times 10^{10} / \text{cm}^2$ $\mu \sim 50,000 \text{ cm}^2 / \text{Vs}$ $v_F \sim 1.02(3) \times 10^6 \text{ m/s}$

W.A. de Heer et al. PNAS 108, 16900 (2011)

M.L. Sadowski et al. PRL **97**, 266405 (2006) A.M. Witowski et al. PRB **82**, 165305 (2010)

Charge neutral top layers on C-face

A.M. Witowski et al. PRB **82**, 165305 (2010)

of **Tech**no

Experimental setup

Transmission versus magnetic field

Graphene nanoribbons

Plasmons in conventional 2D systems

Plasmons in disks

S.J. Allen et al. PRB 28, 4875 (1983)

of Technology

Plasmons in doped graphene disks

Plasmons in graphene disks

$$\omega^{\pm} = \sqrt{\omega_0^2 + \omega_c^2 / 4} \pm \omega_c / 2$$

H. Yan et al. Nano Lett. **12**, 3766 (2012) I. Crassee et al. Nano Lett. **12**, 2470 (2012)

Plasmons in doped graphene disks

$$\omega^{\pm} = \sqrt{\omega_0^2 + \omega_c^2 / 4 \pm \omega_c / 2}$$

Heavily doped graphene in classical limit: Cyclotron resonance frequency (ω_c) is linear-in-*B*-field

H. Yan et al. Nano Lett. **12**, 3766 (2012) I. Crassee et al. Nano Lett. **12**, 2470 (2012)

Upper-hybrid mode (UHM) in graphene

Upper-hybrid mode (UHM) in graphene

Upper-hybrid mode (UHM) in graphene

Magneto-plasmon dispersion

J.M. Poumirol et al. PRL 110, 246803 (2013)

of **Technology**

Magneto-plasmon dispersion

SUMMARY I:

- Introduction to graphene and graphene-based tunable plasmonics and optoelectronics
- THz near-field imaging of surface plasmon waves in graphene micro-structures
- Dirac plasmons in graphene nanoribbons:
 (1) Upper-hybrid mode between cyclotron resonance and plasmon resonance
 (2) Peculiar ∝(1/WB) scaling behavior
- Magnetoplasmons in topological insulators

 (1) Tunable upper-hybrid mode
 (2) Effective mass, m* ~ 0.23 m_e

Georgia

SUMMARY II:

- Introduction to graphene and graphene-based tunable plasmonics and optoelectronics
- THz near-field imaging of surface plasmon waves in graphene micro-structures
- Dirac plasmons in graphene nanoribbons:

 (1) Upper-hybrid mode between cyclotron resonance and plasmon resonance
 (2) Peculiar ∝(1/WB) scaling behavior
- Magnetoplasmons in topological insulators

 (1) Tunable upper-hybrid mode
 (2) Effective mass, m* ~ 0.23 m_e

Georgia

ACKNOWLEDGMENTS:

- GaTech: W. Yu, Y. Jiang, X. Chen, C. Berger, W.A. de Heer, ZJ
- NHMFL: J.M. Poumirol, D. Smirnov
- Sandia Lab: M.L. Smith, T. Ohta, I. Brener, W. Pan
- UCL: O. Mitrofanov
- U. Paris-Sud: M.O. Goerbig
- Rutgers: M. Brahlek, M.Koirala, S. Oh

Thank You !