

Quantum Hall effect in graphene: Breakdown and hot electron effects

Luchon May 2015

Robin Nicholas Department of Physics, University of Oxford

J. Huang, J. A. Alexander-Webber, – Oxford, UK B. Piot, D.K. Maude – LNCMI Grenoble, Toulouse, France T. J. B. M. Janssen, A. Tzalenchuk – NPL, UK T. Yager, S. Lara-Avila, S. Kubatkin – Chalmers, Sweden

V. Antonov – Royal Holloway, UK R. Yakimova – Linköping, Sweden

Outline

- Energy loss rates in graphene
- Quantum Hall effect in graphene
- Magnetic field and temperature dependence
- Hot electrons and Bootstrap electron heating model

QHE in epitaxial graphene

- Exceptionally wide quantised v=2 plateau at T=2K
- Well defined zero resistance state for a wide range of carrier densities

Alexander-Webber et al., PRL 111, 096601 (2013)

High current breakdown of QHE

- QHE breakdown = sudden onset of longitudinal resistance
- Breakdown defined at Vxx=10µV
- Remarkably high breakdown currents: over 200µA in a 5µm wide Hall bar at T=1.8 K
- 43A/m at 25T, over an order of magnitude higher than GaAs

Magneto-transport in 3 different graphenes

Heat Carriers with Electric Field

Deduce carrier temperature as a function of input power

$$= I^2 \rho_{\rm xx} = \nu \sigma_0 E^2$$

Measure electron Temperature

Temperature dependence matched to: Current dependence

Total input power = $n_e x$ energy loss rate per carrier (P (T_e))

$$n_{\rm e} P(T_{\rm e}) = I^2 \rho_{\rm xx} = \nu \sigma_0 E^2$$

Weak localisation peak

WL peak depends on electron temperature due to electronelectron scattering

Energy Loss rate per carrier

Bloch-Gruneissen (low temperature) limit:

 $k_{B}T_{BG}\,=\,2v_{s}k_{F}\hbar\ \ (20{-}250K)$

 $P = \alpha (T_e^4 - T_L^4)$

$$P = \frac{\pi^2 k_B^2 T_e^2}{3E_F \tau_e}$$

Energy relaxation time, τ_e

Low temp. theory¹ Deformation Pot. Scatt. $\tau_e = \frac{\pi^2 k_B^2 T_e^2}{3E_F \alpha T_o^4} + \tau_0$

Limit $\tau_{\rm e}$ to 1.5 ps due to phonon relaxation (τ_0)

1: Kubbakadi, Phys. Rev. B79, 075417 (2009)

Energy Loss rate per carrier

1: Kubbakadi, Phys. Rev. B79, 075417 (2009)

Energy Loss rates for all densities

Define loss rate coefficient from: $P = \alpha (T_e^4 - T_L^4)$

Bilayer graphene

Bilayer Weak localisation

Energy Loss rates for all graphenes

Density dependence of Energy loss rates – Monolayer graphene

Weak carrier density dependence ~ $n^{-0.5}$

Enhanced energy loss in CVD (more disordered) graphene

? Enhanced energy loss due to 'Supercollisions'?

Theory : Song et al. PRL 109 10662 (2012) Experiment: Betz et al. Nature physics 9 2494

Much weaker than conventional semiconductors ~ $n^{-1.5}$

QHE at low carrier densities

Magnetic Field Dependence

QHE at Ultra-low Carrier Density

Charge Transfer Model

- n~1x10¹¹ cm⁻² from low field Hall coefficient.
- Peak breakdown at 6-8T, suggesting n~3x10¹¹ cm⁻².
- Peak breakdown field in agreement with chargetransfer model [1,2]
- Model based on unbroadened Landau levels and constant DoS in substrate

[1] Janssen et al., PRB 83, 233402 (2011)

[2] Kopylov et al., APL 97, 112109 (2010)

Intrinsic Excitation in the Presence of Electron-Hole Puddles

n20 (1011 cm-2)

Martin *et al.*, Nature Phys. **4**, 144 (2008) 22

Potential

23

/RH

Energy

0

Temperature-dependent Magnetotransport in High Magnetic Fields

$$\sigma_{VRH} = \sigma_0 \cdot \exp[-(\frac{T_0}{T})^{\frac{1}{3}}]$$

> Thermal activation^{2,3} (TA) at high temperatures:

$$\sigma_{TA} = \frac{8e^2}{\pi h} \cdot \left[2e^{-\frac{E_F}{kT}} + 4e^{-\frac{E_1 - E_F}{kT}}\right] \cdot \left[\frac{kT}{\Gamma}\cosh\frac{\Gamma}{kT} - (\frac{kT}{\Gamma})^2\sinh\frac{\Gamma}{kT}\right]$$

> Total conductivity: $\sigma_{xx} = \sigma_{VRH} + \sigma_{TA}$

1. Mott, J. Non-Crystal. Solid **1**, 1 (1968)

- 2. Nicholas, Stradling, and Tidey, Sol. State Commun. 23, 341 (1977)
- **3. Shon and Ando**, JPSC **67**, 2421 (1998)

Filling Factor and Carrier Density

Fermi level moves up the tail of the Gaussian LLO as *B* increases: filling factor *v* begins to decrease

Nearly linear (sub-linear) magnetic field dependent charge transfer

Fermi energy is pinned

Magnetic Field Dependence of j_c

B^{3/2} dependence – same as observed in GaAs

Peak j_c follows same behaviour as Tc

UV exposure may introduce inhomogeneities

Temperature dependent Breakdown of QHE

Low field plateau at 1.2 T

n~1.5x10¹⁰ cm⁻²

 $I_c @ Vxx=1 \mu V$ ρxx<0.1Ω

Over 7 μA in 20 μm wide device at 2K

 $J_c = 0.35A/m$ comparable to GaAs at 5T

Temperature Dependence

Temperature dependence common to traditional semiconductor 2DEGs [1,2]

$$Ic(T) \propto \left(1 - \frac{T^2}{T_c^2}\right)$$

Superlinear dependence on B

 $\hbar \omega_c \sim B^{1/2}$ – Disorder broadening LL

Predicts Tc~85K at 45T for dissipationless state

[1] L.B. Rigal et al., PRL 82, 1249 (1999)[2] H. Tanaka, et al. JPSJ 75, 014701 (2006)

Boostrap Electon Heating Model

Komiyama and Kawaguchi, PRB 61 2014 (2000)

• At breakdown:

Rate of change of energy input > Rate of change of energy loss

$$E_b = \sqrt{4B\hbar\omega_c/\eta e\tau_e}$$
 Degeneracy, $\eta = 4$ for graphene

- > Depends on cyclotron energy and energy loss time, τ_e
- Overestimates breakdown current by a factor of ~2 in best GaAs devices
- Upper limit for breakdown current

Energy relaxation Lifetime

A.M.R. Baker et al, PRB 85, 115403 (2012) A.M.R. Baker et al., PRB 87, 045414 (2013)

Material Dependence

Oxford, UK Acknowledgements NPL, UK

Jian 'Nate' Huang, Jack Alexander-Webber

Royal Holloway, UK

Vladimir Antonov

Thomas Yager, Samuel Lara-Avila, Sergey Kubatkin

LNCMI Grenoble, Toulouse, France Benjamin Piot, Duncan Maude

Linköping, Sweden Rositza Yakimova

JT Janssen, Alexander Tzalenchuk

Chalmers, Sweden

Summary Strongly magnetic field dependent carrier density

Very high critical currents, Superlinear dep. of j_c and T_c on B

Jc = 43A/m @ 23TTc = 45K @ 29T

15

Magnetic Field/T

10

5

20

25

30

 $Ic(T) \propto \left(1 - \frac{T^2}{T_c^2}\right)$