Landau level spectroscopy of graphene (Raman scattering and far-infrared absorption) Electron-phonon and electron-electron interactions

Marek Potemski

Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UJF/UPS/INSA

European Research Council Established by the European Commission

MOMB

Probing Electronic Excitations in Mono- to Pentalayer Graphene by Micro Magneto-Raman Spectroscopy Nano Lett. 2014, 14, 4548–4553

Stéphane Berciaud,*,[†] Marek Potemski,[‡] and Clément Faugeras*,[‡]

How Perfect Can Graphene Be?

PRL 103, 136403 (2009)

P. Neugebauer,¹ M. Orlita,^{1,2,3,*} C. Faugeras,¹ A.-L. Barra,¹ and M. Potemski¹

Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations

Phys. Rev. Lett. 107, 036807 - Published 14 July 2011

C. Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Kühne, A. A. L. Nicolet, Yu. I. Latyshev, and M. Potemski

"The ZOO of magneto-phonon resonances in graphene" D.M. Basko, P. Leszczynski, C. Faugeras... et al., to be published

Landau level spectroscopy of electron-electron interactions in graphene PRL 114, 126804, (2015)

C. Faugeras,¹ S. Berciaud,² P. Leszczynski,¹ Y. Henni,¹ K. Nogajewski,¹ M. Orlita,¹ T. Taniguchi,³ K. Watanabe,³ C. Forsythe,⁴ P. Kim,⁴ R. Jalil,⁵ A.K. Geim,⁵ D.M. Basko,^{6,*} and M. Potemski^{1,†}

Why ? Graphene: a truly two-dimensional crystal of sp² –bonded carbon

PROPERTIES & APPLICATIONS OF GRAPHENE

GRAPHENE FLAGSHIP

Graphene-Based Revolutions in ICT And Beyond

This talk: fundamental properties studied with magnetic fields (spectroscopy)

Dispersion relations and corresponding Landau level ladders Electronic states, generic (quasi) 2D structure of sp² carbon (Bernal stacking) ~ graphene + (effective) bilayers

CINIS

Dispersion relations and corresponding Landau level ladders

Electronic states, generic (quasi) 2D structure of sp² carbon (Bernal stacking) ~ graphene + (effective) bilayers

Landau level spectroscopy

Probing inter Landau level excitations : $L_i \rightarrow L_j$

Absorption/transmission

Selection rules

CINIS

Δn	=	+1	:	$\sigma^{\scriptscriptstyle +}$

 $\Delta n = \pm 1$

 $\Delta n = -1 : \sigma^{-}$

and $\Delta n = 2, 4, 5, 7, 8$ if trigonal warping

V.P. Gusynin & S.G. Sharapov, PRB, 2006 M. Koshino & T. Ando, PRB, 2008 M. Mucha-Kruczynski *et al.*, J. Phys., 2009

M.L. Sadowski et al., SSC, 2007

Raman scattering

Selection rules

CINIS

 $\Delta n = 0$ strong $\sigma^+ / \sigma^+, \sigma^- / \sigma^-$

 $\Delta n = \pm 2$ weaker $\sigma^+ / \sigma^-, \sigma^- / \sigma^+$

 $\Delta n = \pm 1$

if trigonal warping or coupled to phonon

O. Kashuba & V.I. Falko PRB, 2009; M. Mucha-Kruczynski et al., PRB, 2010

What can be learned from magneto-optics ?

Band structure $\sqrt{}$

Scattering: efficiency (mechanism)?

Scattering ?

Classical condition for observation of cyclotron resonance (Landau quantization)

$$\begin{array}{c} & \tau_{scattering} > T_{cyclotron} \\ & \times \vec{B} \end{array} & \begin{array}{c} \tau_{s} > 1/\omega_{C} \\ & \mu > 1/B_{min} \end{array} \text{ rough estimate of carrier mobility} \end{array}$$

More general :

Spectral broadening $\Gamma \leftarrow 1/\tau_{scat}$

Scattering mechanisms $\leftarrow \Gamma = \Gamma(B, E)$

Band structure $\sqrt{}$

Scattering: efficiency (and mechanism) $\, \sqrt{}\,$

Interactions (?) :

electron-phonon

CINIS

electron-electron

Interactions ?

tuning the excitations in resonance

Interactions ?

resonant electron-phonon coupling ?

strength of interaction $\leftarrow \delta$

CMrs

+ more than this !!

other magneto-phonon'' resonance

Electron-electron interactions and inter Landau level transitions

Electron-electron interactions and inter Landau level transitions

Expectations:

Rather large deviations from effective single electron model ?

 $\Delta_{corr} \sim \gamma_{nm} \sqrt{B}$

?

Graphene: Electron-electron interactions at B=0

Dirac cones reshaped by interaction effects in suspended graphene

D. C. Elias¹, R. V. Gorbachev¹, A. S. Mayorov¹, S. V. Morozov², A. A. Zhukov³, P. Blake³, L. A. Ponomarenko¹, I. V. Grigorieva¹, K. S. Novoselov¹, F. Guinea⁴* and A. K. Geim^{1,3}

In graphene, electron-electron interactions are expected to play a significant role, as the screening length diverges at the charge neutrality point and the conventional Landau theory that enables us to map a strongly interacting electronic liquid into a gas of non-interacting fermions is no longer applicable^{1,2}. This should result in considerable changes in graphene's linear spectrum, and even more dramatic scenarios, including the opening of an energy gap, have also been proposed³⁻⁵. Experimental evidence for such spectral changes is scarce, such that the strongest is probably a 20% difference between the Fermi velocities v_F found in graphene and carbon nanotubes⁶. Here we report measurements of the cyclotron mass in suspended graphene for carrier concentrations n varying over three orders of magnitude. In contrast to the single-particle picture, the real spectrum of graphene is profoundly nonlinear near the neutrality point, and v_F describing its slope increases by a factor of more than two and can reach $\approx 3 \times 10^6$ m s⁻¹ at $n < 10^{10}$ cm⁻². No gap is found at energies even as close to the Dirac point as ~0.1 meV. The observed spectral changes are well described by the renormalization group approach, which yields corrections logarithmic in n.

J. González, F. Guinea, and M. A. H. Vozmediano, Mod. Phys. Lett. B 7, 1593 (1993).

$$v = v_0 - \frac{\alpha c}{4\varepsilon} \ln \frac{|E|}{W}$$

Figure 1 | Sketch of graphene's electronic spectrum with and without taking into account e-e interactions. The outer cone is the single-particle

Band structure mono to pentalayer graphene

Scattering efficiency graphene on graphite: the best ever seen graphene

Electron-phonon interaction the ZOO of magneto-phonon resonances

Electron-electron interaction

Conclusions

What can be learned from magneto-optics ? Band structure !

Letter

Probing Electronic Excitations in Mono- to Pentalayer Graphene by Micro Magneto-Raman Spectroscopy

Stéphane Berciaud,*,* Marek Potemski,* and Clément Faugeras*,*

[†]Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, 67034 Strasbourg Cedex 2, France

[‡]Laboratoire National des Champs Magnétiques Intenses, CNRS/UJF/UPS/INSA, Grenoble F-38042, France

What can be learned from magneto-optics ? Band structure !

What can be learned from magneto-optics ?

Band structure !

What can be learned from magneto-optics ?

Band structure !

What can be learned from magneto-optics ? Scattering: efficiency (mechanism) !

P. Neugebauer,¹ M. Orlita,^{1,2,3,*} C. Faugeras,¹ A.-L. Barra,¹ and M. Potemski¹

Graphene on graphite: best ever seen graphene !!

100 nm а А B 0.8 /αα eight (nm) B ββ 0.0 -<mark>d</mark>-С b 200 250 300 50 100 150 position (nm)

G. Li et al., PPRL, 2008

Cyclotron resonance absorption : high temperature but well resolved LLs

Graphene on graphite

LNCM

(Very) low field cyclotron resonance absorption

CINIS

LL broadening : $\Gamma \approx 35 \ \mu eV \ (0.4 \ K)$

S

P. Neugebauer et. al., PRL, 2009

How perfect can graphene be

$$E_F \cong 6.5 \ meV, \ n \cong 3 \cdot 10^9 \ cm^{-2}, \ m^* = E_F / v_F^2 \cong 1.3 \cdot 10^{-3} \ m_e$$

Landau level quantization
down to
$$B_0 = 1 \text{ mT}$$
 $\longrightarrow \mu > \frac{1}{1mT} = 10^7 \frac{cm^2}{V \cdot s}$

$$\gamma = 35 \,\mu eV \,(0.4 \, K) \longrightarrow \tau \approx 20 \, ps, \quad \mu = \frac{e}{m^*} \tau \approx 3 \cdot 10^7 \, \frac{cm^2}{V \cdot s}, \quad l_F \approx 20 \, \mu m$$

Also at 50 K !

$$\gamma = E_1 \longrightarrow B = 1 \,\mu T$$

 $B_{Earth} \approx 50 \,\mu T \longrightarrow E_1 \approx 0.25 \,meV = 3 \,K > \gamma = 0.4 \,K$

Pronounced Landau quantization in the magnetic field of the Earth

Graphene on graphite: magneto Raman scattering response phonons + search for a characteristic electronic response

e.g., $L_{-1} \rightarrow L_1$ inter Landau level excitation

Graphene on graphite: magneto-Raman scattering response: an overview

Graphene on graphite: magneto-Raman scattering response: an overview

Graphene on graphite: magneto-Raman scattering response: an overview

C. Faugeras et al., PRL, 2011; M. Kühne et al., PRB, 2012, D. Basko et. al, to be published

Interactions ?

resonant electron-phonon coupling !

strength of interaction $\leftarrow \delta$

In magnetic fields Resonant coupling of E_{2g} phonon ("optical") with $\Delta n=\pm 1$ inter Landau level excitations Theoretical predictions :

$$\delta \sim \sqrt{2\lambda} \cdot E_1(B_{res}) \cdot \sqrt{(1 - f_f)f_i} \sim \sqrt{\lambda \cdot B_{res}} \cdot \sqrt{(1 - f_f)f_i}$$

Magneto-phonon resonance: graphene on graphite

Graphene on graphite: an electronic system of unprecedented quality !

C. Faugeras, et al., PRL, 2011; M. Kühne el al., PRB 2012

J. Yan et al., PRL, 2010

Experiment: magneto-phonon resonance in epitaxial graphene

 $\lambda = 4.5 \cdot 10^{-3}$

Magneto-phonon resonance in doped graphene

 $\delta \sim \sqrt{\lambda \cdot B_{res}} \cdot \sqrt{(1 - f_f)f_i}$

Magneto-phonon resonances: graphene on h-BN ~ neutral and better electronic quality

P. Leszczynski, A. Nicolet, C. Faugeras et al., to be published

Magneto-phonon resonances: bilayer graphene on h-BN

Experiment in <u>qualitative</u> agreement

with simulations

$$v_F = 1.06 \cdot 10^6 \, m \, / \, s \, , \quad \lambda = 3.5 \cdot 10^{-3}$$

 $E_F < 100 \, meV \, , \quad n < 2.5 \cdot 10^{12} \, cm^{-2}$

1592

Phonon coupling to $\Delta n=\pm 1$ inter Landau <u>band</u> transitions from the vicinity of the K-point + of the H point

Probing the band structure with magneto-phonon resonance

C. Faugeras et al., New J. Phys., 2012

Graphene on graphite: magneto-Raman scattering response: electronic excitationsan

X

州

CINIS

Beyond the standard magneto- E_{2g} phonon resonances

New class of magneto-phonon resonances:

- accelerated relaxation, shortening of the final/initial states

Interactions

 $E_{-1,2} = E_{-1,0} + E_{ph}$ $E_{k=0} = E_{K,K} + E_{\Gamma}$ $E_{k=0} = E_{K,K'} + E_{K}$

D.M. Basko, P. Leszczynski, C. Faugeras, et al

$$\mathbf{E}_{ph} = \mathbf{E}_{0,1}$$

$$E_{-1,1} = E_{-1,0} + E_{ph} = 2 \times E_{ph}$$

both K- and Γ-phonons invloved two-particle excitations, triple resonances intra and inter-valley scattering

- learning more on carrier dynamics

Electron – electron interactions ?

Electron – electron interactions ?

PRL 114, 126804, (2015)

Landau level spectroscopy of electron-electron interactions in graphene

C. Faugeras,¹ S. Berciaud,² P. Leszczynski,¹ Y. Henni,¹ K. Nogajewski,¹ M. Orlita,¹ T. Taniguchi,³ K. Watanabe,³ C. Forsythe,⁴ P. Kim,⁴ R. Jalil,⁵ A.K. Geim,⁵ D.M. Basko,^{6,*} and M. Potemski^{1,†}

Electronic inter Landau level excitations Magneto Raman scattering

suspended graphene	$\epsilon = 1$	$\mathbf{E}_{\mathbf{C}} / \mathbf{E}_{\mathbf{kin}} = \alpha_{\varepsilon} = (c/v)(\alpha/\varepsilon) \sim 2/\varepsilon$
graphene encapsulated in hBN	$\varepsilon = 5$	
graphene on graphite	$\varepsilon = 10$?	

Electron – electron interactions ?

$$v_n^{exp} = \omega_{-n,n}^{exp} l_B / \sqrt{8n}$$

Electron – electron interactions !

$\mathbf{B}=\mathbf{0}$

First order perturbation theory with respect to $\alpha_{\varepsilon} = (c/v)(\alpha/\varepsilon)$

$$\frac{v}{v_0} = 1 - \frac{\alpha_{\varepsilon}}{4} \ln \frac{|E|}{W}$$
$$v = v_0 - \frac{\alpha c}{4\varepsilon} \ln \frac{|E|}{W}$$

Electron – electron interactions !

 $\mathbf{B}=\mathbf{0}$

First order perturbation theory with respect to $\alpha_{\varepsilon} = (c/v)(\alpha/\varepsilon)$

$$\frac{v}{v_0} = 1 - \frac{\alpha_{\varepsilon}}{4} \ln \frac{|E|}{W}$$
$$v = v_0 - \frac{\alpha c}{4\varepsilon} \ln \frac{|E|}{W}$$

Beyond FOPT

1/(N=4) expansion :

J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B **59**, R2474 (1999).

RPA:

J. Hofmann, E. Barnes, and S. Das Sarma, Phys. Rev. Lett. **113**, 105502 (2014).

$$\frac{\alpha_{\varepsilon}}{4} \rightarrow \frac{2}{\pi^2} \left[1 - \frac{1}{\alpha_{\varepsilon}} + \frac{2}{\pi \alpha_{\varepsilon}} \frac{\arccos(\pi \alpha_{\varepsilon}/2)}{\sqrt{1 - (\pi \alpha_{\varepsilon}/2)^2}} \right]$$

 $\varepsilon \to \varepsilon_{1/N} = \varepsilon + 1.28 \alpha c/v_0 = \varepsilon + 3 \quad \thickapprox \ \pounds_*$

$$\mathbf{First order perturbation theory}$$
with respect to $\alpha_{\varepsilon} = (c/v)(\alpha/\varepsilon)$
 $v_n \equiv \frac{\omega_{-n,n}l_B}{\sqrt{8n}} = v_0 + \frac{\alpha c}{4\varepsilon}(\mathcal{L} - \ln \frac{l_{B_0}}{l_B}) + \frac{\alpha c}{4\varepsilon}C_n$
 $C_1 = -0.4, C_2 = -0.2$
 ψ
 $v_2 > v_1$
Phenomenology to match the data (numbers)
 $v_n = v_0 + \frac{\alpha c}{4\varepsilon_*}(\mathcal{L} - \ln \frac{l_{B_0}}{l_B}) + \frac{\alpha c}{4\varepsilon_{\delta v}}C$
 $\varepsilon_* = 3.9, 7, 12 \approx \varepsilon_{1/N}$ $v_0 = 0.88 \times 10^6 \text{ m/s}$
 $\varepsilon_{\delta v} = 1.3, 3.7, 12 \approx \varepsilon$ $W = (hv_0/l_{B_0})^{\mathcal{L}} = 3.1 \text{ eV}$

17/1-

Conclusions

Magneto-optics is a useful tool to study the "unconventional" and conventional graphene structures

band structure

scattering efficiency

electron-phonon interaction

electron-electron interactions

European Research Council Established by the European Commission

MOMB

