

Electrostatic control of spin polarization in a quantum Hall ferromagnet: a platform to realize high order non-Abelian excitations

Aleksander Kazakov & Leonid Rokhinson Department of Physics, Purdue University V. Kolkovsky, Z. Adamus, & Tomasz Wojtowicz Institute of Physics, Polish Academy of Science, Warsaw, Poland George Simion & Yuli Lyanda-Geller Department of Physics, Purdue University

Luchon, France May 24 - 29, 2015

Engineering Majorana fermions

Sau, et al '10, Alicea, et al '10

parameter space

single-spin condition:

$$E_Z > \sqrt{\Delta^2 + E_F^2}$$

to protect superconductivity: $E_Z \sim E_{SO}$

$$E_{SO} = \sqrt{2}\gamma_D \left\langle k_z^2 \right\rangle k = \sqrt{2}\gamma_D (\pi / d)^2 k$$

smallest dimension defines E_{so} :

small d \Rightarrow large $E_{so} \Rightarrow$ large $E_F \Rightarrow$ less localization

Characteristic 4π energy-flux relation

modification of the Josephson phase

trivial superconductor

 2π Cooper pairs, topological superconductor 4π Majorana particles, $I \propto \sin(\phi/2)$ $b^{\dagger} = (\gamma_l - i\gamma_m)$ Kitaev '01

Kwon '04

Lutchyn '10

ac Josephson effect

Current oscillates with frequency $\propto V$

Constant voltage steps $\propto \omega$

Disappearance of the first Shapiro step

LR, X. Liu, J. Furdyna, Nature Physics 8, 795 (2012)

Leonid Rokhinson, Purdue Univesity

rf

dc

Shapiro steps

 $\Delta I_n = A |J_n \left(\frac{2ev_{rf}}{\hbar\omega_{rf}}\right)|$

dV/dI vs B

4-periodic Josephson supercurrent in HgTe-based 3D TI

Wiedenmann, ...M. Klapwijk, ..., Seigo Tarucha, L. W. Molenkamp arXiv:1503.05591

Advantage of 1D wires: Majorana modes are localized easy to perform spectroscopy

Disadvantage of 1D wires: Majorana modes are localized almost impossible to perform exchange

Motivation and inspiration

Topological Quantum Computation - From Basic Concepts to First Experiments Ady Stern & Netanel Lindner Science, **2013**, 339, 1179

Exotic non-Abelian anyons from conventional fractional quantum Hall states David J. Clarke, Jason Alicea, and Kirill Shtengel Nature Commun., **2012**, *4*, 1348

Development of a new system CdTe:Mn QW

Development of a new system

High mobility 2D gas in CdTe/CdMgTe QW $m^*=0.11, E_g=1.44 \text{ eV}$

add Mn into CdTe (neutral impurity with 5/2 spin)

~1% Mn

FQHE in CdTe:Mn

T. Wojtowicz

Betthausen, et al, Phys. Rev. B 90, 115302 (2014)

Anomalous Zeeman splitting in CdTe:Mn

Magnetoreflectivity studies

negatively charged exciton complex X^- (trion) to singlet Xtransition under polarized σ^+/σ^- light

Wojtowicz, et al, PRB 59, R10437 (1999)

new platform for non-Abelian excitations

new platform for non-Abelian excitations

braiding sequence

Crossing of neighboring LLs

Quantum Hall ferromagnet & level crossing

uniformly Mn-doped quantum well

Jaroszynski, et al, PRL 89, 266802 (2002)

Jaroszynski, et al, AIP conference proceedings (2005)

Gate control of exchange

Structures with asymmetric doping

Gate control of s-d exchange

crossing $|1 \downarrow >$ and $|0 \uparrow >$

↓) (1

 $(0 \uparrow)$

(0↓)

ъC.

 $E_{...} = const$

1.6 1.8

E ~ ~ *U*

1.4

1.2

1.3% Mn

Gate control of the crossing

low Mn concentration

Node position:

$$E_{Z} = \left(N + \frac{1}{2}\right)\hbar\omega_{C} = g^{*}\mu_{B}B + \alpha x_{eff}S\mathcal{B}_{S}\left(\frac{g\mu_{B}SB}{k_{B}T_{0}}\right)$$

6/11/2015

SdH beating, x_{eff} and T_{FM}

$$\left(N+\frac{1}{2}\right)\hbar\omega_{C} = g^{*}\mu_{B}B + \alpha \mathbf{x_{eff}}S\mathcal{B}_{S}\left(\frac{g\mu_{B}SB}{k_{B}(\mathbf{T_{AF}}+T)}\right)$$

temperature dependence

Gate control of SdH beating

back gate dependence

Comparison of high and low Mn concentrations

Anticrossing between 1st and 2nd LLs

The role of SO interactions

$$H_{SO} = \gamma_D \boldsymbol{\sigma} \cdot \boldsymbol{\kappa} + \gamma_R (\boldsymbol{\sigma} \times \boldsymbol{k}) \cdot \boldsymbol{\mathcal{E}}$$

$$\kappa = (\{k_x, k_y^2 - k_z^2\}, \{k_y, k_z^2 - k_x^2\}, \{k_z, k_x^2 - k_y^2\})$$

$$\hat{a}^{\dagger} = \ell \frac{\hat{k}_x - i\hat{k}_y}{\sqrt{2}} \qquad \hat{a}^{\dagger} u_n = \sqrt{n+1}u_{n+1}$$

$$\hat{a} = \ell \frac{\hat{k}_x + i\hat{k}_y}{\sqrt{2}} \qquad \hat{a} u_n = \sqrt{n}u_{n-1}$$

$$\gamma_D k_z \left[(a^{\dagger})^2 + a^2\right] \qquad \frac{\gamma_D}{\sqrt{2}} \left[aa^{\dagger}a - (a^{\dagger})^3 - 2k_z^2a\right] + i\sqrt{2}\gamma_R \mathcal{E}a^{\dagger} \qquad \gamma_D k_z \left[(a^{\dagger})^2 + a^2\right]$$

$$E_{\pm} = \frac{E_{1,\uparrow}^0 + E_{0,\downarrow}^0 \pm \sqrt{\left(E_{1,\uparrow}^0 - E_{0,\downarrow}^0\right)^2 + 8\gamma_R^2 \mathcal{E}^2}}{2} \qquad \delta = 2\sqrt{2}\gamma_R \mathcal{E} \approx 100 \mu eV$$

 $H_{SO} =$

Only Rashba coupling contributes to N=1 and N+2 anticrossing

Transport across a gate

Transport across **QHFm** domain wall

people involved

Aleksander Kazakov, Purdue University

Tomasz Wojtowicz Institute of Physics, Polish Academy of Sciences

Yuli Lyanda-Geller, Purdue University

V. Kolkovsky & Z. Adamus, Polish Academy of Science

