Poincaré sections and zero-resistance states

SUR LE

PROBLÈME DES TROIS CORPS

ET LES ÉQUATIONS DE LA DYNAMIQUE

PAR

H. POINCARÉ A PARIS.

MÉMOIRE COURONNÉ DU PRIX DE S. M. LE ROI OSCAR II LE 12 JANVIER 1889. Alexei Chepelianskii (CNRS Orsay) and Dima Shepelyansky (CNRS Toulouse)

discussions: O.V.Zhirov (BINP Novosibirsk)

continuation of arxiv:0905.0593 (2009); arXiv:1302.2778 (2013)

H.Poincaré Acta Math. 13, 1 (1890)

(LPS-LPT, CNRS Orsay-Toulouse)

Zero resistance states discovery in 2002

• $R_{xx} \rightarrow \text{zeros at high}$ $j = \omega/\omega_c \approx \text{integer} + 1/4$

•
$$R_{xx}/R_{xx}(0) = 1$$
 at
 $j = \omega/\omega_c = integer$

- weak microwave field $\sim 1 V/cm \rightarrow \epsilon = v_{osc}/v_F = eE/(m\omega v_F) = 0.003$
- High mobility 2DEG $\ell \approx 140 \mu m$, Landau level $\nu = 62, \omega/2\pi = 50 GHz, n_c = 3.5 \cdot 10^{11} cm^{-2}, B = 0.1 T, r_c = v_F/\omega_c = 0.9 \mu m$
- Temperature of about 1K
- R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson and V. Umansky, Nature 420, 646 (2002).
- M.A.Zudov, R.R.Du, L. N. Pfeiffer and K. W. West PRL 90, 046807 (2003)

Edge transport and Chirikov standard map

Electron motion along a rigid wall + microwave, Newton equations (model 1), map description

Approximate description of a nonlinear resonance, $j \approx integer + 1/4$

velocity change at wall collision: double wall velocity

small angles near wall: time between collisions $\Delta t = 2(\pi - v_y)/\omega_c$

this leads to the Chirikov standard map :

$$v_{y}(n+1) = v_{y}(n) + 2\epsilon \sin \phi(n) + I_{cc}$$

$$\phi(n+1) = \phi(n) + 2(\pi - v_{y}(n+1))\omega_{j}\omega_{c}$$

model 2, *I_{cc}* describes noise and dissipation

experimental confirmation by A.D.Levin et al. PRB 89, 161304(R) (2014)

(LPS-LPT, CNRS Orsay-Toulouse)

Chirikov standard map: integrability and chaos

 $\bar{y} = y + K \sin x$, $\bar{x} = x + \bar{y}$, $K \rightarrow 4\epsilon j$;

K = 0.5; 0.971635; 5

B.V.Chirikov Preprint N 267, Institute of Nuclear Physics, Novosibirsk (1969); Phys. Reports **52**, 263 (1979) appears in plasma confinement, accelerator beams, cold atoms in optical lattices, comets in Solar System, Frenkel-Kontorova model of CDW, ... classical and quantum evolution

Microwave induced scattering on disk

Disk radius $r_d \sim r_c$ Top left: $\epsilon = 0, j = 9/4$; top right: temporary captured path at $\epsilon = 0.04, j = 9/4$; bottom left: path captured forever at $\epsilon = 0.04, j = 9/4$; bottom right: no capture at $\epsilon = 0.04, j = 2$; dissipation at disk collisions $\gamma_d = 0.01$.

Classical conductivity calculations

 Δx displacement of the cylcotron orbit after collision with the disc $\Delta x \propto R_{xx}$, minimum at j = n + 1/4.

Small impurity $\rightarrow r_d \ll r_c$

FIG. 1. Geometry of two successive collisions with the hard disk. The impact parameter b_n and incoming angle ϕ_n ($\phi_n > 3\pi/2$ in this example) define collision number *n*.

static electric field, small disk, magnetic field N.Berglund *et al.* PRL **77**, 2149 (1996)

Larmor center shift during one Larmor period: $\epsilon = v_d 2\pi/\omega_c$; β is impact parameter $\phi_{n+1} = \phi_n + \pi - 2\sin^{-1}\beta_n$ $\beta_{n+1} = \beta_n - \epsilon \sin \phi_{n+1}$

Small disk and circular polarized microwave

Hamiltonian in the rotating frame (e = m = 1): $H = p_r^2/2m + p_{\phi}^2/2mr^2 + p_{\phi}\omega_c/2 + m\omega_c^2r^2/8 + U_d(r) - Er\cos\phi - \omega p_{\phi}$

Approximate symplectic map (bar marks new value): $\bar{\chi} = \chi + R_J(\alpha)$ $\bar{\alpha} = \alpha + 2\bar{\chi} - 2\pi j + \pi$ $R_J(\alpha) = \arg[1 + \eta \exp(-i\alpha)[\exp(2\pi i|j|) - 1]] \propto \mu$ $\eta = eE/(m\omega^2 r_d)$

velocity angle α is analog of impact angle β $p_{\phi} \sim \sin \chi$ is analog of impact parameter *b*

New features:

* kick amplitude is proportional to $\eta = [eE/(m\omega^2 r_c)][r_c/r_d]$ with the enhancement factor $r_c/r_d \gg 1$

* kick amplitude is zero at j = integer

Poincaré sections for circular polarization

Poincaré sections: left - Newton equations; right - symplectic disk map

j = 4.75 (top) and j = 3 (bottom), E = 0.01, $r_d/r_c = 0.1$

Quantum impurity and quantum Poincaré sections

Numerical solution of stationary Schödinger equation in rotation frame

Husimi function (Gaussian smoothing of Wigner function) relation between classical and quantum variables:

 $\begin{aligned} p_{\phi}\omega_c/E_F &= \hbar\omega_c I_z/E_F;\\ r_d/r_c &= r_d/(\ell_B\sqrt{2\nu});\\ E_{ac}\ell_B/\hbar\omega_c &= Er_c\sqrt{2\nu}/2E_F\\ \text{In numerics } \ell_B &= 1, r_d/\ell_B = 2,\\ j &= 2.75, \nu = 45,\\ E_{ac} &= 0.3 \rightarrow E/(\omega v_F) = 1\% \end{aligned}$

Formation of a topological charge gap ?

A winding number to generalize the orbital momentum quantum number:

$$Q = \lim_{r \to r_d^+} rac{1}{2\pi i} \int rac{1}{\psi(r, heta)} rac{d\psi(r, heta)}{d heta} d heta$$

Eigenenergies as function of Q at J = 2.75

Friedel oscillations near an impurity

Friedel oscillations around an impurity without microwaves :

$$n_e(r) = \sum_{\epsilon_n < E_F} |\psi_n(r)|^2$$

Microwave induced Friedel oscillations near impurity

Numerical solution of master equation for density matrix with relaxation: $\partial \hat{\rho} / \partial t = -i[\hat{H}(t), \hat{\rho}]/\hbar - (\hat{\rho} - \hat{\rho_{eq}})/\tau$

Here $\ell_B = 1$, $r_d/\ell_B = 2$, $\nu = 40$, $E_{ac} = 0.2 \rightarrow \epsilon = E/(\omega v_F) = 6 \times 10^{-3}$

Electron density variation with distance to impurity: many-body screening ?

(LPS-LPT, CNRS Orsay-Toulouse)

Total displaced charge around the impurity

 $\delta N_e = \int dr 2\pi r |\rho(r) - \rho_{eq}(r)|$

Dependence on $J = \omega/\omega_c$ (J > 0 right-handed polarization, J < 0 left handed):

Slow decay with $J = \omega/\omega_c$ For |J| > 2 independent on polarization chirality (experiment by J. Smeth et.al.). $\delta N_e \sim 10^3$: detectable experimentally Upper bound on impurity density n_i :

 $n_i \lambda_F v_F \tau_{scat} \sim 1; \quad n_i \sim 1/(\lambda_F v_F \tau_{scat}) \sim \mu m/(e \lambda_F v_F)$

Single impurity scattering takes place when Larmor diameter is smaller than impurity distance:

 $r_c < 1/\sqrt{n_i} \sim \sqrt{\lambda_F \ell_e}$; $\ell_e = v_F \tau_{scat}$

Samples like Mani (2002) - Zudov (2003) $\mu = 2.5 \times 10^7 cm^2/Vs, n_e = 3.5 \times 10^{11} cm^{-2}, \sqrt{\lambda_F \ell_e} \approx 3\mu m$ Single impurity scattering at B > 0.03 Tesla

Sample like Bykov (2006) $\mu = 0.6 \times 10^6 cm^2 / Vs$, $n_e = 8.5 \times 10^{11} cm^{-2}$, $\sqrt{\lambda_F \ell_e} \approx 0.6 \mu m$ Single impurity scattering at B > 0.25 Tesla

- Microwaves can stabilize edge trajectories against small angle disorder scattering
- Microwaves induce Friedel like density oscillations near impurity
- Nonlinear dynamics near impurity plays an important role: periodicity in *j*, no excitation at integer $j = \omega/\omega_c$
- Classical simulations suggest R_{xx} minimum at j = n + 1/4
- Quasi-classical effect : less sensitive to a short quantum lifetime
- Possible microwave topological protection against impurity scattering ?
- Further research: quantum computation of resistivity ...