Magnetotransport in highmobility Ge/SiGe quantum wells

Qianhui Shi, Michael Zudov University of Minnesota, Minneapolis, USA

Basic Energy

Sciences

Christopher Morrison, Maksym Myronov University of Warwick, Coventry, UK

Outline

High-mobility Ge quantum wells:

- Ge/SiGe 17/20 nm-wide QW (Boron doped)
- $p \approx 2.8/2.9 \times 10^{11} \text{ cm}^{-2}, \ \mu \approx 1.3 \times 10^{6} \text{ cm}^{2}/\text{Vs}$
- Noneuilibrium transport
 - First observations of MIRO and HIRO outside GaAs
- Fractional quantum Hall effect
 - First observation of FQHE in Ge
- Tilt-field induced transport anisotropy
 - New class of transport anisotropy

How does Ge compare to GaAs?

- Crystal structure
 - GaAs: zinc blende
 - Ge: diamond, **no** Dresselhaus spin-orbit coupling
- g-factor
 - GaAs: $g_{\perp} \approx 0.41$, $g_{\parallel} \approx 0.34$
 - Ge: $g_{\perp} \sim 10$, $g_{\parallel} \approx 0$, 2D spin gas
 - Ge has larger Zeeman energy, independent of B_{\parallel}
- Band structure
 - Ge 2DHG: only heavy hole band is populated
 - Ge 2DHG is more like 2DEG than 2DHG in GaAs

see, e.g., Drichko et al., PRB 90, 125436 (2014)

MIRO in Ge

▶ Effective hole mass from MIRO: *m*^{*} ≈ 0.09 *m_e* Zudov *et al.*, PRB **89**, 125401 (2014); Shi *et al.*, PRB **90**, 161301(R) (2014)

HIRO in Ge

► HIRO are also described by: $m^* \approx 0.09 m_e$ Shi *et al.*, PRB **90**, 161301(R) (2014)

First observation of FQHE in Ge

T = 0.3 K: Fully quantized QH states at $\nu = 5/3$, 4/3, 2/3

Shi, Zudov, Morrison, Myronov, submitted to PRB (2015)

Lower T, up to 35 T

 $T < 0.06 \text{ K}: \nu = 8/5, 7/5, 3/5, 4/7, 5/9, 4/9, 3/7, 2/5, 1/3$

Spinless CFs around 3/2

$\nu = 3/2$ in tilted fields ($B_x = B_{\parallel}$)

 R_{xx} increases with tilt angle when $B_{\parallel} = B_x$

Magnetotransport in tilted fields

Resistances R_{xx} and R_{yy} are measured
B_x (or B_y) is introduced by tilting the sample

Transport in perpendicular field

Shi, Zudov, Morrison, Myronov, PRB 91, 201301(R) (2015)

1). Tilt is the only cause of the anisotropy 2). Hard (easy) axis is always parallel (perpendicular) to B_{\parallel}

Anisotropy due to stripes in GaAs

• Ultra-high mobility $\mu \sim 10^7 \text{ cm}^2/\text{Vs}$

• Low temperatures T < 150 mK

▶ $\nu \approx 9/2, 11/2, 13/2..$

 Anisotropy appears spontaneously in pure B_z (but can be modified by B_{||})

Lilly *et al.*, Phys. Rev. Lett. **82**, 394 (1999); Du *et al.*, Solid State Commun. **83**, 389 (1999)

Dependence on the filling factor

Anisotropy persists to very high filling factors (and away from half-filling)

Dependence on B_x and tilt angle

Shi, Zudov, Morrison, Myronov, PRB 91, 201301(R) (2015)

Dependence on B_z at fixed angle

Low B_z: Anisotropy increases with B_z
 High B_z: Anisotropy is independent on the LL index

Shi, Zudov, Morrison, Myronov, PRB 91, 201301(R) (2015)

Lower Landau level: N = 1

Anisotropy becomes weaker at $\nu = 5/2$ and 7/2

Temperature dependence at 72°

1). With increasing *T*: R_{xx} decreases, R_{yy} increases 2). Anisotropy remains significant up to *T* = 1.5 K

Shi, Zudov, Morrison, Myronov, PRB 91, 201301(R) (2015)

Temperature dependence at 60°

With increasing T: R_{xx} maxima become minima, R_{yy} maxima remain maxima (no minima develop at zero tilt)

Intermediate summary

Tilt field-induced anisotropy in the QHE regime:

- Has hard transport direction along B_{\parallel}
- Depends primarily on the tilt angle
- Decreases with temperature

Shi, Zudov, Morrison, Myronov, PRB **91**, 201301(R) (2015)

Can we exclude the possibility of stripes?

- How large B_z is needed?
- How high *T* can the anisotropy persist to?
- Is quantization necessary?

Pure B_{\parallel} vs. high tilt angle

Much weaker anisotropy in pure B_{\parallel} What happens between 80° and 90°?

Tilting in fixed fields at T = 4 K

- 1). Anisotropy sets in as soon as B_z is introduced
- 2). Anisotropy increases with in-plane field
- 3). Anisotropy optimized around $B_z \approx 0.5$ T

Shi, Zudov, Morrison, Myronov (2015)

The anisotropy maximum is domed around $B_z^{\star} \approx 0.5$ T

Shi, Zudov, Morrison, Myronov (2015)

At $B_z > B_z^{\star}$, the anisotropy is determined by B_x/B_z

Shi, Zudov, Morrison, Myronov (2015)

At $B_z < B_z^{\star}$, the anisotropy is controlled (mostly) by B_z

Two regimes separated by $B_z = B_z^*$

At $B_z < B_z^{\star}$, the anisotropy is controlled (mostly) by B_z At $B_z > B_z^{\star}$, the anisotropy is determined by B_x/B_z

Two regimes separated by $B_z = B_z^*$

Two regimes separated by $B_z = B_z^*$

At $B_z < B_z^{\star}$, the anisotropy is controlled (mostly) by B_z At $B_z > B_z^{\star}$, the anisotropy is determined by B_x/B_z

Temperature dependence at $B_z > B_z^*$

1). There is no temperature dependence in pure B_{\parallel} 2). Anisotropy decreases with *T* but can persists to *T* = 8 K 3). Anisotropy persists to higher *T* at larger angle

Possible origin

- Stripes?
 - Requires neither low *T* or quantizing field
- Finite thickness effects?
 - Opposite anisotropy axes
- Surface roughness?
 - Unclear how it leads to the anisotropy in the QH regime
- Other mechanism?
- Fogler et al., PRB **54**, 1853 (1996) Das Sarma et al., PRL **84**, 5596 (2000) Goran et al., Semicond. Sci. Technol. **23**,105017 (2008) Mirlin et al., PRL **83**, 2801 (1999)

Summary

- High quality Ge 2DHG reveals:MIRO, HIRO, and FQHE
- Mysterious tilt field-induced anisotropy that
 - has hard transport direction along B_{\parallel}
 - can have the resistivity ratio of more than 10
 - is determined by B_z at low B_z and by B_x/B_z at high B_z
 - persists to high *T* (higher *T* at higher tilt angle)

Thanks!

PRB 89, 125401 (2014); PRB 90, 161301(R) (2014); PRB 91, 201301(R) (2015)

Nonlinear transport (sample C)

Nonlinear response to direct current

M. Lilly et al., Phys. Rev. Lett. 82, 394 (1999)

Samples studied

- Ge/SiGe 17/20 nm-wide QW (Boron doped)
- Only heavy hole band is populated
- ▶ $p \approx 3 \times 10^{11} \text{ cm}^{-2}$, $\mu \approx 1 \times 10^6 \text{ cm}^2/\text{Vs}$

Spin-splitting under tilt ($B_{\chi} = B_{\parallel}$ **)?**

 B_{\parallel} does not enhance the spin gap

Low field transport

 $B_{SdHO} \approx 0.11 \text{ T}, B_{spin-spliting} \approx 0.23 \text{ T}$ $[\hbar\omega_c - g\mu_B B]_{B_{SdHO}} \sim [g\mu_B B]_{B_{spin-spliting}} \sim \Gamma$ $\Rightarrow a \sim 7$