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INTRODUCTION:
Intrinsic surface (or edge) states
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Model by I.E. Tamm (1932):
There are surface states —
in semi-infinite Kronig-Penney potential.
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The definition:

Tamm surface states = Shockley surface states = Tamm-Shockley surface states




Motivation

There are two types of intrinsic surface (or edge) states in solids. The
first type is formed on the surface of topological insulators (Biz Ses etc.).
Recently, transport of massless Dirac fermions in the band of
"topological" states has been demonstrated.

States of the second type were predicted by Tamm and Shockley long
ago. But they do not have a topological background and are therefore
strongly dependent on the properties of the surface. Usually, they are
detected using local methods (such as STM and ARPES) on atomically
clean surfaces of a number of metals and semiconductors in ultrahigh
vacuum.

However,

on real interfaces, such states typically do not exist.

We study the problems of the

1) very existence and 2) conductivity

of Tamm-Shockley edge states through

direct transport experiments in graphene in normal conditions.




OUTLINE

Introduction. Massless Dirac fermions (DFs) in graphene

Predicts. Tamm-Shockley states for the DFs (“Tamm-Dirac
states”).

Tamm-Dirac states near nanohole (“antidote”) in graphene
Technology. Nano-perforation of graphite and graphene

Experiment at B=0. Resistance oscillations of nano-perforated
graphene with gate voltage. Existence and orbital quantization of
TD states on each nanohole

Experiment at magnetic field: Aharonov-Bohm magneto-
oscillations in graphene structures with a single nanohole.

Conclusions
Tamm-Dirac state in mountains



Why graphene ?

1. Graphene is not topological insulator, but
It IS one of the Dirac materials.

2. Theory:
“Diracness” supports the Tamm-Shockley states



The Tamm-Shockley states for 3D Dirac Eqg. on half-space
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Massless Dirac fermions in graphene

200

- Qo?cﬂ
\ 250 6°6° .6
1 PeoCod”
E 200 — g g P
4 -_bf",:,.csd
1504 Beo s
] T o
':.-J.ﬂ E.E,aﬂ
100 47750
y of
4 I ==
ey

1 T S
1 e, e,
o= e o
y ] Rme %
-150 4 'Clg;_ﬂ-n (=
hu°ubﬁ

~200 B
kx i Bl ¥
- 250 -} ®

o

—30':' LS L L B L L

Specific character of Landau
quantization in graphene

Graphene have been
obtained in Manchester Uni. Conic spectrum of massless

Dirac fermions in graphene
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Theory: there are robust edge states of the Tamm-Shockley type
for the Dirac fermions in graphene

Tamm-Shockley states for Dirac fermions =

=Tamm-Dirac states

The Tamm-Dirac edge states have a linear spectrum
but velocity v=dE/dp much less then bulk v

The Tamm-Dirac edge states are slow states.
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Edge of
graphene

a — an edge parameter
(enters into boundary
condition for Dirac EQ.)
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Nanohole in graphene: theory of
the Tamm-Dirac states

The edge states rotate around antidot for both f ‘
clockwise and counterclockwise
circulations

graphene
Ex

e

They experience the orbital quantization: k” — 2p (J —1 /2)/2p R
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Technology of nano-perforation

1) an array of “nanoholes” (columnar defects)
by Heavy ion irradiation
at Dubna (Russia) or Caen (France)

2) a single nanohole:
by FIB (Kotelnikov IRE RAS, Moscow)

or
by focused He ion beam on Helium lon
Microscope (St-Petersburg State University,
SPDb, Russia)



Fabrication of an array of columnar defects
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1) GANIL accelerator at Caen, France ( Xe*26-
energy of 90 MaB),

nanohole diameter D = 24 nm
2) Cyclotron ML-100 at Dubna, Russia (167 MeV),
nanohole diameter D= 10 nm

3) Helium ion microscope ORION at SPbSU
(Peterhof, Russia),

nanohole diameter (assessment) D= 2 nm



AFM image, area 0.2um x 0.2um, direct contrast
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AFM image, area 1um x 1um, reverse contrast

c = 3*10° def/cm™2




Back-gate FET-structure based on perforated graphene

- , Graphene Nano-perforated graphene
W= i e Y , 1) Irradiation with heavy
\ \ ' _— ions: D=10 nm.

__~"300nm 2) lrradiation with a focused
helium ion beam: D=2 nm.

Si

Hall bar configuration of contacts



Resistance oscillations of nano-perforated graphene
with gate voltage (w/o magnetic field)
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“Orbital Quantization in a System of Edge
Dirac Fermions in Nanoperforated Graphene”,
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INTERPRETATION:
Resonant scattering of DFs on edge states in
antidots leds to resistance oscillations

Edge states

Antidot Antidot
edge state edge states
In left valley In right valley

T=-1 Ep T=H1

The bulk Fermi level

2R,



Perimetric quantization of DF energy near each nanohole

Bulk and edge states of DFs
at graphene half-plane:

Ey= ﬁuﬂdﬂEN[R (N=jx+7%=12,...)

From capacity and DoS in gated graphene:
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Orbital (perimetric) quantization
of DFs in edge states around
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From the slope of the line Vg (N?)
at D=10 nm (right) and D= 2 nm (left)
we extract edge parameter of the theory: a=- 0.07



Geometry of FIB-samples

Typical sample made by FIB:
a single nano-hole in nano-thin structure
“graphene-on-graphite”

Nanohole : 2R, = 40nm
I Jeoomm N
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o
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Yu.l. Latyshev et al (2009 - 2014)
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Experimental realization of graphene nanohole structures
a, Single holes produced by heavy ion irradiation (AFM image),
b, by FIB (SEM image) and
c, by helium ion microscope (SHIM image) on graphene (c) and
thin graphite (a, b, d).
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The Aharonov-Bohm resistance magneto-oscillations.

a. Field-periodic resistance oscillations for thin graphite single hole structure
with FIB made nanohole with D= 37 nm

b, graphene structure with a single nanohole made by helium ion
microscope, D=20 nm.

Yu.l. Latyshev et al. Scientific Reports (December 19, 2014)
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Aharonov-Bohm magneto-oscillations in “graphene-on-
graphite” structure with FIB made single nanohole

Oscillating part of the resistance at various temperatures. The
downward arrows indicate the main series, whereas the upward
arrows mark an additional series.

AD=hc/e = D,

Yu.l. Latyshev et al, (SciRep 2014)
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Oscillating part of magnetoresistance of structure #2 at various temperatures.
Downward arrows show main series corresponding to condition ® =n ®, + 1/2
while upward arrows mark an additional series at ®, = n @,
AlA;=exp (-T/T,)
with T, = 17 K for D=37 nm

T, =28 K for D=25 nm



Nanohole in graphene: TD states at magnetic field

The edge states rotate around antidot for
both clockwise and

counterclockwise circulations

E

graphene
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Table 1 | The fable includes the following samples: #1 - graphene structure with a hole produced by HIM, #2 - thin graphite structure with o
hole produced by FIB, and #3 - thin graphite structure with a hole produced by HIM. The thicknesses of the thin graphite structures were
varied in the range of 30-50 nm. The parameter D, was calculated using Eq. (1)

Sample No AH T — Do, nm (Do = Dedl/2, nm

#1 9.0 20 ] 24+ 0.1 20035
#2 3.2 372 4102 20+ 1.0
#3 6.0 25z | 30+0.2 25+05

IFIC REPORTS | 4:7578 | DOL: 10.1038/5rep07578 4




Tamm-Dirac edge states around the graphene nanohole Iin

maanetic field: Aharonov-Bohm effect in transport
E
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AD=hc/e = D,

a) The red and blue rays are the TD states
contra-propagating along the graphene semi-
plane: in the red valley and in the blue
valley.

b) Spectrum of TD states in an antidot as a
function of the magnetic flux through the
antidot area.

c) Inter-valley contribution to the
conductivity.

d) Contra —propagating trajectories of the
orbit centres for different valleys for the zero
Landau level in a smooth-impurity potential.
One of the orbits is close to the antidot and
can experience inter-valley back-scattering.



SUMMARY
* Using gated structures based on nanoperforated graphene we found orbital
quantization of the energy of edge Dirac fermions cycling around each
nanohole even in zero magnetic field.
* The Aharonov-Bohm magneto-oscillations of resistance are found on
graphene samples that contain a single nanohole.
The effect is explained by the conductivity of the Dirac fermions in the edge
states cycling around the nanohole.

* The results prove
1) the existence and
2) conducting nature

_— e g T e R e oy = =

of Tamm-Dirac edge states in graphene.
* The results demonstrate the deep connection between topological and non-
topological edge states in 2D systems of massless Dirac fermions.
* So, there are two sorts of co-existing and interacting DFs in perforated graphene,
fast and slow DFs : fast bulk massless DFs, and
slow (v = 0.05-0.07 of bulk velocity) rotated (typically f ~ 1'THz) quasi-localized
(localisation length: 2 nm) DFs in Tamm-Dirac states of p-type.
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|. Tamm and P. Dirac in mountainous Tamm-Dirac state,
Elbrus (Kaukasus), 1936.



Theoretical attachments



Edge states in Gr:
What known

Nearest neighbour tight-binding model

Nakada, Fujita et al (1996), Brey, Fertig (2006)

Results: simple BCs
ESs for zigzag edge: dispersionless Tamm band
ESs for armchair edge: no Tamm states

Next nearest neighbours tight-binding model

(Peres, Guinea, Castro Neto 2006)
Result: finite dispersion of Tamm band at zigzag edge

Infinite-mass’ BCS : Berry, Mondragon (1987)
Result: very simple BC, no ESs.



Edge states in Gr-nanoribbon of zigzag type

t — tight binding (nearest neighbor approximation)
t' - next-nearest approximation
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Envelope Functions
and Boundary Problem

envelone functions co}(umr(}»)\
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0 X L)
k @y | S — O H - many-band effective-mass Ham\iltonian

HW = CSP [ - boundary operator.
y V.Volkov, T.Pinsker (1981)
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The Tamm-Dirac states on graphene semi-plane
(V.V,, I. Zagorodnev, 2009)
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