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INTRODUCTION:
intrinsic surface (or edge) states

Model by I.E. Tamm (1932):
There are surface states
in semi-infinite Kronig-Penney potential.



Motivation
There are two types of intrinsic surface (or edge) states in solids. The
first type is formed on the surface of  topological insulators (Bi2 Se3 etc.).
Recently, transport of massless Dirac fermions in the band of
"topological" states has been demonstrated.

States of the second type were predicted by Tamm and Shockley long
ago. But they do not have a topological background and are therefore
strongly dependent on the properties of the surface. Usually, they are
detected using local methods (such as STM and ARPES) on atomically
clean surfaces of a number of metals and semiconductors in ultrahigh
vacuum.
However,
on real interfaces, such states typically do not exist.

We study the problems of the
1) very existence and 2) conductivity
of Tamm-Shockley edge states through
direct  transport experiments in graphene in normal conditions.



OUTLINE
• Introduction. Massless Dirac fermions (DFs) in graphene
• Predicts. Тамм-Shockley states for the DFs (“Tamm-Dirac

states”).
Tamm-Dirac states near nanohole (“antidote”) in graphene

• Technology. Nano-perforation of graphite and graphene
• Experiment at B=0. Resistance oscillations of nano-perforated

graphene with gate voltage. Existence and orbital quantization of
TD states on each nanohole

• Experiment at magnetic field: Aharonov-Bohm magneto-
oscillations in graphene structures with a single nanohole.

• Conclusions
• Tamm-Dirac state in mountains



Why graphene ?

1. Graphene is not topological insulator, but
it is one of the Dirac materials.

2. Theory:
“Diracness” supports the Tamm-Shockley states
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The Tamm-Shockley states for 3D Dirac Eq. on half-space

- complex conjugate

Phenom. parameter a0 depends
on atomic structure of surface

TD-symm.  boundary conditions:

m        0:Massless limit,



Massless Dirac fermions in graphene

HnevnE Fn ||2sgn 

Graphene have been
obtained in Manchester Uni. Conic spectrum of  massless

Dirac fermions in graphene

E(k) =  vFћ|k |

Specific character of  Landau
quantization in graphene

K.S. Novoselov,
A.K. Geim et al.
Science (2004)
Nature (2005).

G. Li et al. Nature Phys. (2007)
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Theory: there are robust edge states of the Tamm-Shockley type
for the Dirac fermions in graphene

Tamm-Shockley states for Dirac fermions =
=Tamm-Dirac states

The Tamm-Dirac edge states have a linear spectrum
but velocity v=dE/dp  much less then bulk vF
The Tamm-Dirac edge states are slow states.
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a – an edge parameter
(enters into boundary
condition for Dirac Eq.)

Edge of
graphene



Nanohole in graphene: theory of
the Tamm-Dirac states

The edge states rotate around antidot for both
clockwise and counterclockwise
circulations

They experience the orbital quantization:

τ=+1

τ=-1
graphene

1/ 2, 3/ 2, 5/ 2,...j    

 || 2 / 2 / 2k j R   



Technology of nano-perforation

1) an array of “nanoholes” (columnar defects)
by Heavy ion irradiation
at Dubna (Russia) or Caen (France)

2) a single nanohole:
by FIB  (Kotelnikov IRE RAS, Moscow)

or
by focused He ion beam on Helium Ion
Microscope (St-Petersburg State University,
SPb, Russia)



Fabrication of an array of columnar defects

1) GANIL accelerator at Caen, France ( Xe+26-
energy of 90 МэВ),

nanohole diameter D ≈ 24 nm

2) Cyclotron ИЦ-100 at Dubna, Russia (167 MeV),

nanohole diameter D= 10 nm

3) Helium ion microscope ORION at SPbSU
(Peterhof, Russia),

nanohole diameter (assessment) D= 2 nm



AFM image, area  0.2µm x 0.2µm,  direct contrast

D =10 nm

NT MDT:  A.S. Kalinin and V.A. Bykov



AFM image, area  1µm x 1µm,  reverse contrast

c = 3*109 def/cm-2



Back-gate FET-structure based on perforated graphene

a
)

Nano-perforated graphene
1) Irradiation with heavy

ions: D=10 nm.
2) Irradiation with a focused

helium ion beam: D=2 nm.

Hall bar configuration of contacts
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Yu.I. Latyshev, A.P. Orlov, A.V. Frolov, V.A.
Volkov, I.V. Zagorodnev, I.A. Skuratov, Yu.V.
Petrov, O.F. Vyvenko, D.Yu. Petrov, M.
Konzikowski, P. Monceau.
“Orbital Quantization in a System of Edge
Dirac Fermions in Nanoperforated Graphene”,
JETP Lett. 98, 214 (2013)

Resistance oscillations of nano-perforated graphene
with gate voltage (w/o magnetic field)



INTERPRETATION:
Resonant scattering of DFs on edge states in

antidots leds to resistance oscillations

Antidot
edge states
In left valley
Τ=-1

Antidot
edge states
In right valley
Τ=+1

The bulk Fermi level



Perimetric quantization of DF energy near each nanohole
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Bulk and edge states of DFs
at graphene half-plane:

Orbital (perimetric) quantization
of DFs in edge states around
nanohole:

From capacity and DoS in gated graphene:

VgateN =  (16 a2ed/ π ε0ε) (N/D)2

From the slope of the line VgN (N2)
at D=10 nm (right) and D= 2 nm (left)
we extract edge parameter of the theory: а ≈ - 0.07

 || 2 / 2 / 2k j R   



Geometry of FIB-samples
Typical sample made by FIB:

a single nano-hole in nano-thin structure
“graphene-on-graphite”



a) b)

c) d)

Experimental realization of graphene nanohole structures
a, Single holes produced by heavy ion irradiation (AFM image),
b, by FIB (SEM image) and
c, by helium ion microscope (SHIM image) on graphene (c) and
thin graphite (a, b, d).

Yu.I. Latyshev et al (2009 - 2014)
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b)

The Aharonov-Bohm resistance magneto-oscillations.
a. Field-periodic resistance oscillations for thin graphite single hole structure

with FIB made nanohole with D= 37 nm ,
b, graphene structure with a single nanohole made by helium ion
microscope, D=20 nm.

Yu.I. Latyshev et al. Scientific Reports (December 19, 2014)



Aharonov-Bohm magneto-oscillations in “graphene-on-
graphite” structure with FIB made single nanohole

Oscillating part of the resistance at various temperatures. The
downward arrows indicate the main series, whereas the upward
arrows mark an additional series.

Yu.I. Latyshev et al, (SciRep 2014)

ΔФ≈hc/e = Φ0
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Oscillating part of magnetoresistance of structure #2 at various temperatures.
Downward arrows show main series corresponding to condition Φ↓= n Φ0 + 1/2
while upward arrows mark an additional series at Φ↑ = n Φ0
A /A0 = exp (-T/T0)
with T0 = 17 K for D=37 nm

T0 = 28 K for D=25 nm



Nanohole in graphene: TD states at magnetic field

The edge states rotate around antidot for
both clockwise and
counterclockwise circulations

They experience the orbital quantization

 || 2 / 2 / 2k j R   
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Tamm-Dirac edge states around the graphene nanohole in
magnetic field: Aharonov-Bohm effect in transport

a) The red and blue rays are the TD states
contra-propagating along the graphene semi-
plane: in the red valley and  in the blue
valley.
b) Spectrum of  TD states in an antidot as a
function of the magnetic flux through the
antidot  area.
c) Inter-valley contribution to the
conductivity.
d) Contra –propagating trajectories of the
orbit centres for different valleys for the zero
Landau level in a smooth-impurity potential.
One of the orbits is close to the antidot and
can experience inter-valley back-scattering.

ΔФ≈hc/e = Φ0



graphene



I.Tamm and P. Dirac in mountainous Tamm-Dirac state,
Elbrus (Kaukasus), 1936.

mountainous



Theoretical attachments



Edge states in Gr:
What known

Nearest neighbour tight-binding model
Nakada, Fujita et al (1996), Brey, Fertig (2006)
Results: simple BCs

ESs for zigzag edge: dispersionless  Tamm band
ESs for armchair edge: no Tamm states

Next nearest neighbours tight-binding model
(Peres, Guinea, Castro Neto 2006)
Result: finite dispersion of Tamm band at zigzag edge
Infinite-mass” BCs : Berry, Mondragon (1987)
Result: very simple BC, no ESs.



t – tight binding (nearest neighbor approximation)
t’ - next-nearest approximation

top: t’=0;
middle: t’=−0.1t;
bottom: t’=−0.2t

Edge states in Gr-nanoribbon of zigzag type

32Peres et al., 2006



Envelope Functions
and Boundary Problem
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envelope functions column

- many-band effective-mass Нamiltonian

- boundary operator.
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V.Volkov, T.Pinsker (1981)
B.Volkov, O.Pankratov (1985)
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The Tamm-Dirac states on graphene semi-plane
(V.V., I. Zagorodnev, 2009)

Tamm-Dirac spectra:
2x2 Weyl:

Boundary conditions:
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