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About chaotic diffusion

Global instabilities properties of near–integrable ND–Hamiltonian
Systems (N > 2) are far to be well understood.

I We know that local exponential divergence of nearby orbits (a
positive LCE), does not imply chaotic diffusion (stable chaos,
see for instance Milani et al. 1992 and further works.)

I Chaotic diffusion or chaotic mixing, roughly speaking, means
large variations of the unperturbed integrals, actions (or
orbital elements) of an integrable system under the effect of a
(non-integrable) perturbation εV .

I In general, ”fast diffusion” could be observed when a major
overlap of resonances takes place.

I Overlap of resonances requires that the perturbation exceeds
some critical value, εc.
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I The heuristic/geometric criterion of overlap of resonances is
due to Chirikov (1979) and earlier works of him.

I In the literature, it is common to find the statement that a
system is in Chirikov’s regime, when most of the invariant tori
are destroyed by overlap of resonances and large chaotic
domains are present, and thus the diffusion is assumed to be
“fast” (normal diffusion).

I And it is in Nekhoroshev’s regime, when chaos is completely
confined to the narrow layers around resonances.

I Thus KAM theory is required: the size of the perturbation
should be small enough, ε� εc, and, from Nekhoroshev
theorem, the time–scale of any instability is exponentially
large.
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I KAM theory and Nekhoroshev estimates are rigorous, but they
only provide upper bounds for stability conditions and for the
speed of the rather slow diffusion along the narrow chaotic
layers ∼ Arnold diffusion.

I Chirikov’s approach though heuristic, provides a constructive
way to compute a diffusion coefficient (under the assumption
of normal diffusion) in both scenarios, fast and slow diffusion.

I Physically speaking, fast diffusion should mean that the
unperturbed actions/integrals/orbital elements present a
significant variation over a physical time-scale.

I It is usual to find in the astronomical/astrophysical/physical
literature, several estimations of the diffusion coefficient for
different (∼ non-ergodic) dynamical systems.

Let us review a few diffusion examples in two simple models: a 21
2

degrees of freedom Hamiltonian system and a 4D simplectic map.
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The classical Arnold’s model

H(I1, I2, θ1, θ2, t) =
1

2
(I21+I22 )+ε(cos θ1 − 1)[1 + µ(sin θ2 + cos t)],

I1, I2 ∈ R, θ1, θ2, t ∈ S1, 0 < εµ� ε� 1.

– For ε = 0: quasiperiodic motion, ω1 = I1, ω2 = I2.

– For ε 6= 0, µ = 0, two integrals:

H1(I1, θ1) =
1

2
I21 + ε(cos θ1 − 1) = h1, I2.

ω1 = ωp(h1), ω2 = I2.

I H1 : pendulum model for the resonance ω1 = 0.

I h1 = 0 : separatrix, (I1, θ1) = (0, 0) the unstable point or WT.

I Resonance half–width in action–space: (∆I1)
r = 2

√
ε.
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– For ε 6= 0, µ 6= 0, primary resonances at

O(ε) : ω1 = 0, O(εµ) : ω2 = 0, ω1 = ±ω2, ω1 = ±1.

Full set of resonances: k1ω1 +k2ω2 +k3 = 0, kj ∈ Z, j = 1, 2, 3.

In energy–action space: k1ωp(h1) + k2I2 + k3 = 0,

ωp(h1, ε) =


π
√
ε

2K(kh1)
≤
√
ε −2ε ≤ h1 < 0

πωr(h1,ε)

2K
(
k−1
h1

) h1 > 0;

I k2h1 = (h1 + 2ε)/2ε, ωr(h1, ε) =
√
εkh1 ,

I K(κ) is the complete elliptical integral of the first kind,

I ωp(h1, ε)→ 0 when h1 → 0 as 1/ ln(|h1|).
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I For given values of I1(0), I2(0) along the chaotic layer of the
resonance ω1 = 0

I Ensembles of 1.000 i.c., size 10−7

I Parameters not too small, ε = 0.25, µ = 0.025, far from
Nekhoroshev regime

I For the adopted values of the parameters, the mean period of
motion inside this chaotic layer is . 10

I Motion times 5× 106/107.

I Double section: |θ1 − π|+ |θ2| < 0.01 to see the diffusion in
the 2D dynamical map,

I section: |θ2| < 10−5 for the 3D visualization of the diffusion.
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Models of discrete time: 4D generalized standard map

y′1 = y1 + ε21f1(x1) + ε1γ+ f3(x1 + x2) + ε1γ− f3(x1 − x2),
y′2 = y2 + ε22 f2(x2) + ε2γ+ f3(x1 + x2) − ε2γ− f3(x1 − x2),
x′1 = x1 + y′1,
x′2 = x2 + y′2,

fk(u) =
± sinu

1− µk cosu
, 0 ≤ µk < 1,

xi, yi ∈ [0 : 2π), γs < εj < 1.

fk is such that for − sign, (yi, xi) = (0, 0) is the stable fixed point,
while for the + sign, (0, 0) is the unstable one.

For simplicity, assume that ε1 = ε2 = ε, γ+ = γ− = γ and
µ1 = µ2 = µ3 = µ.
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The potential function for f ≡ −V ′ is

V (u) = ± 1

µ
ln
{

1− µ cosu
}
, µ 6= 0.

Expanding V (u) in powers of µ and using the δ2π : 2π–periodic δ,
any of the four terms in the potential

U(x1, ε
2) + U(x2, ε

2) + U(x1 + x2, εγ) + U(x1 − x2, εγ)

of the corresponding Hamiltonian has the form (ε ≡ ε2, εγ):
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cos(2u + nt) +
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12

∞∑
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cos(3u + nt) + . . .

}
,

with u = x1, x2, x1 ± x2, 2πu̇ = y1, y2, y1 ± y2.
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1

3
,
2

3
, 1;
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Full set of resonances: k1ŷ1 + k2ŷ2 + k3 = 0, kj ∈ Z

Figure: MEGNO contour plot for x1 = x2 = 0 (+ sign left, − sign right)
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I Ensemble of 2000 i.cs. of size 10−7/−8 around y1(0), y2(0),

I y1(0), y2(0) on different main resonances,

I εs, γs, µs not too small such that the system is far from
Nekhoroshev regime,

I Motion times N = 107/108, large enough but not “infinite”,
N � 1011 − 1012.
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Figure: Diffusion after t = 107/108 iterates on the section x1 = x2 = 0.
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Figure: 3D visualization for an integer and semi-integer resonance.
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About the derivation of the diffusion coefficient

I In all cases, the estimation of the diffusion coefficient rests on
the assumption of free diffusion,

I this means that an ensemble of i.c. evolves as Brownian
motion,

I so, successive values of phases involved in the time evolution
of the actions should be uncorrelated.

I The diffusion is assumed to be homogeneous and isotropic.

I Under this approximation, 〈(∆I)2(t)〉 ≈ Dt over all chaotic
domains, Normal diffusion.

I Thus, D only depends on the perturbation parameter, and it is
just the constant rate at which the variance evolves with time.

I However, in general, 〈(∆I)2(t)〉 ≈ Ctα, α < 1, due to the
correlations of the successive values of the phases.

I Theory including correlations of phases is still lacking.
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The numerical computation of the variance of the actions

Being Np the number of i.c. in a small neighborhood d� 1 of
y1(0), y2(0), and Ir(0), If (0) the corresponding resonant and fast
actions,

let tj = t0 + jδt, δt being for instance, the time step.

– Ensemble average:

σ21(tj) =
1

Np

Np∑
j=1

(If (tj)− If (0))2.

σ21 could be rather noisy and for small perturbations, its time
evolution may hide any slow secular growth.
Alternatives:
Normal form construction to eliminate the deformation effect due
to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)
or using a double section (Guzzo, Lega, Froeshlé, etc).
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– Average over a given section

For instance |θ1|+ |θ2| < ε� 1 after a time interval ∆t� δt.

For the map: δt = 1,∆t = 104, total motion time 107/108,

while for the Arnolds’model: δt = 2× 10−4,∆t = 5× 104, total
motion time 5× 106/107.

σ22(tl) =
1

Ns(tl)

Ns(tl)∑
m=1

(If (tm)− If (0))2,

where Ns(tl) is the number of points on the section in the interval
((l − 1)∆t, l∆t),

|((l − 1)∆t, l∆t)| = ∆t.
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– Cumulative average over a given section

σ23(tl) =
1

Ns(< tl)

Ns(<tl)∑
m=1

(If (tm)− If (0))2,

where Ns(< tl) is the number of points on the section in the
interval (t0, l∆t),

|(t0, l∆t)| = l∆t.

Experimentally, Ns(tl) ≈ N0 � 1, so

Ns(< tl) =

l∑
m=1

Ns(tm) ≈ lN0, → σ23(tl) ≈
1

l

l∑
m=1

σ22(tm).

If σ22(t) ≈ Ctα,

σ23(t) ≈ C

α+ 1
tα ≈ σ22(t)

α+ 1
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For the 4D-map

I I.Cs. on different main resonances

I Section along the fast plane, |θ1(t)|+ |θ2(t)| ≤ ε� 1

I The three variances, σ21(t), σ22(t), σ23(t) are computed

I As an illustration, three examples (as in all cases) for
parameters εs, γs, µs not too small such that the system is far
from Nekhoroshev regime

I Considering motion times 107/108, large enough

I A power law, σ2 = C tα(+d) (if necessary) is fitted in several
numerical experiments.
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Exp. i.c. res. C α

A (i) y1 = 0 1.12e-07 0.64

A (ii) y2 = 0 1.60e-08 0.79

A (iii) 1 : 1 3.40e-09 0.95*
B (i) y1 = 0 3.97e-07 0.35

B (ii) y2 = 0 1.67e-10 0.79

B (iii) 1 : 1 2.36e-10 0.65

C (i) y1 = 0 2.44e-08 0.85

C (ii) y2 = 0 2.61e-10 1.10*
C (iii) 1 : 1 1.0e-06 0.60

D (i) y1 = 0 2.09e-07 0.61

D (ii) y2 = 0 8.16e-07 0.53

D (iii) 1 : 1 5.14e-09 0.81

E (ii) y2 = 0 1.74e-07 0.36

E (v) y2 = 1/2 5.41e-11 0.84

E (vi) y2 = 1/2 4.44e-12 1.00*
E (vii) y2 = 0 7.95e-09 0.71

E (viii) 1 : 1 1.90e-10 0.89
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Figure: σ2
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Varying µ

Figure: For the same i.cs. but for a smaller value of µ.



Varying µ

Figure: For the same i.cs. but for a smaller value of µ.
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Figure: For the same i.cs. but for a smaller value of µ.



I From all these experiments, σ2(t) is far from being linear,
thus it has no sense to try to derive a diffusion coefficient by a
linear fit. It is necessary to understand how to cope with
phase correlations in order to estimate any reliable value of D.

I Even in low dimensional Hamiltonian systems (or simplectic
maps), this anomalous diffusion was observed.

I For instance: N. Miguel, C. Simó and A. Vieiro: On the effect
of islands in the diffusive properties of the standard map, for
large parameter values (2015).

I Cantor sets, stickiness, etc, seriously affect the diffusion.

I In general D(ε,x).

I Diffusion is inhomogeneous and quite anisotropic.

I Anyway, diffusion experiments would help us to guess about
stability/instability within chaotic domains over finite (or
physical) times.
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of islands in the diffusive properties of the standard map, for
large parameter values (2015).

I Cantor sets, stickiness, etc, seriously affect the diffusion.

I In general D(ε,x).

I Diffusion is inhomogeneous and quite anisotropic.

I Anyway, diffusion experiments would help us to guess about
stability/instability within chaotic domains over finite (or
physical) times.



I From all these experiments, σ2(t) is far from being linear,
thus it has no sense to try to derive a diffusion coefficient by a
linear fit. It is necessary to understand how to cope with
phase correlations in order to estimate any reliable value of D.

I Even in low dimensional Hamiltonian systems (or simplectic
maps), this anomalous diffusion was observed.

I For instance: N. Miguel, C. Simó and A. Vieiro: On the effect
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Diffusion in the Gliese-876 planetary system

Parameter Planet c (1) Planet b (2) Planet e (3)

P (days) 30.0881 61.1166 124.26
m (Mjup) 0.7142 2.2756 0.0459
a (AU) 0.129590 0.208317 0.3343
e 0.25591 0.0324 0.055
$ (◦) 0.0 0.0 180.0
M (◦) 240.0 120.0 60.0

Table: Masses and orbital elements for the three planets of GJ-876
involved in the Laplace resonance. The values of the angular variables ($
and M) were chosen to minimize the variations of the orbital elements
over time, and lead to small-amplitude librations of the resonant angles.
The (a3, e3) values correspond to those obtained by the four-planet
coplanar fit.
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In the vicinity of a Laplace-type resonance, we can define the 2:1
two-body MMR resonant angles

σ1 = 2λ2 − λ1 −$1

σ2 = 2λ3 − λ2 −$2

Thus the three-body/orbit resonant Laplace angle is:

φlap = λ1 − 3λ2 + 2λ3.

After an averaging process with respect to the short-period terms,
the resulting resonant Hamiltonian reduces to a system of four
degrees-of-freedom.
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a3 [AU]

Figure: ∆e3 dynamical map in the vicinity of the 2/1 MMR between m3

and m2 (corresponding to a3 ≈ 0.335 AU). The remainder variables take
the values given in the table.







The (chaotic) dynamics of this resonance could be completely
understood in the framework of Nesvorný & Morbidelli (1999)
three–body mean resonance model for the SS, as it is shown in
Mart́ı, PMC & Beaugé (2016).
Thus, let us see if diffusion experiments provide more information
about stability/instability regions inside the Laplace resonance.

I Ensembles: 256 i. c. around several values (a3(0), e3(0)).

I Size: 10−3 in ∆e3 and 2× 10−4 in ∆a3.

I Total time of 2× 105 years, twice longer than the time-span
used for the original map.

I Multisection:

I Σ3
i=1(|Mi −M0

i |+ |$i −$0
i |) < εang ,

I Σ2
i=1|ei − e0i | < εe ,

I Σ2
i=1|ai − a0i | < εa,

I εang = 6◦, εa = 0.005AU and εe = 0.005.

I 9 ensembles: 1S, 2S, ... , 9S.
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Ensemble α

S 1 0.942715
S 2 0.585784
S 3 0.494802
S 4 0.923109
S 5 0.648737
S 6 0.448689
S 7 0.686534
S 8 0.592316
S 9 0.462431

Table: Exponents α calculated by a least-squares fit for the data
obtained by the variances from each of the nine ensembles: σ2

e(t) = Ctα.
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I There are two main regions in the surroundings of the Laplace
resonance:

I The inner resonant region is characterized by large Lyapunov
times and very slow diffusion.

I The multi-resonant configuration of the system seems to be
responsible for its long-term stability.

I The outer resonant region is dominated by a extremely
chaotic dynamics, having LCE’s somewhat higher than in the
inner region and exhibiting a fast diffusion.

I Although these results correspond to a specific planetary
system, it seems reasonable that the main characteristics of
any system representing similar multi-resonant configurations
could share all these main features.
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On the relevance of chaos for halo stars in the solar
neighborhood (Maffione et al. 2014–2016)

The galactic potential (DM Halo)

Φtri = −A
rp

ln

(
1 +

rp
rs

)
A, rs = const.,

rp =
(rs + r)re
rs + re

, re =

√(x
a

)2
+
(y
b

)2
+
(z
c

)2
.

All parameters of this model were fitted using DM particles located
within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at rs :

I r � rs, rp w re;

I r � rs, rp w r.

Up to the 10% level, this approximation can reproduce the true
gravitational potential within r . 100 kpc.
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Power expansion for rp < rs(r < rs)
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Perturvative approach:

H(p, r) = H0(p, r, ϑ) + Φ̂1(r),

H0(p, r, θ) =
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+
p2ϕ

2r2 sin2 ϑ
+Φ0(r), Φ̂1(r) = Φtri(r)−Φ0(r).

Prime integrals:

H0(p, r, ϑ) = h0, L2, Lz.

Variation of the unperturbed integrals:
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Figure: Ranges in L2 and Lz for 1400 particles (grey) of the Aq–A2 DM
halo. In black, the region of the plane to be considered in the
experiments, (x0, y0, z0) = (8, 0, 0) kpc (i.e. the position of the Sun) and
h0 is taken as mean value of the energy distribution of the stellar
particles located within a 2.5 kpc sphere around the Sun.



Figure: OFLI contour plots for 10 and 250 Gyr for the Aq–A2 halo model
for (x0, y0, z0) = (8, 0, 0), h0 ' −204449 km2 s−2.
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Diffusion experiments

I Ensembles of 90000 i.c. of size 10−6 on different chaotic
regions

I Section: |x(t)− x�| ≤ 0.1 kpc,

I Different motion times t > 10 Gyrs.

I Numerical integrations using the full expression of Φtri (not
the first order approximation).

I Only a few results will be shown (full set of experiments:
Maffione et al., MNRAS, 2015).
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If we add to the DM halo potential, a central concentration, a
bulge and a disc (work in progress, Maffione et al.)

Φ = Φtri + Φsmbh + Φbulge + Φdisk

Φsmbh = − GMsmbh√
r2 + ε2smbh

(Plummer)

Φbulge = −
GMbulge

r + εbulge
(Hernquist)

Φdisk = − GMdisk√
r2 − z2 +

(
εs +

√
z2 + ε2h

)2 (Miyamoto−Nagai)

Msmbh ∼ 107M�, Mbulge ∼ 3× 1010M�,

Mdisk ∼ 8× 1010M�, Mdmh ∼ 150× 1010M�.
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Figure: OFLI contour plots for 10 and 100 Gyrs. (x0, y0, z0) = (8, 0, 0).
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I The results indicate that while the amount of chaos is
relevant (for large time-scales), chaotic mixing is not a
significant factor in erasing for instance, local signatures of
accretion events at least within a physically meaningful
time-scale in the Solar Neighborhood.

I As long as the main sources of chaos are included (i.e., central
cusp, triaxial shape, disk, etc.), slight variations of the
galactic potential do not dramatically alter the global
dynamics of the system.

I It seems plausible then the approximation that for time-scales
∼ 10 Gys, halo orbits in the vicinity of the Sun respect 3
integrals of motion.
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