Chaotic diffusion in galactic and planetary systems

P. M. Cincotta
UNLP/IALP-CONICET, La Plata, Argentina
In collaboration with: C. Beaugé, C. Giordano, F. Gómez, N. Maffione and J. Martí

Thanks to C. Simó for his valuable comments and discussions
Dynamics and chaos in astronomy and physics
Session Workshop IV (W4), September 17-24, 2016 School for advanced sciences of Luchon.

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation ϵV.
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
- Overlap of resonances requires that the perturbation exceeds some critical value, ϵ_{c}.

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation $\in V$.
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
- Overlap of resonances requires that the perturbation exceeds some critical value,

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation ϵV
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
- Overlap of resonances requires that the perturbation exceeds some critical value,

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation ϵV.
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
= Overlap of resonances requires that the perturbation exceeds
some critical value,

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation ϵV.
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
- Overlap of resonances requires that the perturbation exceeds some critical value,

About chaotic diffusion

Global instabilities properties of near-integrable $N D$-Hamiltonian Systems $(N>2)$ are far to be well understood.

- We know that local exponential divergence of nearby orbits (a positive LCE), does not imply chaotic diffusion (stable chaos, see for instance Milani et al. 1992 and further works.)
- Chaotic diffusion or chaotic mixing, roughly speaking, means large variations of the unperturbed integrals, actions (or orbital elements) of an integrable system under the effect of a (non-integrable) perturbation ϵV.
- In general, "fast diffusion" could be observed when a major overlap of resonances takes place.
- Overlap of resonances requires that the perturbation exceeds some critical value, ϵ_{c}.
- The heuristic/geometric criterion of overlap of resonances is due to Chirikov (1979) and earlier works of him.
- In the literature, it is common to find the statement that a system is in Chirikov's regime, when most of the invariant tor are destroyed by overlap of resonances and large chaotic domains are present, and thus the diffusion is assumed to be "fast" (normal diffusion)
- And it is in Nekhoroshev's regime, when chaos is completely confined to the narrow layers around resonances.
- Thus KAM theory is required: the size of the perturbation should be small enough, $\epsilon \ll \epsilon_{r}$, and, from Nekhoroshev theorem, the time-scale of any instability is exponentially large.
- The heuristic/geometric criterion of overlap of resonances is due to Chirikov (1979) and earlier works of him.
- In the literature, it is common to find the statement that a system is in Chirikov's regime, when most of the invariant tori are destroyed by overlap of resonances and large chaotic domains are present, and thus the diffusion is assumed to be "fast" (normal diffusion).
- And it is in Nekhoroshev's regime, when chaos is completely confined to the narrow layers around resonances.
- Thus KAM theory is required: the size of the perturbation should be small enough, $\epsilon \ll \epsilon_{\infty}$, and, from Nekhoroshev theorem, the time-scale of any instability is exponentially large.
- The heuristic/geometric criterion of overlap of resonances is due to Chirikov (1979) and earlier works of him.
- In the literature, it is common to find the statement that a system is in Chirikov's regime, when most of the invariant tori are destroyed by overlap of resonances and large chaotic domains are present, and thus the diffusion is assumed to be "fast" (normal diffusion).
- And it is in Nekhoroshev's regime, when chaos is completely confined to the narrow layers around resonances.
- Thus KAM theory is required: the size of the perturbation should be small enough, $\epsilon \ll \epsilon_{c}$, and, from Nekhoroshev theorem, the time-scale of any instability is exponentially large.
- The heuristic/geometric criterion of overlap of resonances is due to Chirikov (1979) and earlier works of him.
- In the literature, it is common to find the statement that a system is in Chirikov's regime, when most of the invariant tori are destroyed by overlap of resonances and large chaotic domains are present, and thus the diffusion is assumed to be "fast" (normal diffusion).
- And it is in Nekhoroshev's regime, when chaos is completely confined to the narrow layers around resonances.
- Thus KAM theory is required: the size of the perturbation should be small enough, $\epsilon \ll \epsilon_{c}$, and, from Nekhoroshev theorem, the time-scale of any instability is exponentially large.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers \sim Arnold diffusion.
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers \sim Arnold diffusion.
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers \sim Arnold diffusion.
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers \sim Arnold diffusion.
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.
- KAM theory and Nekhoroshev estimates are rigorous, but they only provide upper bounds for stability conditions and for the speed of the rather slow diffusion along the narrow chaotic layers \sim Arnold diffusion.
- Chirikov's approach though heuristic, provides a constructive way to compute a diffusion coefficient (under the assumption of normal diffusion) in both scenarios, fast and slow diffusion.
- Physically speaking, fast diffusion should mean that the unperturbed actions/integrals/orbital elements present a significant variation over a physical time-scale.
- It is usual to find in the astronomical/astrophysical/physical literature, several estimations of the diffusion coefficient for different (\sim non-ergodic) dynamical systems.

Let us review a few diffusion examples in two simple models: a $2 \frac{1}{2}$ degrees of freedom Hamiltonian system and a 4D simplectic map.

The classical Arnold's model

$$
\begin{aligned}
& H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
& \qquad I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1 \\
& \text { - For } \epsilon=0: \text { quasiperiodic motion, } \omega_{1}=I_{1}, \omega_{2}=I_{2} \\
& \text { - For } \epsilon \neq 0, \mu=0 \text {, two integrals: } \\
& \qquad H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}, \quad I_{2} \\
& \omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
\end{aligned}
$$

$$
H_{1}: \text { pendulum model for the resonance } \omega_{1}=0
$$

$$
h_{1}=0 \text { : separatrix, }\left(I_{1}, \theta_{1}\right)=(0,0) \text { the unstable point or WT. }
$$

- Resonance half-width in action-space: $\left(\Delta I_{1}\right)^{r}=2 \sqrt{\epsilon}$.

The classical Arnold's model

$$
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right]
$$

$$
\text { - For } \epsilon=0 \text { : quasiperiodic motion, } \omega_{1}=I_{1}, \omega_{2}=I_{2} \text {. }
$$

$$
\text { - For } \epsilon \neq 0, \mu=0 \text {, two integrals: }
$$

$$
\begin{aligned}
H_{1}\left(I_{1}, \theta_{1}\right)= & \frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1} \\
& \omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
\end{aligned}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.
- $h_{1}=0$: separatrix, $\left(I_{1}, \theta_{1}\right)=(0,0)$ the unstable point or WT.
- Resonance half-width in action-space:

The classical Arnold's model
$H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right]$,

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$ two integrals:

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1},
$$

$$
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.
- $h_{1}=0$: separatrix, $\left(I_{1}, \theta_{1}\right)=(0,0)$ the unstable point or WT.
- Resonance half-width in action-space:

The classical Arnold's model
$H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right]$,

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$ two integrals:

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1},
$$

$$
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.
- $h_{1}=0$: separatrix, $\left(I_{1}, \theta_{1}\right)=(0,0)$ the unstable point or WT.
- Resonance half-width in action-space:

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

$$
\text { - For } \epsilon=0: \text { quasiperiodic motion, } \omega_{1}=I_{1}, \omega_{2}=I_{2} \text {. }
$$

$$
\text { - For } \epsilon \neq 0, \mu=0 \text {, two integrals: }
$$

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1},
$$

$$
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
$$

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1},
$$

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1},
$$

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}, \quad I_{2}
$$

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
\begin{gathered}
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}, \quad I_{2} \\
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
\end{gathered}
$$

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
\begin{gathered}
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}, \quad I_{2} \\
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
\end{gathered}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
\begin{gathered}
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}, \quad I_{2} \\
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2}=I_{2}
\end{gathered}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.
- $h_{1}=0$: separatrix, $\left(I_{1}, \theta_{1}\right)=(0,0)$ the unstable point or WT.

The classical Arnold's model

$$
\begin{gathered}
H\left(I_{1}, I_{2}, \theta_{1}, \theta_{2}, t\right)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\epsilon\left(\cos \theta_{1}-1\right)\left[1+\mu\left(\sin \theta_{2}+\cos t\right)\right] \\
I_{1}, I_{2} \in \mathbb{R}, \quad \theta_{1}, \theta_{2}, t \in \mathbb{S}^{1}, \quad 0<\epsilon \mu \ll \epsilon \ll 1
\end{gathered}
$$

- For $\epsilon=0$: quasiperiodic motion, $\omega_{1}=I_{1}, \omega_{2}=I_{2}$.
- For $\epsilon \neq 0, \mu=0$, two integrals:

$$
\begin{aligned}
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right) & =h_{1}, \quad I_{2} \\
\omega_{1}=\omega_{p}\left(h_{1}\right), \quad \omega_{2} & =I_{2}
\end{aligned}
$$

- H_{1} : pendulum model for the resonance $\omega_{1}=0$.
- $h_{1}=0$: separatrix, $\left(I_{1}, \theta_{1}\right)=(0,0)$ the unstable point or WT.
- Resonance half-width in action-space: $\left(\Delta I_{1}\right)^{r}=2 \sqrt{\epsilon}$.
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at
$\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1$.

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, \quad j=1,2,3$.
In energy-action space: $h_{1} \omega_{p}\left(h_{1}\right)+h_{2} I_{2}+h_{3}=0$,

$$
\omega_{p}\left(h_{1}, \epsilon\right)= \begin{cases}\frac{\pi \sqrt{\epsilon}}{2 K\left(k_{h_{1}}\right)} \leq \sqrt{\epsilon} & -2 \epsilon \leq h_{1}<0 \\ \frac{\pi \omega_{r}\left(h_{1}, \epsilon\right)}{2 K\left(k_{h_{1}}^{-1}\right)} & h_{1}>0\end{cases}
$$

$\triangleright k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,

- $K(K)$ is the complete elliptical integral of the first kind,
$\Rightarrow \omega_{p}\left(h_{1}, \epsilon\right) \rightarrow 0$ when $h_{1} \rightarrow 0$ as $1 / \ln \left(\left|h_{1}\right|\right)$.
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- $K(\kappa)$ is the complete elliptical integral of the first kind,
- $\omega_{p}\left(h_{1}, \epsilon\right) \rightarrow 0$ when $h_{1} \rightarrow 0$ as $1 / \ln \left(\left|h_{1}\right|\right)$.
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- $K(\kappa)$ is the complete elliptical integral of the first kind,
- $\omega_{p}\left(h_{1}, \epsilon\right) \rightarrow 0$ when $h_{1} \rightarrow 0$ as $1 / \ln \left(\left|h_{1}\right|\right)$.
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon$,
$\omega_{T}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- $K(\kappa)$ is the complete elliptical integral of the first kind,
- $\omega_{p}\left(h_{1}, \epsilon\right) \rightarrow 0$ when $h_{1} \rightarrow 0$ as $1 / \ln \left(\left|h_{1}\right|\right)$.
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

$$
\omega_{p}\left(h_{1}, \epsilon\right)= \begin{cases}\frac{\pi \sqrt{\epsilon}}{2 K\left(k_{h_{1}}\right)} \leq \sqrt{\epsilon} & -2 \epsilon \leq h_{1}<0 \\ \frac{\pi \omega_{r}\left(h_{1}, \epsilon\right)}{2 K\left(k_{h_{1}}^{-1}\right)} & h_{1}>0\end{cases}
$$

- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

$$
\omega_{p}\left(h_{1}, \epsilon\right)= \begin{cases}\frac{\pi \sqrt{\epsilon}}{2 K\left(k_{h_{1}}\right)} \leq \sqrt{\epsilon} & -2 \epsilon \leq h_{1}<0 \\ \frac{\pi \omega_{r}\left(h_{1}, \epsilon\right)}{2 K\left(k_{h_{1}}^{-1}\right)} & h_{1}>0\end{cases}
$$

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

$$
\omega_{p}\left(h_{1}, \epsilon\right)= \begin{cases}\frac{\pi \sqrt{\epsilon}}{2 K\left(k_{h_{1}}\right)} \leq \sqrt{\epsilon} & -2 \epsilon \leq h_{1}<0 \\ \frac{\pi \omega_{r}\left(h_{1}, \epsilon\right)}{2 K\left(k_{h_{1}}^{-1}\right)} & h_{1}>0\end{cases}
$$

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- $K(\kappa)$ is the complete elliptical integral of the first kind,
- For $\epsilon \neq 0, \mu \neq 0$, primary resonances at

$$
\mathcal{O}(\epsilon): \quad \omega_{1}=0, \quad \mathcal{O}(\epsilon \mu): \quad \omega_{2}=0, \quad \omega_{1}= \pm \omega_{2}, \quad \omega_{1}= \pm 1
$$

Full set of resonances: $k_{1} \omega_{1}+k_{2} \omega_{2}+k_{3}=0, \quad k_{j} \in \mathbb{Z}, j=1,2,3$.
In energy-action space: $k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0$,

$$
\omega_{p}\left(h_{1}, \epsilon\right)= \begin{cases}\frac{\pi \sqrt{\epsilon}}{2 K\left(k_{h_{1}}\right)} \leq \sqrt{\epsilon} & -2 \epsilon \leq h_{1}<0 \\ \frac{\pi \omega_{r}\left(h_{1}, \epsilon\right)}{2 K\left(k_{h_{1}}^{-1}\right)} & h_{1}>0\end{cases}
$$

- $k_{h_{1}}^{2}=\left(h_{1}+2 \epsilon\right) / 2 \epsilon, \quad \omega_{r}\left(h_{1}, \epsilon\right)=\sqrt{\epsilon} k_{h_{1}}$,
- $K(\kappa)$ is the complete elliptical integral of the first kind,
- $\omega_{p}\left(h_{1}, \epsilon\right) \rightarrow 0$ when $h_{1} \rightarrow 0$ as $1 / \ln \left(\left|h_{1}\right|\right)$.

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}
$$

$$
\theta_{1}=\pi, \quad I_{1}=\sqrt{2 h_{1}+4 \epsilon}, \quad k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0
$$

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}
$$

$$
\theta_{1}=\pi, \quad I_{1}=\sqrt{2 h_{1}+4 \epsilon}, \quad k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0, \quad k_{i} \in \mathbb{Z}:
$$

$$
H_{1}\left(I_{1}, \theta_{1}\right)=\frac{1}{2} I_{1}^{2}+\epsilon\left(\cos \theta_{1}-1\right)=h_{1}
$$

$$
\theta_{1}=\pi, \quad I_{1}=\sqrt{2 h_{1}+4 \epsilon}, \quad k_{1} \omega_{p}\left(h_{1}\right)+k_{2} I_{2}+k_{3}=0, \quad k_{i} \in \mathbb{Z}:
$$

For $\mu=0$:

While for $\mu \neq 0$:

For $\mu=0$:

While for $\mu \neq 0$:

For $\mu=0$:

While for $\mu \neq 0$:

$\varepsilon=0.2, \quad 1 \leq\left|k_{1}\right|+\left|k_{2}\right|+k_{3} \mid \leq 8$

$\varepsilon=0.2, \quad 1 \leq\left|k_{1}\right|+\left|k_{2}\right|+k_{3} \mid \leq 8$

Figure: Megno contour plot for $\theta_{1}=\pi, \theta_{2}=t=0$ and 10^{6} i.c. on the $\left(I_{1}, I_{2}\right)$ plane.

- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
= Motion times $5 \times 10^{6} / 10^{7}$
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
* For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
- Motion times $5 \times 10^{6} / 10^{7}$.
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
= Motion times $5 \times 10^{6} / 10^{7}$
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
- Motion times $5 \times 10^{6} / 10^{7}$.
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
- Motion times $5 \times 10^{6} / 10^{7}$.
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
= section: $\left|0_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
- Motion times $5 \times 10^{6} / 10^{7}$.
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.
- For given values of $I_{1}(0), I_{2}(0)$ along the chaotic layer of the resonance $\omega_{1}=0$
- Ensembles of 1.000 i.c., size 10^{-7}
- Parameters not too small, $\epsilon=0.25, \mu=0.025$, far from Nekhoroshev regime
- For the adopted values of the parameters, the mean period of motion inside this chaotic layer is $\lesssim 10$
- Motion times $5 \times 10^{6} / 10^{7}$.
- Double section: $\left|\theta_{1}-\pi\right|+\left|\theta_{2}\right|<0.01$ to see the diffusion in the 2D dynamical map,
- section: $\left|\theta_{2}\right|<10^{-5}$ for the 3D visualization of the diffusion.

$$
\varepsilon=0.25, \mu=0.025, t_{\mathrm{r}}=510^{6},\left|\theta_{2}\right|<10^{-5}
$$

$$
\varepsilon=0.25, \mu=0.025, t_{r}=510^{6},\left|\theta_{2}\right|<10^{-5}
$$

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

- Diffusion coefficient (assuming normal diffusion):

$$
\begin{gather*}
D\left(\omega_{2}\right) \sim \begin{cases}\frac{\omega_{2}^{2} \mu^{2}}{T_{a}} \exp \left(\frac{-\pi \omega_{2}}{\sqrt{\epsilon}}\right), & \omega_{2}>1 \\
\frac{\mu^{2}}{T_{a}} \exp \left(\frac{-\pi}{\sqrt{\epsilon}}\right), & 0<\omega_{2}<1 ;\end{cases} \\
T_{a} \approx \frac{1}{\sqrt{\epsilon}} \ln \left(\frac{32 e}{\omega_{s}}\right) \sim \frac{\pi}{2 \epsilon}+\frac{c\left(\omega_{2}\right)+\ln \left(\epsilon^{3 / 2} / \mu\right)}{\sqrt{\epsilon}}, \tag{2}
\end{gather*}
$$

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

- Diffusion coefficient (assuming normal diffusion):

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

$$
w_{s} \sim \begin{cases}\frac{\mu}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi}{2 \sqrt{\epsilon}}\right) & \omega_{2}>1 \\ \frac{\mu \omega_{2}}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi \omega_{2}}{2 \sqrt{\epsilon}}\right) & 0<\omega_{2}<1\end{cases}
$$

- Diffusion coefficient (assuming normal diffusion):

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

$$
w_{s} \sim \begin{cases}\frac{\mu}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi}{2 \sqrt{\epsilon}}\right) & \omega_{2}>1 \\ \frac{\mu \omega_{2}}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi \omega_{2}}{2 \sqrt{\epsilon}}\right) & 0<\omega_{2}<1\end{cases}
$$

- Diffusion coefficient (assuming normal diffusion):

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

$$
w_{s} \sim \begin{cases}\frac{\mu}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi}{2 \sqrt{\epsilon}}\right) & \omega_{2}>1 \\ \frac{\mu \omega_{2}}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi \omega_{2}}{2 \sqrt{\epsilon}}\right) & 0<\omega_{2}<1\end{cases}
$$

- Diffusion coefficient (assuming normal diffusion):

$$
D\left(\omega_{2}\right) \sim \begin{cases}\frac{\omega_{2}^{2} \mu^{2}}{T_{a}} \exp \left(\frac{-\pi \omega_{2}}{\sqrt{\epsilon}}\right), & \omega_{2}>1 \\ \frac{\mu^{2}}{T_{a}} \exp \left(\frac{-\pi}{\sqrt{\epsilon}}\right) & 0<\omega_{2}<1\end{cases}
$$

Chirikov's estimates for $\mu \ll \epsilon \ll 1$:

- Width of the chaotic layer of the resonance $\omega_{1}=0$:

$$
w_{s} \sim \begin{cases}\frac{\mu}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi}{2 \sqrt{\epsilon}}\right) & \omega_{2}>1 \\ \frac{\mu \omega_{2}}{\epsilon^{3 / 2}} \exp \left(\frac{-\pi \omega_{2}}{2 \sqrt{\epsilon}}\right) & 0<\omega_{2}<1\end{cases}
$$

- Diffusion coefficient (assuming normal diffusion):

$$
\begin{gathered}
D\left(\omega_{2}\right) \sim \begin{cases}\frac{\omega_{2}^{2} \mu^{2}}{T_{a}} \exp \left(\frac{-\pi \omega_{2}}{\sqrt{\epsilon}}\right), & \omega_{2}>1 \\
\frac{\mu^{2}}{T_{a}} \exp \left(\frac{-\pi}{\sqrt{\epsilon}}\right) \quad & 0<\omega_{2}<1 ;\end{cases} \\
T_{a} \approx \frac{1}{\sqrt{\epsilon}} \ln \left(\frac{32 e}{w_{s}}\right) \sim \frac{\pi}{2 \epsilon}+\frac{c\left(\omega_{2}\right)+\ln \left(\epsilon^{3 / 2} / \mu\right)}{\sqrt{\epsilon}}, \quad\left|c\left(\omega_{2}\right)\right| \sim 1
\end{gathered}
$$

Models of discrete time: 4D generalized standard map

Models of discrete time: 4D generalized standard map

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}+\epsilon_{1}^{2} f_{1}\left(x_{1}\right)+\epsilon_{1} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)+\epsilon_{1} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime} & =y_{2}+\epsilon_{2}^{2} f_{2}\left(x_{2}\right)+\epsilon_{2} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)-\epsilon_{2} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right) \\
x_{1}^{\prime} & =x_{1}+y_{1}^{\prime}, \\
x_{2}^{\prime} & =x_{2}+y_{2}^{\prime},
\end{aligned}
$$

$x_{i}, y_{i} \in[0: 2 \pi), \gamma_{s}<\epsilon_{j}<1$.
f_{k} is such that for $-\operatorname{sign},\left(y_{i}, x_{i}\right)=(0,0)$ is the stable fixed point, while for the + sign, $(0,0)$ is the unstable one.

For simplicity, assume that $\epsilon_{1}=\epsilon_{2}=\epsilon, \gamma_{+}=\gamma_{-}=\gamma$ and $\mu_{1}=\mu_{2}=\mu_{3}=\mu$.

Models of discrete time: 4D generalized standard map

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}+\epsilon_{1}^{2} f_{1}\left(x_{1}\right)+\epsilon_{1} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)+\epsilon_{1} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime} & =y_{2}+\epsilon_{2}^{2} f_{2}\left(x_{2}\right)+\epsilon_{2} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)-\epsilon_{2} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right), \\
x_{1}^{\prime} & =x_{1}+y_{1}^{\prime} \\
x_{2}^{\prime} & =x_{2}+y_{2}^{\prime},
\end{aligned}
$$

$$
f_{k}(u)=\frac{ \pm \sin u}{1-\mu_{k} \cos u}, \quad 0 \leq \mu_{k}<1
$$

f_{k} is such that for $-\operatorname{sign},\left(y_{i}, x_{i}\right)=(0,0)$ is the stable fixed point, while for the $+\operatorname{sign},(0,0)$ is the unstable one.

For simplicity, assume that $\epsilon_{1}=\epsilon_{2}=\epsilon, \gamma_{+}=\gamma_{-}=\gamma$ and $\mu_{1}=\mu_{2}=\mu_{3}=\mu$.

Models of discrete time: 4D generalized standard map

$$
\begin{aligned}
y_{1}^{\prime}= & y_{1}+\epsilon_{1}^{2} f_{1}\left(x_{1}\right)+\epsilon_{1} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)+\epsilon_{1} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right), \\
y_{2}^{\prime}= & y_{2}+\epsilon_{2}^{2} f_{2}\left(x_{2}\right)+\epsilon_{2} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)-\epsilon_{2} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right), \\
x_{1}^{\prime}= & x_{1}+y_{1}^{\prime}, \\
x_{2}^{\prime}= & x_{2}+y_{2}^{\prime}, \\
& \quad f_{k}(u)=\frac{ \pm \sin u}{1-\mu_{k} \cos u}, \quad 0 \leq \mu_{k}<1,
\end{aligned}
$$

$x_{i}, y_{i} \in[0: 2 \pi), \gamma_{s}<\epsilon_{j}<1$.
f_{k} is such that for $-\operatorname{sign},\left(y_{i}, x_{i}\right)=(0,0)$ is the stable fixed point, while for the $+\operatorname{sign},(0,0)$ is the unstable one.

For simplicity, assume that $\epsilon_{1}=\epsilon_{2}=\epsilon_{,} \gamma_{1}=\gamma=\gamma$ and $\mu_{1}=\mu_{2}=\mu_{3}=\mu$.

Models of discrete time: 4D generalized standard map

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}+\epsilon_{1}^{2} f_{1}\left(x_{1}\right)+\epsilon_{1} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)+\epsilon_{1} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime} & =y_{2}+\epsilon_{2}^{2} f_{2}\left(x_{2}\right)+\epsilon_{2} \gamma_{+} f_{3}\left(x_{1}+x_{2}\right)-\epsilon_{2} \gamma_{-} f_{3}\left(x_{1}-x_{2}\right), \\
x_{1}^{\prime} & =x_{1}+y_{1}^{\prime} \\
x_{2}^{\prime} & =x_{2}+y_{2}^{\prime},
\end{aligned}
$$

$$
f_{k}(u)=\frac{ \pm \sin u}{1-\mu_{k} \cos u}, \quad 0 \leq \mu_{k}<1
$$

$x_{i}, y_{i} \in[0: 2 \pi), \gamma_{s}<\epsilon_{j}<1$.
f_{k} is such that for $-\operatorname{sign},\left(y_{i}, x_{i}\right)=(0,0)$ is the stable fixed point, while for the $+\operatorname{sign},(0,0)$ is the unstable one.

For simplicity, assume that $\epsilon_{1}=\epsilon_{2}=\epsilon, \gamma_{+}=\gamma_{-}=\gamma$ and $\mu_{1}=\mu_{2}=\mu_{3}=\mu$.

The potential function for $f \equiv-V^{\prime}$ is

$$
V(u)= \pm \frac{1}{\mu} \ln \{1-\mu \cos u\}, \quad \mu \neq 0
$$

Expanding $V(u)$ in powers of μ and using the $\delta_{2 \pi}: 2 \pi$-periodic δ, any of the four terms in the potential

$$
U\left(x_{1}, \epsilon^{2}\right)+U\left(x_{2}, \epsilon^{2}\right)+U\left(x_{1}+x_{2}, \epsilon \gamma\right)+U\left(x_{1}-x_{2}, \epsilon \gamma\right)
$$

of the corresponding Hamiltonian has the form ($\varepsilon \equiv \epsilon^{2}, \epsilon \gamma$):

with $u=x_{1}, x_{2}, x_{1} \pm x_{2}, \quad 2 \pi \dot{u}=y_{1}, y_{2}, y_{1} \pm y_{2}$.

The potential function for $f \equiv-V^{\prime}$ is

$$
V(u)= \pm \frac{1}{\mu} \ln \{1-\mu \cos u\}, \quad \mu \neq 0
$$

Expanding $V(u)$ in powers of μ and using the $\delta_{2 \pi}: 2 \pi$-periodic δ, any of the four terms in the potential

$$
U\left(x_{1}, \epsilon^{2}\right)+U\left(x_{2}, \epsilon^{2}\right)+U\left(x_{1}+x_{2}, \epsilon \gamma\right)+U\left(x_{1}-x_{2}, \epsilon \gamma\right)
$$

of the corresponding Hamiltonian has the form $\left(\varepsilon \equiv \epsilon^{2}, \epsilon \gamma\right)$:

The potential function for $f \equiv-V^{\prime}$ is

$$
V(u)= \pm \frac{1}{\mu} \ln \{1-\mu \cos u\}, \quad \mu \neq 0
$$

Expanding $V(u)$ in powers of μ and using the $\delta_{2 \pi}: 2 \pi$-periodic δ, any of the four terms in the potential

$$
U\left(x_{1}, \epsilon^{2}\right)+U\left(x_{2}, \epsilon^{2}\right)+U\left(x_{1}+x_{2}, \epsilon \gamma\right)+U\left(x_{1}-x_{2}, \epsilon \gamma\right)
$$

of the corresponding Hamiltonian has the form $\left(\varepsilon \equiv \epsilon^{2}, \epsilon \gamma\right)$:

$$
\begin{aligned}
U(u, \varepsilon) & =\frac{\varepsilon}{4 \pi^{2}}\left\{\left(1+\frac{\mu^{2}}{4}\right) \sum_{n=-\infty}^{\infty} \cos (u+n t)+\right. \\
& \left.+\frac{\mu}{4} \sum_{n=-\infty}^{\infty} \cos (2 u+n t)+\frac{\mu^{2}}{12} \sum_{n=-\infty}^{\infty} \cos (3 u+n t)+\ldots\right\}
\end{aligned}
$$

with $u=x_{1}, x_{2}, x_{1} \pm x_{2}, \quad 2 \pi \dot{u}=y_{1}, y_{2}, y_{1} \pm y_{2}$.

Denoting

$$
\hat{y}_{1}=\frac{y_{1}}{2 \pi}, \quad \hat{y}_{2}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 ;
$$

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\begin{gathered}
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 \\
\mathcal{O}\left(\epsilon^{2} \mu\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{2}, 1
\end{gathered}
$$

$$
\mathcal{O}(\epsilon \gamma): \quad \hat{y}_{1} \pm \hat{y_{2}}=0,1 ;
$$

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\begin{array}{cl}
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 ; \\
\mathcal{O}\left(\epsilon^{2} \mu\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{2}, 1 ; \\
\mathcal{O}\left(\epsilon^{2} \mu^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{3}, \frac{2}{3}, 1 ;
\end{array}
$$

$$
\mathcal{O}(\epsilon \gamma): \quad \hat{y_{1}} \pm \hat{y_{2}}=0,1
$$

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\begin{array}{cl}
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 \\
\mathcal{O}\left(\epsilon^{2} \mu\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{2}, 1 \\
\mathcal{O}\left(\epsilon^{2} \mu^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{3}, \frac{2}{3}, 1 \\
\mathcal{O}(\epsilon \gamma): \quad \hat{y_{1}} \pm \hat{y_{2}}=0,1
\end{array}
$$

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\begin{gathered}
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 \\
\mathcal{O}\left(\epsilon^{2} \mu\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{2}, 1 \\
\mathcal{O}\left(\epsilon^{2} \mu^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{3}, \frac{2}{3}, 1 \\
\mathcal{O}(\epsilon \gamma): \quad \hat{y_{1}} \pm \hat{y_{2}}=0,1 \\
\mathcal{O}(\epsilon \gamma \mu): \quad \hat{y_{1}} \pm \hat{y_{2}}=0, \frac{1}{2}, 1
\end{gathered}
$$

Denoting

$$
\hat{y_{1}}=\frac{y_{1}}{2 \pi}, \quad \hat{y_{2}}=\frac{y_{2}}{2 \pi},
$$

"first order" resonances up to $\mathcal{O}\left(\varepsilon \mu^{2}\right)$:

$$
\begin{gathered}
\mathcal{O}\left(\epsilon^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0,1 \\
\mathcal{O}\left(\epsilon^{2} \mu\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{2}, 1 \\
\mathcal{O}\left(\epsilon^{2} \mu^{2}\right): \quad \hat{y_{1}}, \hat{y_{2}}=0, \frac{1}{3}, \frac{2}{3}, 1 \\
\mathcal{O}(\epsilon \gamma): \quad \hat{y_{1}} \pm \hat{y_{2}}=0,1 \\
\mathcal{O}(\epsilon \gamma \mu): \quad \hat{y_{1}} \pm \hat{y_{2}}=0, \frac{1}{2}, 1 \\
\mathcal{O}\left(\epsilon \gamma \mu^{2}\right): \quad \hat{y_{1}} \pm \hat{y_{2}}=0, \frac{1}{3}, \frac{2}{3}, 1
\end{gathered}
$$

Full set of resonances: $k_{1} \hat{y_{1}}+k_{2} \hat{y_{2}}+k_{3}=0, \quad k_{j} \in \mathbb{Z}$

Full set of resonances: $k_{1} \hat{y_{1}}+k_{2} \hat{y_{2}}+k_{3}=0, \quad k_{j} \in \mathbb{Z}$

Full set of resonances: $k_{1} \hat{y_{1}}+k_{2} \hat{y_{2}}+k_{3}=0, \quad k_{j} \in \mathbb{Z}$

Full set of resonances: $k_{1} \hat{y_{1}}+k_{2} \hat{y_{2}}+k_{3}=0, \quad k_{j} \in \mathbb{Z}$

Full set of resonances: $k_{1} \hat{y_{1}}+k_{2} \hat{y_{2}}+k_{3}=0, \quad k_{j} \in \mathbb{Z}$

Figure: MEGNO contour plot for $x_{1}=x_{2}=0(+$ sign left, - sign right $)$

- Ensemble of 2000 i.cs. of size $10^{-7 /-8}$ around $y_{1}(0), y_{2}(0)$,
- $y_{1}(0), y_{2}(0)$ on different main resonances,
- $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime,
- Motion times $N=10^{7} / 10^{8}$, large enough but not "infinite", $N \ll 10^{11}-10^{12}$
- Ensemble of 2000 i.cs. of size $10^{-7 /-8}$ around $y_{1}(0), y_{2}(0)$,
- $y_{1}(0), y_{2}(0)$ on different main resonances,
- $\epsilon_{S}, \gamma_{S}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime,
- Motion times $N=10^{7} / 10^{8}$, large enough but not "infinite", $N \ll 10^{11}-10^{12}$.
- Ensemble of 2000 i.cs. of size $10^{-7 /-8}$ around $y_{1}(0), y_{2}(0)$,
- $y_{1}(0), y_{2}(0)$ on different main resonances,
- $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime,
- Motion times $N=10^{7} / 10^{8}$, large enough but not "infinite",
- Ensemble of 2000 i.cs. of size $10^{-7 /-8}$ around $y_{1}(0), y_{2}(0)$,
- $y_{1}(0), y_{2}(0)$ on different main resonances,
- $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime,
- Motion times $N=10^{7} / 10^{8}$, large enough but not "infinite", $N \ll 10^{11}-10^{12}$.

Figure: Diffusion after $t=10^{7} / 10^{8}$ iterates on the section $x_{1}=x_{2}=0$.
$3 D$ plot for $E\left(\right.$ vii), $t_{r}=10^{7}$

Figure: 3D visualization for an integer and semi-integer resonance.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C i^{n}, \alpha<1$, due to the correlations of the successive values of the phases.
- Theory including correlations of phases is still lacking.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
= so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Lambda I)^{2}(t)\right\rangle \approx$ Dt over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.
\square

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
= The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.

About the derivation of the diffusion coefficient

- In all cases, the estimation of the diffusion coefficient rests on the assumption of free diffusion,
- this means that an ensemble of i.c. evolves as Brownian motion,
- so, successive values of phases involved in the time evolution of the actions should be uncorrelated.
- The diffusion is assumed to be homogeneous and isotropic.
- Under this approximation, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx D t$ over all chaotic domains, Normal diffusion.
- Thus, D only depends on the perturbation parameter, and it is just the constant rate at which the variance evolves with time.
- However, in general, $\left\langle(\Delta I)^{2}(t)\right\rangle \approx C t^{\alpha}, \alpha<1$, due to the correlations of the successive values of the phases.
- Theory including correlations of phases is still lacking.

The numerical computation of the variance of the actions

Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2} .
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth.
Alternatives:
Normal form construction to eliminate the deformation effect due
to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)
or using a double section (Guzzo, Lega, Froeshlé, etc)

The numerical computation of the variance of the actions
Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth.
Alternatives:
Normal form construction to eliminate the deformation effect due
to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)
or using a double section (Guzzo, Lega, Froeshlé, etc).

The numerical computation of the variance of the actions
Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t, \delta t$ being for instance, the time step.

- Ensemble average:

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth.

The numerical computation of the variance of the actions
Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2}
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth.

The numerical computation of the variance of the actions

Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2}
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth.
Alternatives:
Normal form construction to eliminate the deformation effect due
to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)
or using a double section (Guzzo, Lega, Froeshlé, etc)

The numerical computation of the variance of the actions

Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2}
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth. Alternatives:

The numerical computation of the variance of the actions

Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2}
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth. Alternatives:
Normal form construction to eliminate the deformation effect due to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)

The numerical computation of the variance of the actions

Being N_{p} the number of i.c. in a small neighborhood $d \ll 1$ of $y_{1}(0), y_{2}(0)$, and $I_{r}(0), I_{f}(0)$ the corresponding resonant and fast actions,
let $t_{j}=t_{0}+j \delta t$, δt being for instance, the time step.

- Ensemble average:

$$
\sigma_{1}^{2}\left(t_{j}\right)=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}}\left(I_{f}\left(t_{j}\right)-I_{f}(0)\right)^{2}
$$

σ_{1}^{2} could be rather noisy and for small perturbations, its time evolution may hide any slow secular growth. Alternatives:
Normal form construction to eliminate the deformation effect due to oscillations (Giorgilli, Efthymiopoulos, PMC, etc.)
or using a double section (Guzzo, Lega, Froeshlé, etc).

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$,
while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

$$
\sigma_{2}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(t_{l}\right)} \sum_{m=1}^{N_{s}\left(t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $((l-1) \Delta t, l \Delta t)$,

$$
|((l-1) \Delta t, l \Delta t)|=\Delta t .
$$

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$,
while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $((l-1) \Delta t, l \Delta t)$,

$$
|((l-1) \Delta t, l \Delta t)|=\Delta t .
$$

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$,
while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total
motion time $5 \times 10^{6} / 10^{7}$.

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $((l-1) \Delta t, l \Delta t)$,

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$, while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $|((l-1) \Delta t, l \Delta t)|=\Delta t$.

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$, while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

$$
\sigma_{2}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(t_{l}\right)} \sum_{m=1}^{N_{s}\left(t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$, while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

$$
\sigma_{2}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(t_{l}\right)} \sum_{m=1}^{N_{s}\left(t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $((l-1) \Delta t, l \Delta t)$,

- Average over a given section

For instance $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\varepsilon \ll 1$ after a time interval $\Delta t \gg \delta t$.
For the map: $\delta t=1, \Delta t=10^{4}$, total motion time $10^{7} / 10^{8}$, while for the Arnolds'model: $\delta t=2 \times 10^{-4}, \Delta t=5 \times 10^{4}$, total motion time $5 \times 10^{6} / 10^{7}$.

$$
\sigma_{2}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(t_{l}\right)} \sum_{m=1}^{N_{s}\left(t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(t_{l}\right)$ is the number of points on the section in the interval $((l-1) \Delta t, l \Delta t)$,

$$
|((l-1) \Delta t, l \Delta t)|=\Delta t
$$

- Cumulative average over a given section

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

If $\sigma_{2}^{2}(t) \approx C t^{\alpha}$,

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the

 interval $\left(t_{0}, l \Delta t\right)$,$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

If $\sigma_{2}^{2}(t) \approx C t^{\alpha}$,

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2},
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2},
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2},
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

$$
N_{s}\left(<t_{l}\right)=\sum_{m=1}^{l} N_{s}\left(t_{m}\right) \approx l N_{0}, \quad \rightarrow \quad \sigma_{3}^{2}\left(t_{l}\right) \approx \frac{1}{l} \sum_{m=1}^{l} \sigma_{2}^{2}\left(t_{m}\right)
$$

If $\sigma_{2}^{2}(t) \approx C t^{\alpha}$,

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

$$
N_{s}\left(<t_{l}\right)=\sum_{m=1}^{l} N_{s}\left(t_{m}\right) \approx l N_{0}, \quad \rightarrow \quad \sigma_{3}^{2}\left(t_{l}\right) \approx \frac{1}{l} \sum_{m=1}^{l} \sigma_{2}^{2}\left(t_{m}\right)
$$

If $\sigma_{2}^{2}(t) \approx C t^{\alpha}$,

- Cumulative average over a given section

$$
\sigma_{3}^{2}\left(t_{l}\right)=\frac{1}{N_{s}\left(<t_{l}\right)} \sum_{m=1}^{N_{s}\left(<t_{l}\right)}\left(I_{f}\left(t_{m}\right)-I_{f}(0)\right)^{2}
$$

where $N_{s}\left(<t_{l}\right)$ is the number of points on the section in the interval $\left(t_{0}, l \Delta t\right)$,

$$
\left|\left(t_{0}, l \Delta t\right)\right|=l \Delta t
$$

Experimentally, $N_{s}\left(t_{l}\right) \approx N_{0} \gg 1$, so

$$
N_{s}\left(<t_{l}\right)=\sum_{m=1}^{l} N_{s}\left(t_{m}\right) \approx l N_{0}, \quad \rightarrow \quad \sigma_{3}^{2}\left(t_{l}\right) \approx \frac{1}{l} \sum_{m=1}^{l} \sigma_{2}^{2}\left(t_{m}\right)
$$

If $\sigma_{2}^{2}(t) \approx C t^{\alpha}$,

$$
\sigma_{3}^{2}(t) \approx \frac{C}{\alpha+1} t^{\alpha} \approx \frac{\sigma_{2}^{2}(t)}{\alpha+1}
$$

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
= Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C+\alpha(1 d)$ (if necessary) is fitted in several numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several
numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several numerical experiments.

For the 4D-map

- I.Cs. on different main resonances
- Section along the fast plane, $\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right| \leq \varepsilon \ll 1$
- The three variances, $\sigma_{1}^{2}(t), \sigma_{2}^{2}(t), \sigma_{3}^{2}(t)$ are computed
- As an illustration, three examples (as in all cases) for parameters $\epsilon_{s}, \gamma_{s}, \mu_{s}$ not too small such that the system is far from Nekhoroshev regime
- Considering motion times $10^{7} / 10^{8}$, large enough
- A power law, $\sigma^{2}=C t^{\alpha}(+d)$ (if necessary) is fitted in several numerical experiments.

Figure: $\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}$ as a function of time. Here $\alpha \approx 1 ; 0.8 ; 0.5$, respectively.

Exp.	i.c.	res.	C	α
A	(i)	$y_{1}=0$	$1.12 \mathrm{e}-07$	0.64
A	(ii)	$y_{2}=0$	$1.60 \mathrm{e}-08$	0.79
A	(iii)	$1: 1$	$3.40 \mathrm{e}-09$	0.95^{*}
B	(i)	$y_{1}=0$	$3.97 \mathrm{e}-07$	0.35
B	(ii)	$y_{2}=0$	$1.67 \mathrm{e}-10$	0.79
B	(iii)	$1: 1$	$2.36 \mathrm{e}-10$	0.65
C	(i)	$y_{1}=0$	$2.44 \mathrm{e}-08$	0.85
C	(ii)	$y_{2}=0$	$2.61 \mathrm{e}-10$	1.10^{*}
C	(iii)	$1: 1$	$1.0 \mathrm{e}-06$	0.60
D	(i)	$y_{1}=0$	$2.09 \mathrm{e}-07$	0.61
D	(ii)	$y_{2}=0$	$8.16 \mathrm{e}-07$	0.53
D	(iii)	$1: 1$	$5.14 \mathrm{e}-09$	0.81
E	(ii)	$y_{2}=0$	$1.74 \mathrm{e}-07$	0.36
E	(v)	$y_{2}=1 / 2$	$5.41 \mathrm{e}-11$	0.84
E	(vi)	$y_{2}=1 / 2$	$4.44 \mathrm{e}-12$	1.00^{*}
E	(vii)	$y_{2}=0$	$7.95 \mathrm{e}-09$	0.71
E	(viii)	$1: 1$	$1.90 \mathrm{e}-10$	0.89

What about Arnold's' model?

What about Arnold's' model?

What about Arnold's' model?

Figure: σ_{3}^{2} as a function of time for the four ensembles.

Varying μ

Varying μ

Varying μ

Figure: For the same i.cs. but for a smaller value of μ.

- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional 'lamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
> In general $D(\varepsilon, x)$.
- Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed
" For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015)
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
= Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015)
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
= Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
= Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, x)$.
- Diffusion is inhomogeneous and quite anisotropic.
> Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
- Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability /instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
- Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.
- From all these experiments, $\sigma^{2}(t)$ is far from being linear, thus it has no sense to try to derive a diffusion coefficient by a linear fit. It is necessary to understand how to cope with phase correlations in order to estimate any reliable value of D.
- Even in low dimensional Hamiltonian systems (or simplectic maps), this anomalous diffusion was observed.
- For instance: N. Miguel, C. Simó and A. Vieiro: On the effect of islands in the diffusive properties of the standard map, for large parameter values (2015).
- Cantor sets, stickiness, etc, seriously affect the diffusion.
- In general $D(\varepsilon, \boldsymbol{x})$.
- Diffusion is inhomogeneous and quite anisotropic.
- Anyway, diffusion experiments would help us to guess about stability/instability within chaotic domains over finite (or physical) times.

Diffusion in the Gliese-876 planetary system

```
Parameter Planet c (1) Planet b (2) Planet e (3)
```

$P($ days $)$	30.0881	61.1166	124.26
$m\left(\mathrm{M}_{\text {jup }}\right)$	0.7142	2.2756	0.0459
$a(\mathrm{AU})$	0.129590	0.208317	0.3343
e	0.25591	0.0324	0.055
$\varpi\left({ }^{\circ}\right)$	0.0	0.0	180.0
$M\left(^{\circ}\right)$	240.0	120.0	60.0

Table: Masses and orbital elements for the three planets of GJ-876 involved in the Laplace resonance. The values of the angular variables (ω and M) were chosen to minimize the variations of the orbital elements over time, and lead to small-amplitude librations of the resonant angles. The $\left(a_{3}, e_{3}\right)$ values correspond to those obtained by the four-planet coplanar fit.

Diffusion in the Gliese-876 planetary system

Parameter Planet c (1) Planet b (2) Planet e (3)

$P($ days $)$	30.0881	61.1166	124.26
$m\left(\mathrm{M}_{\text {jup }}\right)$	0.7142	2.2756	0.0459
$a(\mathrm{AU})$	0.129590	0.208317	0.3343
e	0.25591	0.0324	0.055
$\varpi\left({ }^{\circ}\right)$	0.0	0.0	180.0
$M\left(^{\circ}\right)$	240.0	120.0	60.0

Table: Masses and orbital elements for the three planets of GJ-876 involved in the Laplace resonance. The values of the angular variables (ϖ and M) were chosen to minimize the variations of the orbital elements over time, and lead to small-amplitude librations of the resonant angles. The (a_{3}, e_{3}) values correspond to those obtained by the four-planet coplanar fit.

In the vicinity of a Laplace-type resonance, we can define the 2:1 two-body MMR resonant angles

$$
\begin{aligned}
& \sigma_{1}=2 \lambda_{2}-\lambda_{1}-\varpi_{1} \\
& \sigma_{2}=2 \lambda_{3}-\lambda_{2}-\varpi_{2}
\end{aligned}
$$

Thus the three-body/orbit resonant Laplace angle is: $\phi_{\text {lap }}=\lambda_{1}-3 \lambda_{2}+2 \lambda_{3}$.

After an averaging process with respect to the short-period terms, the resulting resonant Hamiltonian reduces to a system of four degrees-of-freedom.

In the vicinity of a Laplace-type resonance, we can define the 2:1 two-body MMR resonant angles

$$
\begin{aligned}
& \sigma_{1}=2 \lambda_{2}-\lambda_{1}-\varpi_{1} \\
& \sigma_{2}=2 \lambda_{3}-\lambda_{2}-\varpi_{2}
\end{aligned}
$$

Thus the three-body/orbit resonant Laplace angle is: $\phi_{\text {lap }}=\lambda_{1}-3 \lambda_{2}+2 \lambda_{3}$.

After an averaging process with respect to the short-period terms, the resulting resonant Hamiltonian reduces to a system of four degrees-of-freedom.

In the vicinity of a Laplace-type resonance, we can define the 2:1 two-body MMR resonant angles

$$
\begin{aligned}
& \sigma_{1}=2 \lambda_{2}-\lambda_{1}-\varpi_{1} \\
& \sigma_{2}=2 \lambda_{3}-\lambda_{2}-\varpi_{2}
\end{aligned}
$$

Thus the three-body/orbit resonant Laplace angle is:

$$
\phi_{l a p}=\lambda_{1}-3 \lambda_{2}+2 \lambda_{3} .
$$

After an averaging process with respect to the short-period terms,
the resulting resonant Hamiltonian reduces to a system of four degrees-of-freedom.

In the vicinity of a Laplace-type resonance, we can define the 2:1 two-body MMR resonant angles

$$
\begin{aligned}
& \sigma_{1}=2 \lambda_{2}-\lambda_{1}-\varpi_{1} \\
& \sigma_{2}=2 \lambda_{3}-\lambda_{2}-\varpi_{2}
\end{aligned}
$$

Thus the three-body/orbit resonant Laplace angle is:

$$
\phi_{l a p}=\lambda_{1}-3 \lambda_{2}+2 \lambda_{3} .
$$

After an averaging process with respect to the short-period terms, the resulting resonant Hamiltonian reduces to a system of four degrees-of-freedom.

Figure: Δe_{3} dynamical map in the vicinity of the $2 / 1$ MMR between m_{3} and m_{2} (corresponding to $a_{3} \approx 0.335 \mathrm{AU}$). The remainder variables take the values given in the table.

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.
\Rightarrow Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.

- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\sum_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\omega_{i}-\omega_{i}^{0}\right|\right)<\epsilon_{\text {ang }}$

\square
- 9 ensembles: 1S, 2S,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{\text {ang }}$,
- $\Sigma_{i=1}^{2}\left|e_{i}-e_{i}^{0}\right|<\epsilon_{e}$,
- $\Sigma_{i=1}^{2}\left|a_{i}-a_{i}^{0}\right|<\epsilon_{a}$,
- $\epsilon_{\text {ang }}=6^{\circ}, \epsilon_{a}=0.005 \mathrm{AU}$ and $\epsilon_{e}=0.005$.
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{a n g}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{a n g}$,
- $\Sigma_{i=1}^{2}\left|e_{i}-e_{i}^{0}\right|<\epsilon_{e}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{a n g}$,
- $\Sigma_{i=1}^{2}\left|e_{i}-e_{i}^{0}\right|<\epsilon_{e}$,
- $\sum_{i=1}^{2}\left|a_{i}-a_{i}^{0}\right|<\epsilon_{a}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{\text {ang }}$,
- $\Sigma_{i=1}^{2}\left|e_{i}-e_{i}^{0}\right|<\epsilon_{e}$,
- $\sum_{i=1}^{2}\left|a_{i}-a_{i}^{0}\right|<\epsilon_{a}$,
- $\epsilon_{\text {ang }}=6^{\circ}, \epsilon_{a}=0.005 \mathrm{AU}$ and $\epsilon_{e}=0.005$.
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}$,

The (chaotic) dynamics of this resonance could be completely understood in the framework of Nesvorný \& Morbidelli (1999) three-body mean resonance model for the SS, as it is shown in Martí, PMC \& Beaugé (2016).
Thus, let us see if diffusion experiments provide more information about stability/instability regions inside the Laplace resonance.

- Ensembles: 256 i. c. around several values $\left(a_{3}(0), e_{3}(0)\right)$.
- Size: 10^{-3} in Δe_{3} and 2×10^{-4} in Δa_{3}.
- Total time of 2×10^{5} years, twice longer than the time-span used for the original map.
- Multisection:
- $\Sigma_{i=1}^{3}\left(\left|M_{i}-M_{i}^{0}\right|+\left|\varpi_{i}-\varpi_{i}^{0}\right|\right)<\epsilon_{\text {ang }}$,
- $\Sigma_{i=1}^{2}\left|e_{i}-e_{i}^{0}\right|<\epsilon_{e}$,
- $\sum_{i=1}^{2}\left|a_{i}-a_{i}^{0}\right|<\epsilon_{a}$,
- $\epsilon_{\text {ang }}=6^{\circ}, \epsilon_{a}=0.005 \mathrm{AU}$ and $\epsilon_{e}=0.005$.
- 9 ensembles: $1 \mathrm{~S}, 2 \mathrm{~S}, \ldots, 9 \mathrm{~S}$.

Ensemble

α	S 1	0.942715
S 2	0.585784	
S 3	0.494802	
S 4	0.923109	
S 5	0.648737	
S 6	0.448689	
S 7	0.686534	
S 8	0.592316	
S 9	0.462431	

Table: Exponents α calculated by a least-squares fit for the data obtained by the variances from each of the nine ensembles: $\sigma_{e}^{2}(t)=C t^{\alpha}$.

LCE for a larger time-span

LCE for a larger time-span

LCE for a larger time-span

- There are two main regions in the surroundings of the Laplace resonance:
- The inner resonant region is characterized by large Lyapunov times and very slow diffusion.
- The multi-resonant configuration of the system seems to be responsible for its long-term stability.
- The outer resonant region is dominated by a extremely chaotic dynamics, having LCE's somewhat higher than in the inner region and exhibiting a fast diffusion.
- Although these results correspond to a specific planetary system, it seems reasonable that the main characteristics of any system representing similar multi-resonant configurations could share all these main features.
- There are two main regions in the surroundings of the Laplace resonance:
- The inner resonant region is characterized by large Lyapunov times and very slow diffusion.
- The multi-resonant configuration of the system seems to be responsible for its long-term stability.
- The outer resonant region is dominated by a extremely chaotic dynamics, having LCE's somewhat higher than in the inner region and exhibiting a fast diffusion.
- Although these results correspond to a specific planetary system, it seems reasonable that the main characteristics of any system representing similar multi-resonant configurations could share all these main features.
- There are two main regions in the surroundings of the Laplace resonance:
- The inner resonant region is characterized by large Lyapunov times and very slow diffusion.
- The multi-resonant configuration of the system seems to be responsible for its long-term stability.
- The outer resonant region is dominated by a extremely chaotic dynamics, having LCE's somewhat higher than in the inner region and exhibiting a fast diffusion.
- Although these results correspond to a specific planetary system, it seems reasonable that the main characteristics of any system representing similar multi-resonant configurations could share all these main features.
- There are two main regions in the surroundings of the Laplace resonance:
- The inner resonant region is characterized by large Lyapunov times and very slow diffusion.
- The multi-resonant configuration of the system seems to be responsible for its long-term stability.
- The outer resonant region is dominated by a extremely chaotic dynamics, having LCE's somewhat higher than in the inner region and exhibiting a fast diffusion.
- Although these results correspond to a specific planetary system, it seems reasonable that the main characteristics of any system representing similar multi-resonant configurations could share all these main features.
- There are two main regions in the surroundings of the Laplace resonance:
- The inner resonant region is characterized by large Lyapunov times and very slow diffusion.
- The multi-resonant configuration of the system seems to be responsible for its long-term stability.
- The outer resonant region is dominated by a extremely chaotic dynamics, having LCE's somewhat higher than in the inner region and exhibiting a fast diffusion.
- Although these results correspond to a specific planetary system, it seems reasonable that the main characteristics of any system representing similar multi-resonant configurations could share all these main features.

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at r_{s} :

Up to the 10% level, this approximation can reproduce the true gravitational potential within $r \lesssim 100 \mathrm{kpc}$.

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\Phi_{\mathrm{tri}}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. }
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at r_{s}

Up to the 10% level, this approximation can reproduce the true gravitational potential within $r \lesssim 100 \mathrm{kpc}$.

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\begin{gathered}
\Phi_{\mathrm{tri}}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. }, \\
r_{p}=\frac{\left(r_{s}+r\right) r_{e}}{r_{s}+r_{e}}, \quad r_{e}=\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}} .
\end{gathered}
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at r_{s}

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\begin{gathered}
\Phi_{\text {tri }}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. } \\
r_{p}=\frac{\left(r_{s}+r\right) r_{e}}{r_{s}+r_{e}}, \quad r_{e}=\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}} .
\end{gathered}
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at r_{s} :

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\begin{gathered}
\Phi_{\mathrm{tri}}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. }, \\
r_{p}=\frac{\left(r_{s}+r\right) r_{e}}{r_{s}+r_{e}}, \quad r_{e}=\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}} .
\end{gathered}
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).
The potential changes from ellipsoidal to near spherical at r_{s} :

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\begin{gathered}
\Phi_{\text {tri }}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. } \\
r_{p}=\frac{\left(r_{s}+r\right) r_{e}}{r_{s}+r_{e}}, \quad r_{e}=\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}} .
\end{gathered}
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).
The potential changes from ellipsoidal to near spherical at r_{s} :

- $r \ll r_{s}, r_{p} \simeq r_{e}$;
- $r \gg r_{s}, r_{p} \simeq r$.

On the relevance of chaos for halo stars in the solar neighborhood (Maffione et al. 2014-2016)

The galactic potential (DM Halo)

$$
\begin{gathered}
\Phi_{\text {tri }}=-\frac{A}{r_{p}} \ln \left(1+\frac{r_{p}}{r_{s}}\right) \quad A, r_{s}=\text { const. } \\
r_{p}=\frac{\left(r_{s}+r\right) r_{e}}{r_{s}+r_{e}}, \quad r_{e}=\sqrt{\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}} .
\end{gathered}
$$

All parameters of this model were fitted using DM particles located within 6 to 12 kpc (Aquarius Project).

The potential changes from ellipsoidal to near spherical at r_{s} :

- $r \ll r_{s}, r_{p} \simeq r_{e}$;
- $r \gg r_{s}, r_{p} \simeq r$.

Up to the 10% level, this approximation can reproduce the true gravitational potential within $r \lesssim 100 \mathrm{kpc}$.

Power expansion for $r_{p}<r_{s}\left(r<r_{s}\right)$

$$
\Phi_{\mathrm{tri}}=-\frac{A}{r_{s}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{r_{p}}{r_{s}}\right)^{n-1}
$$

Up to fist order

Power expansion for $r_{p}<r_{s}\left(r<r_{s}\right)$

$$
\Phi_{\mathrm{tri}}=-\frac{A}{r_{s}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{r_{p}}{r_{s}}\right)^{n-1}
$$

Up to fist order

$$
\begin{aligned}
\Phi_{\mathrm{tri}}(r, \vartheta, \varphi) & \approx \Phi_{0}(r)+\Phi_{1}(r)\left\{\left(\varepsilon_{2}-\varepsilon_{1}\right) \cos 2 \vartheta-\right. \\
& \left.-\varepsilon_{1} \cos 2 \varphi+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta+\varphi)+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta-\varphi)\right\},
\end{aligned}
$$

Power expansion for $r_{p}<r_{s}\left(r<r_{s}\right)$

$$
\Phi_{\mathrm{tri}}=-\frac{A}{r_{s}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{r_{p}}{r_{s}}\right)^{n-1}
$$

Up to fist order

$$
\begin{aligned}
\Phi_{\text {tri }}(r, \vartheta, \varphi) & \approx \Phi_{0}(r)+\Phi_{1}(r)\left\{\left(\varepsilon_{2}-\varepsilon_{1}\right) \cos 2 \vartheta-\right. \\
& \left.-\varepsilon_{1} \cos 2 \varphi+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta+\varphi)+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta-\varphi)\right\}, \\
\Phi_{0}(r)= & \frac{A r}{2 a r_{s}^{2}}\left(1+r / r_{s}\right)\left(1-r / a r_{s}\right)+\left(\varepsilon_{1}+\varepsilon_{2}\right) \Phi_{1}(r), \\
\Phi_{1}(r)= & \frac{A r^{2}}{2 a r_{s}^{2}}\left(1+r / r_{s}\right)\left(1 / r-2 / a r_{s}\right)
\end{aligned}
$$

Power expansion for $r_{p}<r_{s}\left(r<r_{s}\right)$

$$
\Phi_{\mathrm{tri}}=-\frac{A}{r_{s}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{r_{p}}{r_{s}}\right)^{n-1}
$$

Up to fist order

$$
\begin{aligned}
& \Phi_{\text {tri }}(r, \vartheta, \varphi) \approx \Phi_{0}(r)+\Phi_{1}(r)\left\{\left(\varepsilon_{2}-\varepsilon_{1}\right) \cos 2 \vartheta-\right. \\
&\left.-\varepsilon_{1} \cos 2 \varphi+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta+\varphi)+\frac{\varepsilon_{1}}{2} \cos 2(\vartheta-\varphi)\right\} \\
& \Phi_{0}(r)= \frac{A r}{2 a r_{s}^{2}}\left(1+r / r_{s}\right)\left(1-r / a r_{s}\right)+\left(\varepsilon_{1}+\varepsilon_{2}\right) \Phi_{1}(r) \\
& \Phi_{1}(r)= \frac{A r^{2}}{2 a r_{s}^{2}}\left(1+r / r_{s}\right)\left(1 / r-2 / a r_{s}\right) \\
& \varepsilon_{1}=\frac{1}{8}\left(a^{2} / b^{2}-1\right), \quad \varepsilon_{2}=\frac{1}{4}\left(a^{2} / c^{2}-1\right), \quad \text { assumed small. }
\end{aligned}
$$

Perturvative approach:
$\mathcal{H}(\mathrm{p}, \mathrm{r})=\mathcal{H}_{0}(\mathrm{p}, r, \vartheta)+\bar{\Phi}_{1}(\mathrm{r})$,
$\mathcal{H}_{0}(\mathrm{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathrm{r})=\Phi_{\text {tri }}(\mathrm{r})-\Phi_{0}(r)$.
Prime integrals:

$$
\mathcal{H}_{0}(\mathrm{p}, r, \vartheta)=h_{0}, \quad L^{2}, \quad L_{z}
$$

Variation of the unperturbed integrals:

$$
\begin{aligned}
\frac{d L_{z}}{d t} & =[\mathrm{L}, \mathcal{H}]=-\frac{\partial \hat{\Phi}_{1}}{\partial \varphi} \\
\frac{d \mathrm{~L}^{2}}{d t} & =\left[\mathrm{L}^{2}, \mathcal{H}\right]=-2 p_{\vartheta} \frac{\partial \hat{\Phi}_{1}}{\partial \vartheta}-\frac{2 p_{\varphi}}{\sin ^{2} \vartheta} \frac{\partial \hat{\Phi}_{1}}{\partial \varphi},
\end{aligned}
$$

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.
Prime integrals:

$$
\mathcal{H}_{0}(\mathrm{p}, r, \vartheta)=h_{0}, \quad L^{2}, \quad L_{z}
$$

Variation of the unperturbed integrals:

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.
Prime integrals:

$$
\mathcal{H}_{0}(\mathrm{p}, r, \vartheta)=h_{0}
$$

Variation of the unperturbed integrals:

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.

Prime integrals:

Variation of the unperturbed integrals:

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.

Prime integrals:

$$
\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)=h_{0}, \quad L^{2}, \quad L_{z}
$$

Variation of the unperturbed integrals:

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.

Prime integrals:

$$
\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)=h_{0}, \quad L^{2}, \quad L_{z}
$$

Variation of the unperturbed integrals:

Perturvative approach:

$$
\mathcal{H}(\mathbf{p}, \mathbf{r})=\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)+\hat{\Phi}_{1}(\mathbf{r})
$$

$\mathcal{H}_{0}(\mathbf{p}, r, \theta)=\frac{p_{r}^{2}}{2}+\frac{p_{\vartheta}^{2}}{2 r^{2}}+\frac{p_{\varphi}^{2}}{2 r^{2} \sin ^{2} \vartheta}+\Phi_{0}(r), \quad \hat{\Phi}_{1}(\mathbf{r})=\Phi_{\text {tri }}(\mathbf{r})-\Phi_{0}(r)$.
Prime integrals:

$$
\mathcal{H}_{0}(\mathbf{p}, r, \vartheta)=h_{0}, \quad L^{2}, \quad L_{z}
$$

Variation of the unperturbed integrals:

$$
\begin{aligned}
\frac{d L_{z}}{d t} & =\left[\mathrm{L}_{z}, \mathcal{H}\right]=-\frac{\partial \hat{\Phi}_{1}}{\partial \varphi} \\
\frac{d \mathrm{~L}^{2}}{d t} & =\left[\mathrm{L}^{2}, \mathcal{H}\right]=-2 p_{\vartheta} \frac{\partial \hat{\Phi}_{1}}{\partial \vartheta}-\frac{2 p_{\varphi}}{\sin ^{2} \vartheta} \frac{\partial \hat{\Phi}_{1}}{\partial \varphi}
\end{aligned}
$$

Figure: Ranges in L^{2} and L_{z} for 1400 particles (grey) of the $\mathrm{Aq}-\mathrm{A} 2 \mathrm{DM}$ halo. In black, the region of the plane to be considered in the experiments, $\left(x_{0}, y_{0}, z_{0}\right)=(8,0,0) \mathrm{kpc}$ (i.e. the position of the Sun) and h_{0} is taken as mean value of the energy distribution of the stellar particles located within a 2.5 kpc sphere around the Sun.

10 [Gyr]

10 [Gyr]

250 [Gyr]

10 [Gyr]

Figure: OFLI contour plots for 10 and 250 Gyr for the Aq-A2 halo model for $\left(x_{0}, y_{0}, z_{0}\right)=(8,0,0), \mathrm{h}_{0} \simeq-204449 \mathrm{~km}^{2} \mathrm{~s}^{-2}$.

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

Diffusion experiments

- Ensembles of 90000 i.c. of size 10^{-6} on different chaotic regions
- Section: $\left|\mathbf{x}(t)-\mathbf{x}_{\odot}\right| \leq 0.1 \mathrm{kpc}$,
- Different motion times $t>10$ Gyrs.
- Numerical integrations using the full expression of $\Phi_{\text {tri }}$ (not the first order approximation).
- Only a few results will be shown (full set of experiments: Maffione et al., MNRAS, 2015).

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\Phi=\Phi_{\text {tri }}+\Phi_{\text {smbh }}+\Phi_{\text {bulge }}+\Phi_{\text {disk }}
$$

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\Phi=\Phi_{\text {tri }}+\Phi_{\text {smbh }}+\Phi_{\text {bulge }}+\Phi_{\text {disk }}
$$

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\Phi=\Phi_{\text {tri }}+\Phi_{\text {smbh }}+\Phi_{\text {bulge }}+\Phi_{\text {disk }}
$$

$$
\Phi_{\mathrm{smbh}}=-\frac{G M_{\mathrm{smbh}}}{\sqrt{r^{2}+\epsilon_{\mathrm{smbh}}^{2}}}
$$

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\Phi=\Phi_{\text {tri }}+\Phi_{\text {smbh }}+\Phi_{\text {bulge }}+\Phi_{\text {disk }}
$$

$$
\begin{gather*}
\Phi_{\mathrm{smbh}}=-\frac{G M_{\mathrm{smbh}}}{\sqrt{r^{2}+\epsilon_{\mathrm{smbh}}^{2}}} \quad \text { (Plummer) } \tag{Plummer}\\
\Phi_{\mathrm{bulge}}=-\frac{G M_{\mathrm{bulge}}}{r+\epsilon_{\mathrm{bulge}}} \quad \text { (Hernquist) }
\end{gather*}
$$

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\begin{gathered}
\Phi=\Phi_{\text {tri }}+\Phi_{\mathrm{smbh}}+\Phi_{\text {bulge }}+\Phi_{\text {disk }} \\
\Phi_{\mathrm{smbh}}=-\frac{G M_{\mathrm{smbh}}}{\sqrt{r^{2}+\epsilon_{\mathrm{smbh}}^{2}}} \quad(\text { Plummer }) \\
\Phi_{\text {bulge }}=-\frac{G M_{\text {bulge }}}{r+\epsilon_{\text {bulge }}} \quad(\text { Hernquist }) \\
\Phi_{\text {disk }}=-\frac{G M_{\text {disk }}}{\sqrt{r^{2}-z^{2}+\left(\epsilon_{s}+\sqrt{z^{2}+\epsilon_{h}^{2}}\right)^{2}}} \quad(\text { Miyamoto }- \text { Nagai) }
\end{gathered}
$$

If we add to the DM halo potential, a central concentration, a bulge and a disc (work in progress, Maffione et al.)

$$
\begin{gathered}
\Phi=\Phi_{\text {tri }}+\Phi_{\text {smbh }}+\Phi_{\text {bulge }}+\Phi_{\text {disk }} \\
\Phi_{\text {smbh }}=-\frac{G M_{\text {smbh }}}{\sqrt{r^{2}+\epsilon_{\text {smbh }}^{2}}} \quad(\text { Plummer }) \\
\Phi_{\text {bulge }}=-\frac{G M_{\text {bulge }}}{r+\epsilon_{\text {bulge }}} \quad(\text { Hernquist }) \\
\Phi_{\text {disk }}=-\frac{G M_{\text {disk }}}{\sqrt{r^{2}-z^{2}+\left(\epsilon_{s}+\sqrt{z^{2}+\epsilon_{h}^{2}}\right)^{2}}} \quad \text { (Miyamoto - Nagai) } \\
M_{\text {smbh }} \sim 10^{7} M_{\odot}, \quad M_{\text {bulge }} \sim 3 \times 10^{10} M_{\odot}, \\
M_{\text {disk }} \sim 8 \times 10^{10} M_{\odot}, \quad M_{\text {dmh }} \sim 150 \times 10^{10} M_{\odot} .
\end{gathered}
$$

Grid: $\left(L^{2}, L_{z}\right)$ and $E=-164803$. OFLI levels: 121224 c.i., 10 Gyrs.

Grid: $\left(L^{2}, L_{z}\right)$ and $E=-164803$. OFLI levels: 121224 c.i., 10 Gyrs.

Grid: (L^{2}, L_{2}) and $E=-164803$. OFLI levels: 121224 c.i., 100Gyrs.

Grid: $\left(L^{2}, L_{z}\right)$ and $E=-164803$. OFLI levels: 121224 c.i., 10 Gyrs.

Grid: (L^{2}, L_{2}) and $E=-164803$. OFLI levels: 121224 c.i., 100 Gyrs.

Figure: OFLI contour plots for 10 and 100 Gyrs. $\left(x_{0}, y_{0}, z_{0}\right)=(8,0,0)$.

- The results indicate that while the amount of chaos is relevant (for large time-scales), chaotic mixing is not a significant factor in erasing for instance, local signatures of accretion events at least within a physically meaningful time-scale in the Solar Neighborhood.
- As long as the main sources of chaos are included (i.e., central cusp, triaxial shape, disk, etc.), slight variations of the galactic potential do not dramatically alter the global dynamics of the system.
- It seems plausible then the approximation that for time-scales ~ 10 Gys, halo orbits in the vicinity of the Sun respect 3 integrals of motion.
- The results indicate that while the amount of chaos is relevant (for large time-scales), chaotic mixing is not a significant factor in erasing for instance, local signatures of accretion events at least within a physically meaningful time-scale in the Solar Neighborhood.
- As long as the main sources of chaos are included (i.e., central cusp, triaxial shape, disk, etc.), slight variations of the galactic potential do not dramatically alter the global dynamics of the system.
- It seems plausible then the approximation that for time-scales ~ 10 Gys, halo orbits in the vicinity of the Sun respect 3 integrals of motion
- The results indicate that while the amount of chaos is relevant (for large time-scales), chaotic mixing is not a significant factor in erasing for instance, local signatures of accretion events at least within a physically meaningful time-scale in the Solar Neighborhood.
- As long as the main sources of chaos are included (i.e., central cusp, triaxial shape, disk, etc.), slight variations of the galactic potential do not dramatically alter the global dynamics of the system.
- It seems plausible then the approximation that for time-scales ~ 10 Gys, halo orbits in the vicinity of the Sun respect 3 integrals of motion.

