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Preliminaries

e = eccentricity
a = semimajor axis (in astronomical units)
n = mean motion = mean angular velocity = 2π

period ∝
1

a3/2

Two body resonance: k0n0 + k1n1 ' 0
with k0, k1 integers.
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Non resonant asteroid: relative positions

Mean perturbation is radial: Sun-Jupiter

Sun Jupiter
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Resonant asteroid

Mean perturbation has a transverse component.

Sun Jupiter
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from Gauss equations

SUN 

asteroid 

R T Fperturb = (R,T,N)

da
dt
∝ (R,T)

<
da
dt
>∝ T

Non resonant
T = 0⇒ a = constant

Resonant
T 6= 0⇒ a = oscillating
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Critical angle σ

For resonance k0n0 + k1n1 ' 0, is defined:

σ = k0λ0 + k1λ1 + γ($0, $1)

the λ’s are quick varying angles (mean longitudes)

γ($0, $1) is a linear combination of slow varying angles
σ(t) indicates if the motion is resonant or not:

σ(t) oscillating means resonance
σ(t) circulating means NO resonance

resonant motion: a(t) is correlated with σ(t)
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Semimajor axis: width

Nesvorny et al. in Asteroids III
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Two body resonance, restricted case m0 = 0

k0n0 + k1n1 ' 0 P1 does not feel the resonance, only P0
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Two body resonance

k0n0 + k1n1 ' 0

Order: q = |k0 + k1|
Strength of resonance is approximately ∝ Cm1eq

Theories try to obtain expressions for coefficients C

Strength is related with amplitude of a(t)
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Two body resonance, planetary case m0 6= 0

k0n0 + k1n1 ' 0 both P0 and P1 feel the resonance
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Two body resonance, planetary case

Observational evidence in extrasolar systems
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Three body resonances
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Three body resonance, restricted case m0 = 0

k0n0 + k1n1 + k2n2 ' 0 only P0 feels the resonance
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Three body resonance

Order: q = |k0 + k1 + k2|
Strength of resonance is approximately ∝ Cm1m2eq

3BRs are weaker than 2BRs (m1m2 << m1)

Theories try to obtain expressions for coefficients C

Only planar theories have been developed
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Strength and eccentricity
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Three body resonance, planetary case m0 6= 0

k0n0 + k1n1 + k2n2 ' 0 all three bodies feel the resonance

Tabaré Gallardo Three Body Resonances



3BR 4n0 − 1n1 − 2n2, planetary case m0 6= 0
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3BR 4n0 − 1n1 − 2n2, restricted case m0 = 0
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Three body resonance

k0n0 + k1n1 + k2n2 ' 0

It is not necessary to have a chain of 2BRs:

P0 and P1 not in two body resonance

P0 and P2 not in two body resonance

P2 and P1 not in two body resonance

but...
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1784: Laplacian resonance

3λEuropa−λIo−2λGanymede ' 180◦

3nEuropa − nIo − 2nGanymede ' 0

They are also in commensurability
by pairs:

2nEuropa − nIo ' 0

2nGanymede − nEuropa ' 0

⇓

It must be the consequence of some physical mechanism.
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Two types of 3BRs

Three body resonance as...

superposition or chain of 2 two-body resonances

nI − 2nE ∼ 0
nE − 2nG ∼ 0
adding: nI − nE − 2nG ∼ 0⇒ 3BR order 2
substraction: nI − 3nE + 2nG ∼ 0⇒ 3BR order 0

pure: 3BR that are NOT due to 2BR + 2BR.
asteroids + Jupiter + Saturn
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Asteroids: histogram of a + 2BRs
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Asteroids: histogram of a + 3BRs

 2  2.2  2.4  2.6  2.8  3  3.2  3.4

lo
g
 (

S
tr

e
n
g
th

)

a (au)

1
-4

J
+

2
S

1
-4

J
+

3
S

2
-7

J
+

4
S

1
-3

J
+

1
S

2
-7

J
+

5
S

2
-6

J
+

3
S

1
-3

J
+

2
S

3
-8

J
+

4
S

2
-5

J
+

2
S

3
-7

J
+

2
S

3
-8

J
+

5
S

2
-1

M

Tabaré Gallardo Three Body Resonances



Dynamical evidence from AstDyS
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Thousands of asteroids in 3BRs with Jupiter and Saturn

Massive identification of asteroids in three-body resonances

Evgeny A. Smirnov, Ivan I. Shevchenko ⇑
Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje Ave. 65, St. Petersburg 196140, Russia

a r t i c l e i n f o

Article history:
Received 15 June 2012
Revised 29 October 2012
Accepted 29 October 2012
Available online 10 November 2012

Keywords:
Asteroids
Asteroids, Dynamics
Celestial mechanics

a b s t r a c t

An essential role in the asteroidal dynamics is played by the mean motion resonances. Two-body planet–
asteroid resonances are widely known, due to the Kirkwood gaps. Besides, so-called three-body mean
motion resonances exist, in which an asteroid and two planets participate. Identification of asteroids
in three-body (namely, Jupiter–Saturn–asteroid) resonances was initially accomplished by Nesvorný
and Morbidelli (Nesvorný D., Morbidelli, A. [1998]. Astron. J. 116, 3029–3037), who, by means of visual
analysis of the time behaviour of resonant arguments, found 255 asteroids to reside in such resonances.
We develop specialized algorithms and software for massive automatic identification of asteroids in the
three-body, as well as two-body, resonances of arbitrary order, by means of automatic analysis of the
time behaviour of resonant arguments. In the computation of orbits, all essential perturbations are taken
into account. We integrate the asteroidal orbits on the time interval of 100,000 yr and identify main-belt
asteroids in the three-body Jupiter–Saturn–asteroid resonances up to the 6th order inclusive, and in the
two-body Jupiter–asteroid resonances up to the 9th order inclusive, in the set of �250,000 objects from
the ‘‘Asteroids – Dynamic Site’’ (AstDyS) database. The percentages of resonant objects, including extrap-
olations for higher-order resonances, are determined. In particular, the observed fraction of pure-reso-
nant asteroids (those exhibiting resonant libration on the whole interval of integration) in the three-
body resonances up to the 6th order inclusive is �0.9% of the whole set; and, using a higher-order extrap-
olation, the actual total fraction of pure-resonant asteroids in the three-body resonances of all orders is
estimated as �1.1% of the whole set.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A substantial role of resonances in the dynamics of asteroids be-
came evident with the discovery of resonant ‘‘gaps’’ in the asteroid
belt by D. Kirkwood in 1867. The deepest minima in the distribu-
tion of asteroids in the semimajor axes of their orbits correspond
to the mean motion resonances 2/1, 3/1, 4/1, 5/2, and 7/3 with
Jupiter. Mean motion resonance represents a commensurability
between the mean frequencies of the orbital motions of an asteroid
and a planet. Apart from the mean motion resonances, so-called
secular resonances (Murray and Dermott, 1999; Morbidelli,
2002), representing commensurabilities between the precession
rates of the orbits of an asteroid and a planet, are important in
forming the dynamical structure of the asteroid belt.

There are two important classes of the mean motion reso-
nances: apart from the usual (two-body) mean motion resonances
of an asteroid and a planet, an appreciable role in the asteroidal
dynamics is played by so-called three-body mean motion reso-
nances (Murray et al., 1998; Nesvorný and Morbidelli, 1998;
Nesvorný and Morbidelli, 1999; Morbidelli, 2002). In the latter

case, the resonance represents a commensurability between the
mean frequencies of the orbital motions of an asteroid and two
planets (e.g., Jupiter and Saturn):

mJ
_kJ þmS

_kS þm _k � 0; ð1Þ

where _kJ, _kS; _k are the time derivatives of the mean longitudes of
Jupiter, Saturn, and asteroid, respectively, and mJ;mS;m are
integers.

In view of the ‘‘overdensity’’ of the three-body resonances in the
phase space of the asteroidal motion, Nesvorný and Morbidelli
(1998) asserted that ‘‘the three-body mean motion resonances
seem to be the main actors structuring the dynamics in the main
asteroid belt’’.

Chaotic behaviour, which is often present in the dynamics of
celestial bodies, is usually due to interaction of resonances (as in
any Hamiltonian system, see Chirikov, 1979), but not always it is
known which are the interacting resonances that give rise to chaos.
It is especially difficult to identify three-body resonances. How to
distinguish between resonant and non-resonant motions? To solve
this problem, a ‘‘resonant argument’’ (synonymously ‘‘resonant
phase’’ or ‘‘critical argument’’) is introduced. It is a linear combina-
tion of some angular variables of a system under consideration; in
the planar asteroidal problem it is given by

0019-1035/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.icarus.2012.10.034

⇑ Corresponding author. Fax: +7 812 7231922.
E-mail address: iis@gao.spb.ru (I.I. Shevchenko).

Icarus 222 (2013) 220–228

Contents lists available at SciVerse ScienceDirect

Icarus

journal homepage: www.elsevier .com/ locate/ icarus

Smirnov and Shevchenko (2013)

See next talk!
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Resonance 1 + 1U−2N, a weird case
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3BRs are WEAK and numerous

Given two planets P1 and P2, an infinite family of 3BRs is
defined:

n0 =
−k1n1 − k2n2

k0

Don’t miss the ”TBR Locator” for Android!

Each resonance is defined by (k0, k1, k2)

The question is: how strong are they?

They are weak because the perturbation that drives the resonant
motion is factorized by m1m2.

There is a huge number of 3BRs: superposition generates
chaotic diffusion.

Tabaré Gallardo Three Body Resonances



Multiplet resonances and chaos

σ = k0λ0 + k1λ1 + k2λ2+k4$0 + k5Ω0

270 D. NESVORNÝ AND A. MORBIDELLI

Figure 8.Separatrices of four multiplet resonances of the 6 1− 3 three-body resonance.

7. Conclusion

In this paper we have developed an analytic model of three-body resonances among
the mean motions of an asteroid, Jupiter and Saturn. Our model is restricted to the
planar case, but turns out to allow good predictions of the main characteristics of the
resonances, namely, for what concerns the amplitude of semimajor axis oscillations,
the typical period of libration/circulation of the critical angles and of the Lyapunov
exponent. It also allows to understand on a simple basis why most of the resonant
phase space is chaotic. We show that a three-body resonance splits in a natural
way into a multiplet of resonances with different critical angles. These multiplet
resonances overlap each other, generating global chaos.

Nesvorny and Morbidelli (1999)
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Chaotic diffusion: growing e

Morbidelli and Nesvorny (1999)
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Chaotic diffusion in the TNR: growing e

Nesvorny and Roig (2001)
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Three body resonances as...

Chains of two body resonances
Galilean satellites (Sinclair 1975, Ferraz-Mello, Malhotra,
Showman, Peale, Lainey...)
Callegari and Yokoyama (2010): satellites of Saturn
Extrasolar systems (Libert and Tsiganis 2011; Martí, Batygin,
Morbidelli, Papaloizou, Quillen...)

Pure three body resonances

Lazzaro et al. (1984): satellites of Uranus
Aksnes (1988): zero order asteroidal resonances
Nesvorny y Morbidelli (1999): theory Jupiter-Saturn-asteroid
Cachucho et al. (2010): diffusion in 5J -2S -2.
Quillen (2011): zero order extrasolar systems
Gallardo (2014), Gallardo et al. (2016): semianalytic
Showalter and Hamilton (2015): Pluto satellites
3nS − 5nN + 2nH ∼ 0
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Disturbing function

Disturbing function for resonance k0 + k1 + k2:

R = k2m1m2

∑
j

Pj cos(σj)

σj = k0λ0 + k1λ1 + k2λ2 + γj

γj = k3$0 + k4$1 + k5$2 + k6Ω0 + k7Ω1 + k8Ω2

Pj is a polynomial function depending on the eccentricities and
inclinations which its lowest order term is

Ce|k3|
0 e|k4|

1 e|k5|
2 sin(i0)|k6| sin(i1)|k7| sin(i2)|k8|
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Theories are complicated...

it is necessary to consider several Pj cos(σj)

with several terms in Pj

calculation of the Cs is not trivial

only planar theories exist

To avoid the difficulties of the analytical methods we proposed to
calculate R numerically.
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Semi analytical method
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a b s t r a c t

We present a numerical method to estimate the strengths of arbitrary three body mean motion reso-
nances between two planets in circular coplanar orbits and a massless particle in an arbitrary orbit. This
method allows us to obtain an atlas of the three body resonances in the Solar System showing where are
located and how strong are thousands of resonances involving all the planets from 0 to 1000 au. This atlas
confirms the dynamical relevance of the three body resonances involving Jupiter and Saturn in the aster-
oid belt but also shows the existence of a family of relatively strong three body resonances involving Ura-
nus and Neptune in the far Trans-Neptunian region and relatively strong resonances involving terrestrial
and jovian planets in the inner planetary system. We calculate the density of relevant resonances along
the Solar System resulting that the main asteroid belt is located in a region of the planetary system with
the lowest density of three body resonances. The method also allows the location of the equilibrium
points showing the existence of asymmetric librations (r – 0� or 180�). We obtain the functional depen-
dence of the resonance’s strength with the order of the resonance and the eccentricity and inclination of
the particle’s orbit. We identify some objects evolving in or very close to three body resonances with
Earth–Jupiter, Saturn–Neptune and Uranus–Neptune apart from Jupiter–Saturn, in particular the NEA
2009 SJ18 is evolving in the resonance 1 � 1E � 1J and the centaur 10199 Chariklo is evolving under
the influence of the resonance 5 � 2S � 2N.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fifteen years ago, concentrated over a period of about a year, a
succession of papers were published (Murray et al., 1998; Nesv-
orný and Morbidelli, 1998, 1999; Morbidelli and Nesvorný, 1999)
showing an intense theoretical and numerical work on three body
mean motion resonances (TBRs) involving an asteroid and two
massive planets. These papers, that have their roots on earlier
works devoted to the study of an asteroid in zero order TBRs
(Wilkens, 1933; Okyay, 1935; Aksnes, 1988), stated the relevance
that the TBRs involving Jupiter–Saturn and also Mars–Jupiter have
in the long term stability in the asteroid’s region. In spite of being
weaker than the two body resonances they are much more numer-
ous generating several dynamical features in the asteroidal popu-
lation, like concentrations for some values of semimajor axes,
anomalous amplitude librations and chaotic evolutions (Nesvorný
and Morbidelli, 1998). In particular, both borders of the main aster-
oid belt exhibit chaotic diffusion due to the superposition of
several weak two-body and TBRs (Murray and Holman, 1997;
Morbidelli and Nesvorný, 1999). More recently, Smirnov and
Shevchenko (2013) in a massive numerical integration of 249,567
asteroids by 105 years and looking at the time evolution of the

critical angles, identified thousands of asteroids in TBRs with Jupi-
ter and Saturn, concluding there are more asteroids in TBRs than in
two body resonances.

The approximate nominal position in semimajor axis of the
TBRs taking arbitrary pairs of planets is very simple if we ignore
the secular motion of the perihelia and nodes of the three bodies.
When these slow secular motions are taken into account each of
the nominal TBRs split in a multiplet of resonances all them very
near the nominal one (Morbidelli, 2002). The challenge is to obtain
the strength, width or libration timescale that give us the dynam-
ical relevance of these resonances. Analytical planar theories
developed by Murray et al. (1998) and Nesvorný and Morbidelli
(1999) allowed to describe and understand the dynamics of the
TBRs involving Jupiter and Saturn in the asteroidal region. These
theories are appropriated to study in detail specific resonances
with Jupiter and Saturn but its application to any arbitrary reso-
nance involving any planet is not trivial, which possibly explains
the absence of papers published on this topic since these years
with the exceptions of a few ones devoted to specific scenarios
(Guzzo, 2005; de La Fuente Marcos and de La Fuente Marcos,
2008; Cachucho et al., 2010; Quillen, 2011).

In this paper, from a different approach, we will obtain a global
view of all dynamically relevant TBRs involving all the planets ta-
ken by pairs along all the Solar System. Our method is not
analytical but numerical and it is based on an estimation of the

0019-1035/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.icarus.2013.12.020

E-mail address: gallardo@fisica.edu.uy

Icarus 231 (2014) 273–286

Contents lists available at ScienceDirect

Icarus

journal homepage: www.elsevier .com/locate / icarus
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Method

Disturbing function is a mean over all possible resonant
configurations.

The point: the disturbing function R must be calculated with the
perturbed positions.

We cannot assume unperturbed ellipses for the three orbits.
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Method

For a given resonance:

consider a large sample of configurations verifying the resonant
condition (σ = constant)

calculate the mutual perturbations ∆r0,∆r1,∆r2

calculate the effect ∆R due to (∆r0,∆r1,∆r2)

integrate all ∆R and obtain ρ(σ)

repeat for several σ ∈ (0, 360) obtaining ρ(σ)
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Method

Then, being in a resonant configuration

∆r1 

∆r2 

∆r0 

SUN 
asteroid 

and these ∆r generate the ∆R
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Disturbing function ∼ ρ(σ)
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Asymmetric equilibrium points
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Zero order resonance, e ' 0,05, a ' 3,8
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large variations of ρ with σ is indicative of a strong resonance

small variations of ρ with σ is indicative of a weak resonance

an extreme of ρ(σ) at some σ means there is an equilibrium
point
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Strength, S

We numerically obtain ρ(σ)

We define Strength

S =
1
2

∆ρ(σ)

For planetary case we have 3 strengths

Si =
1
2

∆ρi(σ)

Codes: www.fisica.edu.uy/~gallardo/atlas
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Strength and order: 3BRs with Jupiter and Saturn
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Planetary case. Dependence on e0. Case q = 4.
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Planetary case. Dependence on e0. Case q = 0.
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Dynamical maps
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Variations in mean a
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take set of initial values (a, e)

integrate for some 10.000 yrs

calculate the mean < a > in some interval

calculate the variation ∆ < a > (running window)

surface plot of ∆ < a > (a, e)

Model: real SS. Initial i = 0
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Resonance 2 - 5J + 2S. Model: real Solar System

Resonance 2 - 5J + 2S
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Resonance 2 - 5J + 2S. Model: J+S with circular orbits

Resonance 2 - 5J + 2S. J+S with e=i=0.
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Resonance 1 - 3J + 2S. Model: real Solar System

9864 (1991 RT17) at  1 - 3J + 2S. Model: real Solar System
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Resonance 1 - 3J + 2S. Model: J+S with circular orbits

Resonance 1 - 3J + 2S. Model: only J + S with e=i=0
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2BR 6P0 − 13P2 and 3BR 5P0 − 1P1 − 4P2.
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For larger m1
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Excited orbits
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Galilean satellites
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3BRs near Europa
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Dynamical map: ∆a(a, e)
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Maps for critical angles

take set of initial values (a, e)

integrate for some 1.000 yrs

calculate the distribution of σ between 0 and 360

uniform or wide distribution: circulation or large amplitude
oscillations

narrow distribution: small amplitude oscillations
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Inducing migration
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Capture in a chain of 2BRs

2×(3P0−5P2)+(9P0−5P1) = 15P0−5P1−10P2 = 3P0−1P1−2P2
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Migration while inside a pure 3BR (4-1-2)
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Inducing migration on Io
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Galilean migration
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Migration: 2BRs versus 3BRs

two body resonances

nI − 2nE ' 0

∆nE ' 0,5∆nI

The two bodies migrate
both inwards or both
outwards.

three body resonances

3nE − nI − 2nG ' 0

3∆nE − 2∆nG ' ∆nI

In 3BRs bodies can migrate in different
directions while trapped in resonance.
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Galilean migration: critical angles
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Conclusions

restricted and planetary cases

weak but numerous (chaotic diffusion)

zero order resonances are the strongest, especially at e ∼ 0

for excited orbits high order 2BRs dominate

there are pure 3BRs and chains of 2BRs

is easiest to capture planetary (satellite) systems in a chain of
2BRs than in a pure 3BR

migration in a 3BRs generates positive AND negative ∆a

lot of work must to be done to understand the structure in (a, e, i)
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Thanks!
Merci!

See you at
Montevideo!
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Appendix
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Disturbing function for the asteroid

R(~r0, ~r1, ~r2) = R(λ0, λ1, λ2) = R01 + R02

being

Rij = k2mj(
1
rij
−
~ri · ~rj

r3
j

)

resonance condition:

λ0 = (σ − k1λ1 − k2λ2 + (k0 + k1 + k2)$0) /k0

=⇒ λ0 = λ0(σ, λ1, λ2, $0)
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Averaging

R(σ) =
1

4π2

∫ 2π

0
dλ1

∫ 2π

0
R
(
λ0, λ1, λ2

)
dλ2

R = R01(λ0, λ1) + R02(λ0, λ2), both independent of σ !!

we cannot calculate R01 + R02 using the unperturbed
Keplerian positions
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The idea

We adopt the following scheme:

R(λ0, λ1, λ2) ' Ru + ∆R

Ru is R calculated at the unperturbed positions of the three bodies
(useless!)

∆R stands from the variation in Ru generated by the perturbed
displacements of the three bodies in a small interval ∆t.
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Method

Then, being in a resonant configuration

∆r1 

∆r2 

∆r0 

SUN 
asteroid 

and these ∆ generate the ∆R
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Approximate mean resonant disturbing function ρ(σ)

The integral of Ru = R01 + R02 is independent of σ, then we only
need to calculate ρ(σ) defined by

ρ(σ) =
1

4π2

∫ 2π

0
dλ1

∫ 2π

0
∆R dλ2

always satisfying the resonant condition λ0(σ, λ1, λ2, $0).
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Method

For a given resonance:

consider a large sample of configurations verifying the resonant
condition (σ = constant)

calculate the mutual perturbations ∆r0,∆r1,∆r2

calculate the effect ∆R due to (∆r0,∆r1,∆r2)

integrate all ∆R and obtain ρ(σ)

repeat for several σ ∈ (0, 360)
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Disturbing function ∼ ρ(σ)
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large variations of ρ with σ is indicative of a strong resonance

small variations of ρ with σ is indicative of a weak resonance

an extreme of ρ(σ) at some σ means there is an equilibrium
point
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Density of resonances versus density of asteroids
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