Three Body Mean Motion Resonances

Tabaré Gallardo

Departamento de Astronomía Facultad de Ciencias Universidad de la República Uruguay

Luchon, September 2016

э

A 10

- preliminaries
- types of three body resonances (3BRs)
- semi analytical method
- numerical studies
 - dynamical maps
 - induced migration

Preliminaries

Preliminaries

e = eccentricity

- a = semimajor axis (in astronomical units)
- $n = \text{mean motion} = \text{mean angular velocity} = \frac{2\pi}{\text{period}} \propto \frac{1}{a^{3/2}}$

Two body resonance: $k_0n_0 + k_1n_1 \simeq 0$ with k_0, k_1 integers.

Non resonant asteroid: relative positions

Mean perturbation is radial: Sun-Jupiter

Mean perturbation has a transverse component.

-≣->

P

from Gauss equations

$$F_{perturb} = (R, T, N)$$
$$\frac{da}{dt} \propto (R, T)$$
$$< \frac{da}{dt} > \propto T$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Non resonant

 $T = 0 \Rightarrow a = \text{constant}$

Resonant

 $T \neq 0 \Rightarrow a = \text{oscillating}$

For resonance $k_0n_0 + k_1n_1 \simeq 0$, is defined:

•
$$\sigma = k_0 \lambda_0 + k_1 \lambda_1 + \gamma(\varpi_0, \varpi_1)$$

- the λ 's are quick varying angles (mean longitudes)
- $\gamma(\varpi_0, \varpi_1)$ is a linear combination of slow varying angles
- $\sigma(t)$ indicates if the motion is resonant or not:
 - $\sigma(t)$ oscillating means resonance
 - $\sigma(t)$ circulating means NO resonance
- resonant motion: a(t) is correlated with $\sigma(t)$

Semimajor axis: width

Two body resonance, restricted case $m_0 = 0$

 $k_0 n_0 + k_1 n_1 \simeq 0$ P_1 does not feel the resonance, only P_0

$k_0 n_0 + k_1 n_1 \simeq 0$

- Order: $q = |k_0 + k_1|$
- Strength of resonance is approximately $\propto Cm_1e^q$
- Theories try to obtain expressions for coefficients C
- Strength is related with amplitude of a(t)

Two body resonance, planetary case $m_0 \neq 0$

 $k_0 n_0 + k_1 n_1 \simeq 0$ both P_0 and P_1 feel the resonance

Observational evidence in extrasolar systems

Three body resonances

Three body resonance, restricted case $m_0 = 0$

- Order: $q = |k_0 + k_1 + k_2|$
- Strength of resonance is approximately $\propto Cm_1m_2e^q$
- 3BRs are weaker than 2BRs $(m_1m_2 \ll m_1)$
- Theories try to obtain expressions for coefficients C
- Only planar theories have been developed

Strength and eccentricity

FACULTAD D

Three body resonance, planetary case $m_0 \neq 0$

3BR $4n_0 - 1n_1 - 2n_2$, planetary case $m_0 \neq 0$

<u>3BR</u> $4n_0 - 1n_1 - 2n_2$, restricted case $m_0 = 0$

Tabaré Gallardo

 $k_0 n_0 + k_1 n_1 + k_2 n_2 \simeq 0$

It is not necessary to have a chain of 2BRs:

- P_0 and P_1 not in two body resonance
- P_0 and P_2 not in two body resonance
- P_2 and P_1 not in two body resonance

but...

1784: Laplacian resonance

$$3\lambda_{Europa} - \lambda_{Io} - 2\lambda_{Ganymede} \simeq 180^{\circ}$$

$$2n_{Europa} - n_{Io} \simeq 0$$

$$2n_{Ganymede} - n_{Europa} \simeq 0$$

 $3n_{Europa} - n_{Io} - 2n_{Ganymede} \simeq 0$

It must be the consequence of some physical mechanism.

∜

Three body resonance as...

• superposition or chain of 2 two-body resonances

- $n_I 2n_E \sim 0$
- $n_E 2n_G \sim 0$
- adding: $n_I n_E 2n_G \sim 0 \Rightarrow 3BR$ order 2
- substraction: $n_I 3n_E + 2n_G \sim 0 \Rightarrow 3BR$ order 0
- pure: 3BR that are NOT due to 2BR + 2BR.
 - asteroids + Jupiter + Saturn

Asteroids: histogram of a + 2BRs

Dynamical evidence from AstDyS

proper e

Thousands of asteroids in 3BRs with Jupiter and Saturn

Icarus 222 (2013) 220-228

Massive identification of asteroids in three-body resonances

Evgeny A. Smirnov, Ivan I. Shevchenko*

Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje Ave. 65, St. Petersburg 196140, Russia

Smirnov and Shevchenko (2013)

See next talk!

3BRs are WEAK and numerous

• Given two planets P_1 and P_2 , an **infinite** family of 3BRs is defined:

$$n_0 = \frac{-k_1 n_1 - k_2 n_2}{k_0}$$

- Don't miss the "TBR Locator" for Android!
- Each resonance is defined by (k_0, k_1, k_2)
- The question is: how strong are they?
- They are weak because the perturbation that drives the resonant motion is factorized by m_1m_2 .
- There is a huge number of 3BRs: superposition generates chaotic diffusion.

Multiplet resonances and chaos

Figure 8. Separatrices of four multiplet resonances of the 61 - 3 three-body resonance.

Nesvorny and Morbidelli (1999)

Chaotic diffusion: growing *e*

Chaotic diffusion in the TNR: growing *e*

Three body resonances as...

- Chains of two body resonances
 - Galilean satellites (Sinclair 1975, Ferraz-Mello, Malhotra, Showman, Peale, Lainey...)
 - Callegari and Yokoyama (2010): satellites of Saturn
 - Extrasolar systems (Libert and Tsiganis 2011; Martí, Batygin, Morbidelli, Papaloizou, Quillen...)
- Pure three body resonances
 - Lazzaro et al. (1984): satellites of Uranus
 - Aksnes (1988): zero order asteroidal resonances
 - Nesvorny y Morbidelli (1999): theory Jupiter-Saturn-asteroid
 - Cachucho et al. (2010): diffusion in 5J -2S -2.
 - Quillen (2011): zero order extrasolar systems
 - Gallardo (2014), Gallardo et al. (2016): semianalytic
 - Showalter and Hamilton (2015): Pluto satellites $3n_S 5n_N + 2n_H \sim 0$

< □ > < 同 > < 回 >

Disturbing function

Disturbing function for resonance $k_0 + k_1 + k_2$:

$$R = k^2 m_1 m_2 \sum_j \mathcal{P}_j \cos(\sigma_j)$$

$$\sigma_j = k_0 \lambda_0 + k_1 \lambda_1 + k_2 \lambda_2 + \gamma_j$$

$$\gamma_j = k_3 \varpi_0 + k_4 \varpi_1 + k_5 \varpi_2 + k_6 \Omega_0 + k_7 \Omega_1 + k_8 \Omega_2$$

 \mathcal{P}_j is a polynomial function depending on the eccentricities and inclinations which its lowest order term is

$$Ce_0^{|k_3|}e_1^{|k_4|}e_2^{|k_5|}\sin(i_0)^{|k_6|}\sin(i_1)^{|k_7|}\sin(i_2)^{|k_8|}$$

Theories are complicated...

- it is necessary to consider several $\mathcal{P}_j \cos(\sigma_j)$
- with several terms in \mathcal{P}_j
- calculation of the Cs is not trivial
- only planar theories exist

To avoid the difficulties of the analytical methods we proposed to calculate R numerically.

Semi analytical method

Icarus

journal homepage: www.elsevier.com/locate/icarus

Atlas of three body mean motion resonances in the Solar System

Tabaré Gallardo

Departamento de Astronomía, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay

Planetary and satellite three body mean motion resonances

Tabaré Gallardo*, Leonardo Coito, Luciana Badano

Departamento de Astronomía, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay

• • • • • • • • •

- Disturbing function is a mean over all possible resonant configurations.
- **The point:** the disturbing function *R* must be calculated with the **perturbed** positions.
- We cannot assume unperturbed ellipses for the three orbits.

For a given resonance:

- consider a large sample of configurations verifying the resonant condition ($\sigma = \text{constant}$)
- calculate the mutual perturbations $\Delta r_0, \Delta r_1, \Delta r_2$
- calculate the effect ΔR due to $(\Delta r_0, \Delta r_1, \Delta r_2)$
- integrate all ΔR and obtain $\rho(\sigma)$
- repeat for several $\sigma \in (0, 360)$ obtaining $\rho(\sigma)$

Then, being in a resonant configuration

and these Δr generate the ΔR

• • • • • • • • •

문 ▶ ★ 문 ▶

Disturbing function $\sim \rho(\sigma)$

1-3J+1S, e=0.01

Asymmetric equilibrium points

1-2J+1S, e=0.1

- large variations of ρ with σ is indicative of a strong resonance
- small variations of ρ with σ is indicative of a weak resonance
- an extreme of ρ(σ) at some σ means there is an equilibrium point

- We numerically obtain $\rho(\sigma)$
- We define Strength

$$S = \frac{1}{2}\Delta\rho(\sigma)$$

• For planetary case we have 3 strengths

$$S_i = \frac{1}{2} \Delta \rho_i(\sigma)$$

Codes: www.fisica.edu.uy/~gallardo/atlas

Strength and order: 3BRs with Jupiter and Saturn

Tabaré Gallardo Three Body Resonances

FACULTAD DE

Planetary case. Dependence on e_0 . Case q = 4.

2P0 - 1P1 + 3P2

Planetary case. Dependence on e_0 . Case q = 0.

6P₀ - 1P₁ - 5P₂

Dynamical maps

- take set of initial values (*a*, *e*)
- integrate for some 10.000 yrs
- calculate the mean $\langle a \rangle$ in some interval
- calculate the variation $\Delta < a >$ (running window)
- surface plot of $\Delta < a > (a, e)$

Resonance 2 - 5J + 2S. Model: real Solar System

Resonance 2 - 5J + 2S

Resonance 2 - 5J + 2S. Model: J+S with circular orbits

Resonance 2 - 5J + 2S. J+S with e=i=0.

Resonance 1 - 3J + 2S. Model: real Solar System

Resonance 1 - 3J + 2S. Model: J+S with circular orbits

2BR $6P_0 - 13P_2$ and 3BR $5P_0 - 1P_1 - 4P_2$.

Excited orbits

Galilean satellites

≣⇒

17 ▶

3BRs near Europa

Dynamical map: $\Delta a(a, e)$

Maps for critical angles

- take set of initial values (*a*, *e*)
- integrate for some 1.000 yrs
- calculate the distribution of σ between 0 and 360
- uniform or wide distribution: circulation or large amplitude oscillations
- narrow distribution: small amplitude oscillations

Inducing migration

Capture in a chain of 2BRs

$$2 \times (3P_0 - 5P_2) + (9P_0 - 5P_1) = 15P_0 - 5P_1 - 10P_2 = 3P_0 - 1P_1 - 2P_2$$

Migration while inside a pure 3BR (4-1-2)

Tabaré Gallardo Three B

Three Body Resonances

Inducing migration on Io

Galilean migration

two body resonances

$$n_I - 2n_E \simeq 0$$

 $\Delta n_E \simeq 0.5 \Delta n_I$

The two bodies migrate both inwards or both outwards.

three body resonances

$$3n_E - n_I - 2n_G \simeq 0$$

$$3\Delta n_E - 2\Delta n_G \simeq \Delta n_I$$

In 3BRs bodies can migrate in different directions while trapped in resonance.

Galilean migration: critical angles

- restricted and planetary cases
- weak but numerous (chaotic diffusion)
- zero order resonances are the strongest, especially at $e \sim 0$
- for excited orbits high order 2BRs dominate
- there are pure 3BRs and chains of 2BRs
- is easiest to capture planetary (satellite) systems in a chain of 2BRs than in a pure 3BR
- migration in a 3BRs generates positive AND negative Δa
- lot of work must to be done to understand the structure in (a, e, i)

Thanks! Merci!

See you at Montevideo!

ACM 2017 MONTEVIDEO "Asteroids, Comets, Meteors" 10-14 April 2017 An International Conference on Small Bodies of the Solar System: Asteroids, Comets, Meteors, TNOs and "Dwarf Planets" acm2017.uy U .0 UregezyWatara

ULTAD DE

Tabaré Gallardo

Three Body Resonances
Appendix

イロト イ理ト イヨト イヨト

Disturbing function for the asteroid

$$R(\vec{r_0}, \vec{r_1}, \vec{r_2}) = R(\lambda_0, \lambda_1, \lambda_2) = R_{01} + R_{02}$$

being

$$R_{ij} = k^2 m_j \left(\frac{1}{r_{ij}} - \frac{\vec{r_i} \cdot \vec{r_j}}{r_j^3}\right)$$

resonance condition:

$$\lambda_0 = \left(\sigma - k_1 \lambda_1 - k_2 \lambda_2 + (k_0 + k_1 + k_2) \varpi_0\right) / k_0$$

$$\implies \lambda_0 = \lambda_0(\sigma, \lambda_1, \lambda_2, \varpi_0)$$

-≣⇒

$$\Re(\sigma) = rac{1}{4\pi^2} \int_0^{2\pi} d\lambda_1 \int_0^{2\pi} R\Big(\lambda_0, \lambda_1, \lambda_2\Big) d\lambda_2$$

- $R = R_{01}(\lambda_0, \lambda_1) + R_{02}(\lambda_0, \lambda_2)$, both independent of σ !!
- we cannot calculate $R_{01} + R_{02}$ using the unperturbed Keplerian positions

We adopt the following scheme:

$$R(\lambda_0,\lambda_1,\lambda_2)\simeq R_u+\Delta R$$

- *R_u* is *R* calculated at the unperturbed positions of the three bodies (useless!)
- ΔR stands from the variation in R_u generated by the perturbed displacements of the three bodies in a small interval Δt .

Then, being in a resonant configuration

and these Δ generate the ΔR

• • • • • • • • •

문 ▶ ★ 문 ▶

The integral of $R_u = R_{01} + R_{02}$ is independent of σ , then we only need to calculate $\rho(\sigma)$ defined by

$$\rho(\sigma) = \frac{1}{4\pi^2} \int_0^{2\pi} d\lambda_1 \int_0^{2\pi} \Delta R \, d\lambda_2$$

always satisfying the resonant condition $\lambda_0(\sigma, \lambda_1, \lambda_2, \varpi_0)$.

For a given resonance:

- consider a large sample of configurations verifying the resonant condition ($\sigma = \text{constant}$)
- calculate the mutual perturbations $\Delta r_0, \Delta r_1, \Delta r_2$
- calculate the effect ΔR due to $(\Delta r_0, \Delta r_1, \Delta r_2)$
- integrate all ΔR and obtain $\rho(\sigma)$
- repeat for several $\sigma \in (0, 360)$

Disturbing function $\sim \rho(\sigma)$

1-3J+1S, e=0.01

- large variations of ρ with σ is indicative of a strong resonance
- small variations of ρ with σ is indicative of a weak resonance
- an extreme of ρ(σ) at some σ means there is an equilibrium point

