Three Body Mean Motion Resonances

Tabaré Gallardo

Departamento de Astronomía
Facultad de Ciencias
Universidad de la República
Uruguay

Luchon, September 2016

- preliminaries
- types of three body resonances (3BRs)
- semi analytical method
- numerical studies
- dynamical maps
- induced migration

Preliminaries

Preliminaries

$e=$ eccentricity
$a=$ semimajor axis (in astronomical units)
$n=$ mean motion $=$ mean angular velocity $=\frac{2 \pi}{\text { period }} \propto \frac{1}{a^{3 / 2}}$

Two body resonance: $k_{0} n_{0}+k_{1} n_{1} \simeq 0$
with k_{0}, k_{1} integers.

Non resonant asteroid: relative positions

Mean perturbation is radial: Sun-Jupiter

Resonant asteroid

Mean perturbation has a transverse component.

from Gauss equations

Non resonant
 $T=0 \Rightarrow a=$ constant

$$
\begin{gathered}
F_{\text {perturb }}=(R, T, N) \\
\frac{d a}{d t} \propto(R, T) \\
\quad<\frac{d a}{d t}>\propto T
\end{gathered}
$$

Resonant

$T \neq 0 \Rightarrow a=$ oscillating

Critical angle σ

For resonance $k_{0} n_{0}+k_{1} n_{1} \simeq 0$, is defined:

- $\sigma=k_{0} \lambda_{0}+k_{1} \lambda_{1}+\gamma\left(\varpi_{0}, \varpi_{1}\right)$
- the λ 's are quick varying angles (mean longitudes)
- $\gamma\left(\varpi_{0}, \varpi_{1}\right)$ is a linear combination of slow varying angles
- $\sigma(t)$ indicates if the motion is resonant or not:
- $\sigma(t)$ oscillating means resonance
- $\sigma(t)$ circulating means NO resonance
- resonant motion: $a(t)$ is correlated with $\sigma(t)$

Semimajor axis: width

Nesvorny et al. in Asteroids III

Two body resonance, restricted case $m_{0}=0$

$k_{0} n_{0}+k_{1} n_{1} \simeq 0 \quad P_{1}$ does not feel the resonance, only P_{0}

Two body resonance

$$
k_{0} n_{0}+k_{1} n_{1} \simeq 0
$$

- Order: $q=\left|k_{0}+k_{1}\right|$
- Strength of resonance is approximately $\propto C m_{1} e^{q}$
- Theories try to obtain expressions for coefficients C
- Strength is related with amplitude of $a(t)$

Two body resonance, planetary case $m_{0} \neq 0$

$k_{0} n_{0}+k_{1} n_{1} \simeq 0 \quad$ both P_{0} and P_{1} feel the resonance

Two body resonance, planetary case

Observational evidence in extrasolar systems

Fabrycky et al.

Three body resonances

Three body resonance, restricted case $m_{0}=0$

$$
k_{0} n_{0}+k_{1} n_{1}+k_{2} n_{2} \simeq 0 \quad \text { only } P_{0} \text { feels the resonance }
$$

Three body resonance

- Order: $q=\left|k_{0}+k_{1}+k_{2}\right|$
- Strength of resonance is approximately $\propto C m_{1} m_{2} e^{q}$
- 3BRs are weaker than 2BRs ($m_{1} m_{2} \ll m_{1}$)
- Theories try to obtain expressions for coefficients C
- Only planar theories have been developed

Three body resonance, planetary case $m_{0} \neq 0$

$$
k_{0} n_{0}+k_{1} n_{1}+k_{2} n_{2} \simeq 0 \quad \text { all three bodies feel the resonance }
$$

3BR $4 n_{0}-1 n_{1}-2 n_{2}$, planetary case $m_{0} \neq 0$

Three body resonance

$$
k_{0} n_{0}+k_{1} n_{1}+k_{2} n_{2} \simeq 0
$$

It is not necessary to have a chain of 2BRs:

- P_{0} and P_{1} not in two body resonance
- P_{0} and P_{2} not in two body resonance
- P_{2} and P_{1} not in two body resonance

1784: Laplacian resonance

$3 \lambda_{\text {Europa }}-\lambda_{\text {Io }}-2 \lambda_{\text {Ganymede }} \simeq 180^{\circ}$
$3 n_{\text {Europa }}-n_{\text {Io }}-2 n_{\text {Ganymede }} \simeq 0$
They are also in commensurability by pairs:

$$
\begin{gathered}
2 n_{\text {Europa }}-n_{\text {Io }} \simeq 0 \\
2 n_{\text {Ganymede }}-n_{\text {Europa }} \simeq 0
\end{gathered}
$$

It must be the consequence of some physical mechanism.

Two types of 3BRs

Three body resonance as...

- superposition or chain of 2 two-body resonances

- $n_{I}-2 n_{E} \sim 0$
- $n_{E}-2 n_{G} \sim 0$
- adding: $n_{I}-n_{E}-2 n_{G} \sim 0 \Rightarrow 3 \mathrm{BR}$ order 2
- substraction: $n_{I}-3 n_{E}+2 n_{G} \sim 0 \Rightarrow 3 \mathrm{BR}$ order 0
- pure: 3 BR that are NOT due to $2 \mathrm{BR}+2 \mathrm{BR}$.
- asteroids + Jupiter + Saturn

Asteroids: histogram of $a+2 \mathrm{BRs}$

Asteroids: histogram of $a+3 \mathrm{BRs}$

Dynamical evidence from AstDyS

Thousands of asteroids in 3BRs with Jupiter and Saturn

Icarus 222 (2013) 220-228

Massive identification of asteroids in three-body resonances

Evgeny A. Smirnov, Ivan I. Shevchenko*
Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje Ave. 65, St. Petersburg 196140, Russia

Smirnov and Shevchenko (2013)
See next talk!

Resonance $1+1 \mathrm{U}-2 \mathrm{~N}$, a weird case

FACULTAD DE
CIENCIAS

- Given two planets P_{1} and P_{2}, an infinite family of 3 BRs is defined:

$$
n_{0}=\frac{-k_{1} n_{1}-k_{2} n_{2}}{k_{0}}
$$

- Don't miss the "TBR Locator" for Android!
- Each resonance is defined by $\left(k_{0}, k_{1}, k_{2}\right)$
- The question is: how strong are they?
- They are weak because the perturbation that drives the resonant motion is factorized by $m_{1} m_{2}$.
- There is a huge number of 3BRs: superposition generates chaotic diffusion.

Multiplet resonances and chaos

$$
\sigma=k_{0} \lambda_{0}+k_{1} \lambda_{1}+k_{2} \lambda_{2}+k_{4} \varpi_{0}+k_{5} \Omega_{0}
$$

Figure 8. Separatrices of four multiplet resonances of the 61-3 three-body resonance.

Nesvorny and Morbidelli (1999)

Chaotic diffusion: growing e

Morbidelli and Nesvorny (1999)

Chaotic diffusion in the TNR: growing e

Nesvorny and Roig (2001)

Three body resonances as...

- Chains of two body resonances
- Galilean satellites (Sinclair 1975, Ferraz-Mello, Malhotra, Showman, Peale, Lainey...)
- Callegari and Yokoyama (2010): satellites of Saturn
- Extrasolar systems (Libert and Tsiganis 2011; Martí, Batygin, Morbidelli, Papaloizou, Quillen...)
- Pure three body resonances
- Lazzaro et al. (1984): satellites of Uranus
- Aksnes (1988): zero order asteroidal resonances
- Nesvorny y Morbidelli (1999): theory Jupiter-Saturn-asteroid
- Cachucho et al. (2010): diffusion in 5J -2S -2.
- Quillen (2011): zero order extrasolar systems
- Gallardo (2014), Gallardo et al. (2016): semianalytic
- Showalter and Hamilton (2015): Pluto satellites

$$
3 n_{S}-5 n_{N}+2 n_{H} \sim 0
$$

Disturbing function

Disturbing function for resonance $k_{0}+k_{1}+k_{2}$:

$$
\begin{gathered}
R=k^{2} m_{1} m_{2} \sum_{j} \mathcal{P}_{j} \cos \left(\sigma_{j}\right) \\
\sigma_{j}=k_{0} \lambda_{0}+k_{1} \lambda_{1}+k_{2} \lambda_{2}+\gamma_{j} \\
\gamma_{j}=k_{3} \varpi_{0}+k_{4} \varpi_{1}+k_{5} \varpi_{2}+k_{6} \Omega_{0}+k_{7} \Omega_{1}+k_{8} \Omega_{2}
\end{gathered}
$$

\mathcal{P}_{j} is a polynomial function depending on the eccentricities and inclinations which its lowest order term is

$$
C e_{0}^{\left|k_{3}\right|} e_{1}^{\left|k_{4}\right|} e_{2}^{\left|k_{5}\right|} \sin \left(i_{0}\right)^{\left|k_{6}\right|} \sin \left(i_{1}\right)^{\left|k_{7}\right|} \sin \left(i_{2}\right)^{\left|k_{8}\right|}
$$

Theories are complicated...

- it is necessary to consider several $\mathcal{P}_{j} \cos \left(\sigma_{j}\right)$
- with several terms in \mathcal{P}_{j}
- calculation of the C s is not trivial
- only planar theories exist

To avoid the difficulties of the analytical methods we proposed to calculate R numerically.

Semi analytical method

Atlas of three body mean motion resonances in the Solar System

Tabaré Gallardo
Departamento de Astronomía, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay

Planetary and satellite three body mean motion resonances

Tabaré Gallardo*, Leonardo Coito, Luciana Badano
Departamento de Astronomía, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay

Method

- Disturbing function is a mean over all possible resonant configurations.
- The point: the disturbing function R must be calculated with the perturbed positions.
- We cannot assume unperturbed ellipses for the three orbits.

Method

For a given resonance:

- consider a large sample of configurations verifying the resonant condition ($\sigma=$ constant)
- calculate the mutual perturbations $\Delta r_{0}, \Delta r_{1}, \Delta r_{2}$
- calculate the effect ΔR due to $\left(\Delta r_{0}, \Delta r_{1}, \Delta r_{2}\right)$
- integrate all ΔR and obtain $\rho(\sigma)$
- repeat for several $\sigma \in(0,360)$ obtaining $\rho(\sigma)$

Method

Then, being in a resonant configuration

and these Δr generate the ΔR

Disturbing function $\sim \rho(\sigma)$

$1-3 \mathrm{~J}+1 \mathrm{~S}, \mathrm{e}=0.01$

Asymmetric equilibrium points

Zero order resonance, $e \simeq 0,05, a \simeq 3,8$

Numerical integration of full equations of motion.

- large variations of ρ with σ is indicative of a strong resonance
- small variations of ρ with σ is indicative of a weak resonance
- an extreme of $\rho(\sigma)$ at some σ means there is an equilibrium point

Strength, S

- We numerically obtain $\rho(\sigma)$
- We define Strength

$$
S=\frac{1}{2} \Delta \rho(\sigma)
$$

- For planetary case we have 3 strengths

$$
S_{i}=\frac{1}{2} \Delta \rho_{i}(\sigma)
$$

Codes: www.fisica.edu.uy/~gallardo/atlas

Strength and order: 3BRs with Jupiter and Saturn

$$
\log (\Delta \rho) \propto-q
$$

Planetary case. Dependence on e_{0}. Case $q=4$.

Planetary case. Dependence on e_{0}. Case $q=0$.

Dynamical maps

Variations in mean a

- take set of initial values (a, e)
- integrate for some 10.000 yrs
- calculate the mean $<a>$ in some interval
- calculate the variation $\Delta\langle a\rangle$ (running window)
- surface plot of $\Delta<a>(a, e)$

Resonance 2-5J + 2S. Model: real Solar System

Resonance 2-5J + 2 S

Resonance $2-5 \mathrm{~J}+2 \mathrm{~S}$. Model: J+S with circular orbits

Resonance $2-5 \mathrm{~J}+2 \mathrm{~S} . \mathrm{J}+\mathrm{S}$ with $\mathrm{e}=\mathrm{i}=0$.

Resonance 1-3J + 2S. Model: real Solar System

9864 (1991 RT17) at $1-3 \mathrm{~J}+2 \mathrm{~S}$. Model: real Solar System

Resonance 1-3J + 2S. Model: J+S with circular orbits

Resonance $1-3 \mathrm{~J}+2 \mathrm{~S}$. Model: only $\mathrm{J}+\mathrm{S}$ with $\mathrm{e}=\mathrm{i}=0$

2BR $6 P_{0}-13 P_{2}$ and 3 BR $5 P_{0}-1 P_{1}-4 P_{2}$.

For larger m_{1}

Excited orbits

Galilean satellites

3BRs near Europa

FACULTAD DE
CIENCIAS

Dynamical map: $\Delta a(a, e)$

Maps for critical angles

- take set of initial values (a, e)
- integrate for some 1.000 yrs
- calculate the distribution of σ between 0 and 360
- uniform or wide distribution: circulation or large amplitude oscillations
- narrow distribution: small amplitude oscillations

ก 00435
00044
000445
0004.5

Three Body Resonances

Inducing migration

Capture in a chain of 2BRs

$$
2 \times\left(3 P_{0}-5 P_{2}\right)+\left(9 P_{0}-5 P_{1}\right)=15 P_{0}-5 P_{1}-10 P_{2}=3 P_{0}-1 P_{1}-2 P_{2}
$$

Migration while inside a pure 3BR (4-1-2)

Inducing migration on Io

Tabaré Gallardo Three Body Resonances

Galilean migration

Migration: 2BRs versus 3BRs

two body resonances

$$
n_{I}-2 n_{E} \simeq 0
$$

$$
\Delta n_{E} \simeq 0,5 \Delta n_{I}
$$

The two bodies migrate both inwards or both outwards.

three body resonances

$$
\begin{gathered}
3 n_{E}-n_{I}-2 n_{G} \simeq 0 \\
3 \Delta n_{E}-2 \Delta n_{G} \simeq \Delta n_{I}
\end{gathered}
$$

In 3BRs bodies can migrate in different directions while trapped in resonance.

Galilean migration: critical angles

Conclusions

- restricted and planetary cases
- weak but numerous (chaotic diffusion)
- zero order resonances are the strongest, especially at $e \sim 0$
- for excited orbits high order 2BRs dominate
- there are pure 3BRs and chains of 2BRs
- is easiest to capture planetary (satellite) systems in a chain of 2BRs than in a pure 3BR
- migration in a 3BRs generates positive AND negative Δa
- lot of work must to be done to understand the structure in (a, e, i)

Thanks!
 Merci!

ACM 2017

 MONTEVIDEO"Asteroids, Comets, Meteors"

10-14 April 2017

An International Conference on Small Bodies of the Solar System: Asteroids, Comets, Meteors, TNOs and "Dwarf Planets"
acm2017.uy

Appendix

Disturbing function for the asteroid

$$
R\left(\overrightarrow{r_{0}}, \overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right)=R\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=R_{01}+R_{02}
$$

being

$$
R_{i j}=k^{2} m_{j}\left(\frac{1}{r_{i j}}-\frac{\overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}}}{r_{j}^{3}}\right)
$$

resonance condition:

$$
\begin{gathered}
\lambda_{0}=\left(\sigma-k_{1} \lambda_{1}-k_{2} \lambda_{2}+\left(k_{0}+k_{1}+k_{2}\right) \varpi_{0}\right) / k_{0} \\
\Longrightarrow \lambda_{0}=\lambda_{0}\left(\sigma, \lambda_{1}, \lambda_{2}, \varpi_{0}\right)
\end{gathered}
$$

Averaging

$$
\mathfrak{R}(\sigma)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \lambda_{1} \int_{0}^{2 \pi} R\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) d \lambda_{2}
$$

- $R=R_{01}\left(\lambda_{0}, \lambda_{1}\right)+R_{02}\left(\lambda_{0}, \lambda_{2}\right)$, both independent of $\sigma!$!
- we cannot calculate $R_{01}+R_{02}$ using the unperturbed Keplerian positions

The idea

We adopt the following scheme:

$$
R\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \simeq R_{u}+\Delta R
$$

- R_{u} is R calculated at the unperturbed positions of the three bodies (useless!)
- ΔR stands from the variation in R_{u} generated by the perturbed displacements of the three bodies in a small interval Δt.

Method

Then, being in a resonant configuration

SUN

and these Δ generate the ΔR

Approximate mean resonant disturbing function $\rho(\sigma)$

The integral of $R_{u}=R_{01}+R_{02}$ is independent of σ, then we only need to calculate $\rho(\sigma)$ defined by

$$
\rho(\sigma)=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} d \lambda_{1} \int_{0}^{2 \pi} \Delta R d \lambda_{2}
$$

always satisfying the resonant condition $\lambda_{0}\left(\sigma, \lambda_{1}, \lambda_{2}, \varpi_{0}\right)$.

Method

For a given resonance:

- consider a large sample of configurations verifying the resonant condition ($\sigma=$ constant)
- calculate the mutual perturbations $\Delta r_{0}, \Delta r_{1}, \Delta r_{2}$
- calculate the effect ΔR due to $\left(\Delta r_{0}, \Delta r_{1}, \Delta r_{2}\right)$
- integrate all ΔR and obtain $\rho(\sigma)$
- repeat for several $\sigma \in(0,360)$

Disturbing function $\sim \rho(\sigma)$

$1-3 \mathrm{~J}+1 \mathrm{~S}, \mathrm{e}=0.01$

- large variations of ρ with σ is indicative of a strong resonance
- small variations of ρ with σ is indicative of a weak resonance
- an extreme of $\rho(\sigma)$ at some σ means there is an equilibrium point

Density of resonances versus density of asteroids

