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 Asteroseismology Asteroseismology

⇒ Information obtained from the stars:
spectra and luminosity
⇒ Luminosity is not constant: stars are
pulsating
⇒ Detection precise enough to observe
the presence of planets
⇒ Fourier transform: oscillation spectrum
⇒ Star models: oscillation modes are
inertial (Coriolis force), gravitational or
acoustic
⇒ Focus of this talk: acoustic waves
⇒ New observations: space missions
Corot, Kepler
⇒ unprecedented precision
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 Slowly rotating stars (e.g. the sun) 
Slowly rotating stars (e.g. the sun)

⇒Approximate spherical symmetry

→ Asymptotic theory: modes are distributed according to the labelling
(Tassoul 1980, Deubner and Gough 1984, Roxburgh and Vorontsov 2000) :
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⇒ Enables to associate spectra to specific properties of the star interior

⇒ No theory for rapidly rotating stars, not spherically symmetric

Bertrand Georgeot (Quantware) MG 12, July 2009 3 / 15



Rapidly rotating stars 
Rotational e↵ects on stellar structure

Stars with masses M > 2M� are expected to rotate rapidly
(e.g. v ' 150km.s�1 at the surface).
Equilibrium configuration is flattened by the centrifugal
distortion.
Drives circulation currents, turbulence, mass loss (not treated
in this talk) . . .
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 Stellar model and wave equation 
Stellar model and wave equation

Self-gravitating, uniformly rotating, monoatomic gas
(�ad = 5/3), assumed to verify a “polytropic” relation
P

0

= K⇢�
0

, with � = 4/3.

Small adiabatic perturbations. No perturbation of
gravitational potential, no Coriolis force (frequency � 2⌦).

For high-frequencies, frequency � buoyancy frequency, thus
we discard terms corresponding to gravity waves.

Cylindrical symmetry )  =  m exp(im�)

) Helmholtz equation in the meridian plane in �m =
p

r sin ✓. m

�c2
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d2
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�m = !2�m .

cs is the (inhomogeneous) sound velocity, d the distance to the
rotation axis and !c the cut-o↵ frequency of the stellar model.
(Lignières & Georgeot, 2009)



 Model of acoustic waves 
Model of acoustic waves

Numerical solution for the modes:

• self-gravitating uniformly rotating monatomic gas verifying a polytropic
relation (give a reasonably good approximation of the relation between
the pressure and the density in the star)

• Solved numerically, using an iterative scheme (Lignières, Rieutord and
Reese 2006).

• For small rotations: system has spherical symmetry, modes close to
spherical harmonics

• For larger rotations, system has only cylindrical symmetry; the star is
deformed, equatorial radius larger than polar radius.

• We will focus on the properties of observable modes.
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Ray limit of acoustic waves 

⇒ Acoustic ray: trajectory tangent to the wave vector k at the point x -> 
Hamiltonian classical equations of motion (Lighthill 78, Gough 93) 

⇒ Limit of acoustic wave dynamics at high frequency, in the same way as 
classical mechanics is the limit of quantum mechanics for    

     or geometrical optics the limit of optics 

Ray limit of acoustic waves

⇒ Time-harmonic small amplitude perturbations of the star model are
studied, neglecting the Coriolis force, viscosity and non-adiabatic effects.

⇒WKB approximation is used

eikonal equation:

ω2 = ω2
c + c2

s k2 (1)

cs is the sound speed and ωc is the cut-off frequency whose sharp increase in
the outermost layers of the star provokes the back reflection of acoustic
waves.

⇒ Acoustic ray: trajectory tangent to the wave vector k at the point x→
Hamiltonian classical equations of motion with H =

p
c2

s k

2 + ω2
c (Lighthill 78,

Gough 93)

⇒ Limit of acoustic wave dynamics at high frequency, in the same way as
classical mechanics is the limit of quantum mechanics for ~→ 0
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⇒ Luminosity is not constant: stars are
pulsating
⇒ Detection precise enough to observe
the presence of planets
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⇒ New observations: space missions
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Slowly rotating stars (e.g. the sun)

⇒Approximate spherical symmetry

→ Asymptotic theory: modes are distributed according to the labelling
(Tassoul 1980, Deubner and Gough 1984, Roxburgh and Vorontsov 2000) :
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⇒ Enables to associate spectra to specific properties of the star interior

⇒ No theory for rapidly rotating stars, not spherically symmetric
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Ray limit of acoustic waves

⇒ As for many other waves, the propagation of short-wavelength acoustic
waves can be described by rays
eikonal equation:

ω2 = ω2
c + c2s k2 (1)

cs is the sound speed and ωc is the cut-off frequency whose sharp increase in
the outermost layers of the star provokes the back reflection of acoustic
waves.
⇒ Acoustic ray: trajectory tangent to the wave vector k at the point x →
Hamiltonian classical equations of motion (Lighthill 78, Gough 93)
⇒ Should enable to construct acoustic wave dynamics at high frequency, in
the same way as quantum mechanics for ~→ 0 can be built from classical
mechanics
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New types of ray trajectories in rotating stars

Ω = 0
Ω = 0.6ΩK
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Phase space structure

⇒ Poincaré Surfaces of Section give a global view of the ray dynamics properties
⇒ At Ω = 0 the system is integrable (stable and localized trajectories)
⇒ At high rotation, integrable and chaotic zones (mixed systems).

Ω = 0
Ω = 0.6ΩK
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Asymptotic mode classification

⇒ Predictions of the ray-based theory (or quantum chaos theory): modes are
constructed on phase space structures
⇒ Sucessfully confronted with numerically computed modes
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Consequences for spectra

⇒ Prediction (quantum chaos theory): Spectrum should be divided into
well-defined subspectra
⇒ Near-integrable regions produce regular sub-spectra ω = fi(ni , �i ,m)

⇒ The chaotic region produces an irregular sub-spectrum with specific
statistical properties

Frequency sub-spectra of four
classes of modes :
(a) 2-period island modes
(b) chaotic modes
(c) 6-period island modes
(d) some whispering gallery
modes
For sub-spectra (a) and (d), height
of the vertical bar specifies one of
the two quantum numbers.
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Visibility of the modes

• At high rotation, whispering gallery modes are very strongly cancelled
• The (spatially irregular) chaotic modes are weakly cancelled

Frequency spectra with
amplitude given by the
visibility for a star seen
pole-on i = 0 and
equator-on i = π/2:
2-period island modes
(blue), chaotic modes (red),
6-period island modes
(magenta)
⇒ At high rotation, the spectrum is dominated by the 2-period island

modes and chaotic modes
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Regular spectrum: 2-period island modes

⇒ Largest group of
near-integrable modes
⇒ Built around a central
periodic orbit
⇒ Can be built systematically
using parabolic equation
method (Babich)

Example of mode
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Asymptotic formula

Result gives closed formula for 2-period island modes:

ωn,�,m =
1H

γ
ds
c̃s

∑
2π(n +

1
2 ) +

µ
� +

1
2

∂
(2πNr + α)

∏
. (2)

⇒ Equation valid asymptotically for n large and �� n.
⇒ s is the curvilinear coordinate along the central periodic orbit γ
⇒ n and � correspond to the number of nodes in the directions parallel and
transverse to the orbit.
⇒ ωn,�,m essentially described by two quantities, δn = 2πH

γ
ds
c̃s
and δ� = 2πNr+αH

γ
ds
c̃s

(which depend on m)
⇒ The quantities δn and δ� probe the sound velocity along the path of the
periodic orbit and its transverse derivatives.
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Comparison with numerical modes: spectrum

Comparison between actual regularities of regular modes and theoretical predictions
for m = 0 and different values of Ω/ΩK Inset: Same for m = 1.
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Comparison with numerical modes: amplitude
distribution

The same theory enables to construct the amplitude distribution of the modes
in terms of transverse Hermite polynomials modulated by the longitudinal
coordinate.

Amplitude distributions on the equator for a theoretical and a numerical mode.
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⇒ No simple asymptotic formula for chaotic modes
⇒ Conjecture (Bohigas-Giannoni-Schmit): level spacing statistics of chaotic
modes should follow Random Matrix Theory
⇒ Verified by the numerical acoustic stellar modes

Integrated spacing
distribution N(∆) of
chaotic modes (full line).
Dashed line: Random
Matrix Theory
Dotted line: Poisson
distribution typical of
integrable systems.
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Conclusion

• Dynamics of acoustic rays shows a transition from integrable to mixed
system when rotation increases

• For sufficiently large rotation, the spectrum should be divided into
well-defined regular or irregular subsets.

• This picture holds for numerical modes computed from a polytropic star
model.

• The regular and irregular modes have both high visibility.
• First results of COROT: some regularity seems to be detected in δ scuti
stars → more work to connect to observed spectra.

• Identification of the spectra should lead to better understanding of the
star interior.

• Extensions: more refined numerical models, stratification, inertial modes,
etc...
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Oscillation Spectrum of Rapidly Rotating Stars:
Wave Chaos and Regular Modes
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Two scenarios for quantum multifractality breakdown
R. Dubertrand, I. Garćıa-Mata, B. Georgeot, O. Giraud, G. Lemarié, J. Martin

INTRODUCTION
Vortices that develop in a turbulent flow are
similar, regardless of their size. This type of
scale invariant fluctuations are referred to as
multifractal, and they are found in many
different physical contexts.
In the case of quantum systems, multifrac-
tality is very difficult to observe exper-
imentally. We have analyzed how it re-
mains in experimental conditions for systems
such as electrons in a disordered potential or
a pseudo-integrable model intermediate be-
tween chaotic and regular.
Among the multiple theoretical models and numerical simulations we conducted, we found that
the destruction of multifractality by experimental perturbations comes by only two
generic scenarios. In the first case, the fluctuations disappear at large scale, but multifractality
is not affected at sufficiently small scales. In the second case, multifractality is preserved at all
scales, but decreases as the perturbation increases. We conjecture that these two scenarios are
universal.

METHODOLOGY

Box-counting method

Multifractality of quantum wave functions |ψ〉 can be characterized by the box-counting method:

•A system of linear size L is divided into L/" boxes
of size ".

•A coarse-grained measure for each box k is
µk =

∑

i∈k |ψi|2.
•We consider the moments of this distribution
Pq =

∑

k µ
q
k.

•Multifractality is characterized by a power-law be-
havior Pq ∼ ("/L)τq.

•Dq = τq/(q − 1) are the multifractal dimensions.
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Pseudo-integrable model

Our first model consists in a system period-
ically kicked by a discontinuous linear po-
tential

H(t) =
p2

2
− γ{q}

∑

n

δ(t− n)

where {q} means the fractional part of q.

•For rational γ = a/b, it can be described
as pseudointegrable.

•The Floquet states are multifractal
in the momentum basis, consisting in b
strongly fluctuating structures.
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In pseudo-integrable systems, the iterates of one point
accumulate inside surfaces which are of arbitrarily high
genus, different from the integrable case where the dy-
namics takes place on tori of genus one.

Anderson model

Our second model is the 3D Anderson model, a tight-binding model of electrons with on-site
energy εi uniformly distributed in [−W/2,W/2]:

H =
∑

i

εi|i〉〈i| +
∑

〈i,j〉

|i〉〈j| .

For this model, it is known that a metal-insulator transition takes place at a disorder value
Wc ≈ 16.5 in the band center. At this critical value, wave functions are known to
display multifractality.

FIRST SCENARIO

Multifractality vs potential smoothing

In many experimental situations, the singularity of the first model will be smoothed.
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•We model the smoothing by an interpolating polynomial over [1− ε, 1].

•The power-law behavior Pq ∼ ("/L)Dq(q−1) holds only for "' ξ(ε).

FIRST SCENARIO

Scaling of local multifractal dimensions

•We define the local multifractal dimensions

D̃q(", ε) =
1

q − 1

d lnPq

d ln "
.

•The data follow the scaling behavior:

D̃q(", ε) = Gq

(
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)

with the scaling parameter ξ(ε) ∝ ε−1.
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Multifractal metal/insulator
In the case of Anderson-like transitions:

• ξ(W ) is the localization length in the insulating phase,

• ξ(W ) is the correlation length in the metallic phase.

⇒ The multifractality away from criticality
survives at a sufficiently small scale.

SECOND SCENARIO

Multifractality vs gamma

A natural perturbation of the pseudo-integrable model is
to slightly change the value of γ close to a rational value.

•R2(r) = L2〈|ψi|2|ψi+r|2〉 behaves as a power law
R2(r) ∼ rD2−1 in the same range of r for different γ.

•Around γ = 1/b, the multifractal dimensions Dq follow:

Dq , 1− qb

[

L(γ − γk)

(kb− s)

]2

,

where γk = 1/b + (k − s/b)/L are the local extrema,
s = L mod b, and k = 0,±1,±2, . . . .

⇒The multifractality decreases without any char-
acteristic length.
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Change of basis

Multifractal properties depend on the basis choice.

•For the pseudo-integrable model, we define the basis
change by Ũ = eiεH, whereH is a GOE RandomMatrix.

•For the Anderson model, we use the evolution operator
of the quasiperiodic kicked rotor to ensure a diffusive
dynamics with statistics close to GOE.

⇒ The moments have an algebraic behavior at all
scales.
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For the pseudo-integrable model
multifractality is destroyed for ε ≈ 1√
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L = N = 29 (black circles), 210 (red squares), 211 (green dia-
monds), 212 (blue up triangles), 213 (magenta down triangles).

For the Anderson model
the Thouless time τTh = L2/D is the characteristic time

where ergodicity sets in.
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(dark brown), 6.2 106 (brown), 5.6 104 (grey), 5121.2 (dark purple),
468.5 (cyan), 43.1 (magenta).

CONCLUSION:How quantum multifractality is modified by generic perturbations?

• In the first scenario, a characteristic length appears, which bounds the scale of multifractal fluctuations.

• In the second scenario, multifractality is altered equally at all scales.

R. Dubertrand, I. Garćıa-Mata, B. Georgeot, O. Gi-
raud, G. Lemarié, and J. Martin, “Two Scenarios
for Quantum Multifractality Breakdown”, Phys. Rev.
Lett. 112, 234101 (2014).
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For this model, it is known that a metal-insulator transition takes place at a disorder value
Wc ≈ 16.5 in the band center. At this critical value, wave functions are known to
display multifractality.
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t/τTh

Dq

From top to bottom D1.5, D2 and D4 with size N = 1203. τTh =
1.19 1011 (black), 9.3 109 (red), 8.3 108 (green), 7.5 107(blue), 6.8 106

(dark brown), 6.2 106 (brown), 5.6 104 (grey), 5121.2 (dark purple),
468.5 (cyan), 43.1 (magenta).

CONCLUSION:How quantum multifractality is modified by generic perturbations?

• In the first scenario, a characteristic length appears, which bounds the scale of multifractal fluctuations.

• In the second scenario, multifractality is altered equally at all scales.

R. Dubertrand, I. Garćıa-Mata, B. Georgeot, O. Gi-
raud, G. Lemarié, and J. Martin, “Two Scenarios
for Quantum Multifractality Breakdown”, Phys. Rev.
Lett. 112, 234101 (2014).



 Acoustic ray dynamics Acoustic rays dynamics

• Three degrees of freedom→
six-dimensional phase space

• Lz conserved→ four-dimensional
phase space

• Poincaré Surface of Section close
to the boundary of the star⇒
enables to visualize phase space
(two dimensions only)

• Result: transition from integrability
(Ω = 0) to increasing degree of
chaos for rapid rotation
(KAM-type transition)
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 Poincaré surface of section 
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3.2) and the main features of the generic phase space structure at
high rotation rates (subsection 3.3). The detail of the transition
to chaos as rotation increases is analyzed in subsection 3.4. As
this last subsection makes use of several specific tools and the-
orems of dynamical systems theory, it might be skipped at first
reading.

3.1. Phase space visualization : The Poincaré surface of
section

As shown in subsection 2.4, acoustic rays with a given Lz are
governed by a Hamiltonian with two degrees of freedomHr. The
associated phase space is therefore four-dimensional and diffi-
cult to visualize. A PSS is constructed by computing the inter-
section of the phase space trajectories with a chosen (2N − 1)-
dimensional surface, where N is the number of degrees of free-
dom of the system. If H is time-independent, then energy con-
servation implies that phase space trajectories stay on a (2N−1)-
dimensional surface. The PSS is thus a (2N−2)-dimensional sur-
face in general and a 2-dimensional surface in the present case.

Fig. 1. (Color online) Intersection of an outgoing acoustic ray
(red/arrow headed) with the r = rp(θ) curve (magenta/thick).
The point on the associated PSS is specified by the colatitude
θ and the scaled latitudinal wavenumber component kθ/ω at the
intersection.

Different choices are possible for the PSS although some
conditions are required to obtain a good description of the dy-
namics (see for example Ott, 1993). First, in order to provide a
complete view of phase space, the PSS must be intersected by
all phase space trajectories. Here we chose the curve rp(θ) =
rs(θ) − d situated at a fixed radial distance d from the stellar sur-
face rs(θ) displayed on Fig. 1. As shown in Appendix B.1 for
the non-rotating case, the distance d can be chosen such that all
relevant trajectories intersect this curve. The second condition is
that, given a point on the PSS, the next point on the PSS has to
be uniquely determined. This is ensured by counting the inter-
section with rp(θ) = rs(θ) − d only when the trajectory comes

from on side of the r = rp(θ) curve (here we consider the trajec-
tories coming from the inner side). Finally, the coordinate sys-
tem used to display the PSS is chosen in order that any surface
of the PSS is conserved by the dynamics in the same way as
four-dimensional volumes are preserved in phase space. The co-
ordinates [θ, k̃θ] where k̃θ is the latitudinal component of k̃ in the
natural basis (Eζ , Eθ, Eφ) associated with the coordinate system
[ζ = rs(θ) − r, θ, φ] fulfill this condition (as shown in Appendix
B.2).

PSS have been obtained by following many trajectories of
different initial conditions. The number of trajectories together
with the time during which they are computed determine the
resolution by which the phase space is investigated. In princi-
ple, we should display PSS computed for different values of the
frequency ω. However, as ω is varied in the range of frequency
here considered, we found that the PSS remained practically un-
changed. As discussed in subsection 2.4, this stems from the
fact that the dynamics of the frequency-scaled wavevector k/ω
is weakly dependent on ω in this frequency range.

3.2. The non-rotating case Ω = 0

The PSS at Ω = 0 is described in this subsection. It will serve
as a reference to investigate the evolution of the dynamics with
rotation. Due to spherical symmetry, the norm of the angular
momentum with respect to the star center

L̃ =

√

k̃2θ +
(

L̃z
sin θ

)2

(20)

is a conserved quantity. It follows that the intersection of any
trajectory with the PSS belongs to a curve of the form:

k̃2θ = L̃
2 −

(

L̃z
sin θ

)2

(21)

For L̃z = 0, these are the two straight lines k̃θ = ±L̃ (see Fig. 3)
while Eq. (21) yields a closed curve for L̃z ! 0 the trajectories
being constrained to latitudes smaller than arcsin(|L̃z|/L̃) (see
Fig. 5). This curve varies from a near rectangle to an ellipse as
L̃z grows from 0+ to L̃.

The simplicity of the PSS reflects the fact that the system
is integrable ((20) indeed provides the second invariant (in ad-
dition to Hr) of the reduced two-degree-of-freedom dynamical
system). Every integrable system is structured in N-dimensional
surfaces which are associated with specific values of the N con-
stants of motion. This means that any trajectory is constrained to
stay forever on one of these surfaces. They are called invariant
tori because they are invariant through the dynamics and they
have a torus-like topology. As we shall verify in the following,
they play a crucial role in the transition to chaos as well as in
the modes construction. The PSS at Ω = 0 actually visualize the
intersection of these tori with the r = rp surface.

Importantly, the invariant tori can be of two different types
which determine their fate once the rotation is increased.
Rational (or resonant) tori are such that all trajectories on the
torus are periodic orbits (that is trajectories that close on them-
selves in phase space). In contrast, irrational tori are such that
any trajectory densely covers the whole torus.

3.3. Phase space structure at high rotation rates

The main features of the phase space at high rotation rates are
shown in Fig. 2 where the PSS at Ω = 0.59ΩK is displayed



 Phase space at high rotation Phase space at high rotation

• Phase space displays integrable and chaotic zones (mixed systems).
• Integrable zones: two-period islands, (blue), six-period islands (pink),

whispering gallery rays (green). Trajectories are stable and organized in
low-dimensional tori

• chaotic zones (red): trajectories are unstable and ergodic.
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 Comparison with acoustic modes 
Comparison with acoustic modes

⇒ High rotation: mixed systems: Percival, Berry-Robnik: modes should
asymptotically be associated with different phase space regions
⇒ Phase space picture of the modes: Husimi distribution
H(s0, k0) = |

R
Φ(s) exp(−(s − s0)2/2∆) exp(ik0s)ds|2

⇒ Enables to plot a representation of the modes in phase space, in order to
associate them with specific regions in phase space
⇒ Result: Numerically computed modes fulfill the conjecture

Four modes and their phase
space representation :
(a) a 2-period island mode
(blue)
(b) a chaotic mode (red)
(c) a 6-period island mode
(magenta)
(d) a whispering gallery mode
(green).

Bertrand Georgeot (Quantware) MG 12, July 2009 8 / 15



 Consequences for spectra 
Consequences for spectra

⇒ Slow rotation: integrable system→ EBK theory gives closed formulas for
the frequencies (cf supra)

⇒ Moderate or high rotation: not integrable any more; should use the tools
ofquantum chaos

⇒ Prediction: Spectrum should be divided into well-defined subspectra

Frequency sub-spectra of four
classes of modes :
(a) 2-period island modes
(b) chaotic modes
(c) 6-period island modes
(d) some whispering gallery
modes
For sub-spectra (a) and (d),
height of the vertical bar
specifies one of the two
quantum numbers.
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 Regular spectrum: 2-period island 
modes 
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Regular modes in rotating stars
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Despite more and more observational data, stellar acoustic oscillation modes are not well under-
stood as soon as rotation cannot be treated perturbatively. In a way similar to semiclassical theory
in quantum physics, we use acoustic ray dynamics to build an asymptotic theory for the subset of
regular modes which are the easiest to observe and identify. Comparisons with 2D numerical simula-
tions of oscillations in polytropic stars show that both the frequency and amplitude distributions of
these modes can accurately be described by an asymptotic theory for almost all rotation rates. The
spectra are mainly characterized by two quantum numbers; their extraction from observed spectra
should enable one to obtain information about stellar interiors.

PACS numbers: 97.10.Sj, 05.45.Mt, 97.10.Kc

Stars being far-away objects, the types of information
that can be obtained from them are necessarily limited.
One of the most important corresponds to luminosity
variations, which can reflect the passing of a planet or
intrinsic modulations in the light emitted by the star. In
particular, the domain of asteroseismology studies stellar
oscillation modes, which create periodic variations of the
luminosity which can be detected [1]. For the Sun, these
modes have been theoretically constructed and success-
fully compared with observations, leading to detailed in-
formation on the Sun’s internal structure. However, this
theory requires the star to be nearly spherically symmet-
ric, an assumption clearly violated for rapidly rotating
stars [2]. With the launch of the recent space missions
COROT and Kepler [1], oscillation spectra of rapidly
rotating stars are observed with great accuracy. This
concerns mainly the stars more massive than the Sun
that belong to the main sequence of the Hertzsprung-
Russel diagram. In order to access their internal struc-
ture through a seismic diagnostic, it is thus essential
to understand the oscillation spectra of rapidly rotating
stars

Accurate computations of acoustic modes fully taking
into account the effects of rotation on stellar oscillations
have only recently been performed for rotating stars [3]
(an example is shown in Fig. 1). Such stationary pat-
terns of acoustic waves can be described asymptotically
through their short-wavelength limit, in the same way
as classical trajectories can describe quantum or electro-
magnetic waves in this limit [4]. These acoustic rays obey
Hamiltonian equations of motion. In [5], their dynamics
was investigated for a polytropic stellar model, showing
that the tools from the fields of classical and quantum
chaos enable us to understand the behavior of modes in
rapidly rotating stars. Indeed, for increasing rotation
rates, the dynamics undergoes a transition from an inte-

FIG. 1: (Color online) Pressure amplitude P
√

d/ρ0 on a
meridian plane for a polytropic model of stars, with d the
distance to the rotation axis and ρ0 the equilibrium density.
The mode shown corresponds to n = 46, " = 1 and m = 0
at a rotation rate of Ω

ΩK
= 0.783, with ΩK = (GM/R3

eq)
1/2

being the limiting rotation rate for which the centrifugal ac-
celeration equals the gravity at the equator, M the stellar
mass and Req the equatorial radius. Colors/grayness denote
pressure amplitude, from red/gray (maximum positive value)
to blue/black (minimum negative value) through white (zero
value). The thick black line on the right is the central periodic
orbit γ of the island.

grable to a mixed system, where chaotic and stable zones
coexist in phase space. The asymptotic theory built for
slowly rotating stars, which does not take these effects
into account, cannot thus be applied at high rotation
rates. In the latter regime, it was shown that the spec-
trum of acoustic oscillations can be divided into several
subspectra corresponding to regular and chaotic zones in
phase space in a way similar to what happens in quantum
chaos systems [6].

M. Pasek et al.: Regular Oscillation Sub-spectrum of Rapidly Rotating Stars

Fig. 1. (Colour online) Pressure amplitude P
√

d/ρ0 on a merid-
ian plane for a polytropic stellar model, with d the distance to the
rotation axis and ρ0 the equilibrium density. The mode shown
corresponds to n = 50, " = 1 and m = 1 at a rotation rate of
Ω/ΩK = 0.300, where ΩK = (GM/R3eq)1/2 is the limiting rota-
tion rate for which the centrifugal acceleration equals the grav-
ity at the equator, M being the stellar mass and Req the equa-
torial radius. Colors/grayness denote pressure amplitude, from
red/gray (maximumpositive value) to blue/black (minimumneg-
ative value) throughwhite (null value). The thick black line is the
ray γ located in the center of the main stable island.

The generalization of the p-mode asymptotic theory to
rapidly rotating stars is not trivial. Tassoul’s theory requires sep-
aration of variables, which is no longer possible when the star is
flattened by rotation. For non-separable wave systems, a well-
known technique to obtain eigenmodes is to study the short-
wavelength limit of the propagating waves. This limit gives an
equation for the propagation of rays that is similar to the geo-
metrical optics limit of electromagnetism, or the classical limit
in quantum mechanics. Then, by imposing quantization condi-
tions on the phase of waves propagating on these rays, one ob-
tains the eigenmodes of the wave system. This technique was
first developed in the context of quantum physics, and is often
called semiclassical quantization.

For spherical stars, the ray limit of pressure waves has
been previously used to recover the Tassoul asymptotic formula
from the Einstein-Brillouin-Keller (EBK) quantization of ray
dynamics (Gough 1993). This analytical approach is possible
only when the ray system is integrable. A dynamical system
is said to be integrable when it has as many conserved quan-
tities (energy, angular momentum, etc.) as degrees of freedom
(Ott 2002). In rapidly rotating stars, there are not enough con-
served quantities to ensure integrability of the ray dynamics.
Indeed, in Lignières & Georgeot (2008, 2009), it has been found
that acoustic rays in rotating stars have a very different dynam-
ical behavior depending on their initial conditions in position-
momentum space (the so-called phase space). For a polytropic
stellar model, the numerical integration of the equations for
acoustic rays displayed various types of solutions. Indeed, one
can obtain either stable rays staying on torus-shaped surfaces
in phase space which form structures such as stable islands, or
chaotic rays that are dense and ergodic on a phase space volume
(Ott 2002).

A similar behavior has been found in many systems studied
in the field of theoretical physics known as quantum chaos or

wave chaos (Gutzwiller 1990). This field has among its objec-
tives to analyze quantum (resp. wave) systems whose classical
(resp. short-wavelength) limit is partly or fully chaotic. In this
framework, one can predict the existence of some eigenfunc-
tions (resp. mode amplitudes) and energies (resp. frequencies)
of the quantum (resp. wave) system from the different structures
that are present in the classical system phase space (Percival
1973; Berry & Robnik 1984). In the stellar pulsation setting,
Lignières & Georgeot (2008, 2009) found that the mixed (i.e.
regular and chaotic) character of the acoustic ray dynamics in
rapidly rotating stars results in a classification of p-modes in two
broad families: regular modes either associated with stable is-
lands or whispering gallery zones, and chaotic modes associ-
ated with ergodic regions in phase space. For the regular modes
associated with stable islands, the so-called island modes, it is
known to be possible to obtain approximate analytical solutions
by solving the wave equation in the vicinity of a periodic stable
ray (Babich & Buldyrev 1991). A simple application of such a
method is found in modes of optical resonators, where the peri-
odic stable light ray is a straight line between two reflecting mir-
rors (Kogelnik & Li 1966). These methods have been previously
employed to obtain modes of more complex lasing (Tureci et al.
2002) and electronic (Zalipaev et al. 2008) cavities as well as
quantum chaos systems (Vagov et al. 2009). In this paper, we
apply this approach to rapidly rotating stars.

In the present analysis, we thus construct an asymptotic for-
mula for regularities in the p-mode spectrum of rapidly rotating
stars. Part of the results were already presented in the short com-
munication of Pasek et al. (2011). In the present paper we give a
detailed derivation of these results, specify their domain of valid-
ity, extend them with a study of rotational splittings, and explore
their astrophysical applications.

The paper is organized as follows. In Sect. 2 we present the
wave equation for p-modes in rotating stars and its asymptotic
limit leading to an equation for acoustic rays. In Sect. 3 we
use a stable periodic solution of the ray dynamics to obtain a
semi-analytical formula for the associated p-modes, and to de-
rive a formula for the associated regular frequency spacings. We
then compare the results obtained from the derived formulas for
mode frequencies and spatial distributions with numerical re-
sults (Sect. 4). Finally, we suggest directions on how these re-
sults could be used for the asteroseismic diagnosis of rapidly
rotating stars by discussing the phenomenological implications
of the theory in Sect. 5.

2. P-modes in rotating stars and their asymptotic
limit

In Sect. 2.1 we introduce the wave equation for p-modes in rotat-
ing stars. We then present the asymptotic limit of this equation
in order to obtain an equation for the dynamics of acoustic rays
(Sect. 2.2).

2.1. Pressure modes in rotating stars

We start with the equation for small adiabatic time-harmonic
perturbations of the pressure field in a self-gravitating gas. Since
we are interested in obtaining an asymptotic theory for p-modes
in the high-frequency regime, we use the Cowling approxima-
tion (i.e. we neglect the perturbations of the gravitational po-
tential), an approximation known to be valid for high-frequency
perturbations in non-rotating stars (Aerts et al. 2010). We also
neglect the Coriolis force. Indeed, in the high-frequency regime,

2



Quantization of 2-period island 
modes: method of Babich (1968) 

Presentation of the method

Di↵erent methods for quantizing a stable periodic orbit were
developed by Babich, 1968; Miller, 1975; Voros, 1975.

From integration of the short-wavelength limit equations: the
isolated stable periodic orbit in the main stable island is
known.

The method of Babich searches for a solution of an
approximate wave equation in the close vicinity of this
trajectory.

It yields the mode frequencies and amplitude distributions.

It was applied to light in dielectric cavities and electronic
resonators in a magnetic field.



 Outline of the method 
Main points of the method

The wave equation is written in local coordinates (s, ⇠)
centered on the trajectory.

WKB ansatz: �m(s, ⇠) = exp
⇣
i!

R s ds0

c̃s

⌘
Um(s, ⇠).

Assumption : s = O(1) , ⇠ = O(1/
p

!).

!-expansion.

At the order !, with ⌫ =
p

!⇠ and Vm = Um/
p

c̃s , we obtain:

@2Vm

@⌫2

� K (s)⌫2Vm +
2i

c̃s

@Vm

@s
= 0 ,

with K (s) = 1

c̃s(s)3
@2c̃s
@⇠2

���
⇠=0

.

The terms in ⌫ (transverse deviation) are similar to a
quantum harmonic oscillator.



 Gaussian beam solution 
Gaussian beam solutions

The ground state solution is V 0

m = A(s) exp
⇣
i �(s)

2

⌫2

⌘
, � 2 C.

If we define z(s) and p(s) as � = p/z we obtain a
Hamiltonian system for deviations

d

d⌧

✓
z
p

◆
=

✓
0 c̃2

s

�c̃2

s K 0

◆ ✓
z
p

◆
.

This system being time periodic, we can write
z(⌧ + T�)
p(⌧ + T�)

�
= M


z(⌧)
p(⌧)

�
,

where M is called the monodromy matrix.
If the trajectory is stable then ⇤± = exp(±i↵) where ↵ is the
stability angle.
Higher-order solutions are Hermite-Gauss polynomials

V `
m(s, ⌫) =

✓
z̄

z

◆`/2

H`(
p

Im(�)⌫)
exp

�
i �

2

⌫2

�
p

z
.



 Result: frequency spacings 
Results : Frequency spacings

Quantization condition on the phase yields

!n,`,m

I
ds

c̃s
� ↵ + 2⇡Nr

2
� (↵ + 2⇡Nr )` = 2⇡n + ⇡ .

Formula for regular sub-spectrum in rapidly rotating stars

!n,l ,m = �n(m)n + �`(m)` + �(m) ,

with

�n(m) =
2⇡H

ds
c̃s

, �`(m) =
2⇡Nr + ↵H

ds
c̃s

and �(m) =
�n + �`

2
.

H
ds
c̃s

is the propagation time for a period of the stable orbit.

Nr and ↵ are related to the stability of the periodic orbit.



 Numerical results 
Numerical results

High-frequency modes computed with accurate code based on
spectral methods (Reese et al. 2008).

Polytropic stellar model with � = 4/3.

Individual modes are followed from ⌦/⌦K = 0 to

⌦/⌦K = 0.896 (where ⌦K =
q

GM/R3

eq ).

m = �1, 0, 1 (angular momentum along the rotation axis).

Mode labelling: n , ` are number of nodes in the meridian
plane.





Frequency spacings are computed
as follows:

�n = !n+1,`,m � !n,`,m

�` = !n,`+1,m � !n,`,m .



 Theoretical formula vs numerics 
Semi-analytical formulas compared to numerical results

The semi-analytical regularities and the full computations of
high-frequency p-modes are in good agreement (except at
bifurcation for m = 0).
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 Amplitude distribution of the modes 
Semi-analytical formulas compared to numerical results

We can also check the agreement between mode amplitude
distributions.
There is a good agreement, except when edge e↵ects or
couplings are present.
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Figure: Amplitude distributions on the equator for ⌦/⌦K ' 0.300 (upper
row), and ⌦/⌦K ' 0.707 (lower row).



 Astrophysical applications 
Astrophysical applications

The formula for frequencies relates potential seismic
observables to internal properties of the star (good for
asteroseismology).

�n depends only on the acoustic time along the periodic orbit.
�` depends on the acoustic time and the second derivatives of
the celerity of sound transverse to the trajectory (i.e. stability).

For a given stellar model, the method allows a rapid
computation of asymptotic regularities to help one search for
patterns in numerical or observed spectra.

Computation of mode visibilities.

Predicts avoided crossings at rational values of ↵/⇡ with
rotation as the control parameter.



 Regular spectrum: 6-period island 
modes 

 Regular spectrum: 6-period island modes

In the frequency interval considered, these modes have a similar structure in
the direction transverse to the central orbit and should therefore be associated
with the same � value.

Theoretical formula is thus:

ωn� = n�δ�
n + α� (3)

with

δ�
n =

π
R b’
a’ dσ/cs

(4)

this theoretical value of δ�
n differs by only a few percents from the empirical

determination of δ�
n = 0.186ω0.
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 Chaotic modes 
Chaotic modes in rotating stars

These modes should be visible, and give informations on the
stellar core which is important to infer the age of a star.

Figure: Chaotic mode for m = 0 and ⌦/⌦K ' 0.783.



 Irregular spectrum Irregular spectrum

⇒ No simple asymptotic formula for chaotic modes

⇒ Conjecture (Bohigas-Giannoni-Schmit): level spacing statistics of chaotic
modes should follow Random Matrix Theory

⇒ Verified by the numerical acoustic stellar modes

Integrated spacing
distribution N(∆) of
chaotic modes (full line).

Dashed line: Random
Matrix Theory

Dotted line: Poisson
distribution typical of
integrable systems.
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 Weyl formula Weyl formula

• Weyl, early XXth century: the number of modes in a range of frequency is
proportional to the phase space volume available

• For mixed system: the number of modes in each subspectrum should be
proportional to the phase space volume of the associated region

• Monte-Carlo numerical calculation of four-dimensional trajectories:
predicts the size of each subspectrum for stellar pulsations

• Results: for Ω/ΩK = 0.59, in [9.42ω1, 11.85ω1], predicts 34± 2 modes in
the 2-period island chain, 270± 8 modes outside the whispering gallery
region

• 50 island modes and 276 modes outside the whispering gallery region
obtained using the Husimi phase space representation

• Difference can be attributed to next order in the formula, and modes at
the frontier between zones

• important to interpret observed spectra
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 Visibility of the modes Visibility of the modes

• What is really detected from the earth?
• Only average luminosity over one hemisphere is detected.
• The angle of detection with the rotation axis is not known in general.

Frequency spectra with
amplitude given by the
visibility for a star seen
pole-on i = 0 and
equator-on i = π/2:
2-period island modes
(blue), chaotic modes
(red), 6-period island
modes (magenta)
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 Conclusion 
Conclusion

• Dynamics of acoustic rays shows a transition from integrable to mixed
system when rotation increases

• For sufficiently large rotation, the spectrum should be divided into
well-defined regular or irregular subsets

• This picture holds for numerical modes computed from a realistic star
model, in the frequency range where modes are observable.

• The regular and irregular modes have both high visibility
• First results of COROT show hundreds and sometime thousands of

frequencies; some regularity seems to be detected in δ scuti stars (very
recent)→ more work to connect to observed spectra ( collaboration with
E. Michel, Meudon)

• Identification of the spectra should lead to better understanding of the
star interior.

• Extensions: more refined numerical models, amplitude of the modes,
inertial modes, etc...
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