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1) The first-order result
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Introduction

Escape and dissolution in a star
cluster on a circular Galactic orbit

Escape and dissolution in a star
cluster on an elliptical Galactic orbit

Roundup
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Celestial Mechanics Stellar dynamics

Style Mathematical Physical (theoretical/computational)

Focus x(t), v(t)
Large mass ratio
Resonance

Distribution functions
Comparable masses
Randomness

Additional effects Internal tides
Radiation pressure
Outgassing

External tides
Mass loss
Stellar evolution

Applications Planetary systems
Comets
Asteroids

Galaxies
Star clusters

Celestial mechanics and 
stellar dynamics

● Similarities
– The classical N-body equations

– M. Hénon

● Differences of emphasis
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Globular 
star 
clusters

● N ~ 105 – 106

● Age ~ 1010 yr
● Galactic orbital 

period ~ 108 yr

Messier 4 (ESO)
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Dynamics of globular star clusters
● Potential approximately spherical
● Stellar orbits resemble rosettes
● constant energy E and angular 

momentum J
● (radial) period (~ “crossing time”) ~ 

106 yr
● E, J evolve by random walk on time 

scale of the “relaxation time” ~ 109 yr
● relaxation time ≃         x crossing time
● external potential due to the Galaxy

                         

N = 256

N = 1000

0.1N
ln N

Simulations with starlab
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Equations of motion (circular Galactic orbit) 

where 
● ω(R) is angular velocity of the cluster

at Galactocentric distance R
● U is potential due to cluster stars

If the Galaxy and cluster are represented by point masses, in appropriate units these are 
the equations of Hill’s problem
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Escape from a cluster in the tidal field
● Relaxation (cumulative effect of gentle two-body 

encounters) changes energy of stars

● Therefore time scale to achieve escape energy is the 
relaxation time tr ≃         x crossing time (tcr)

0.1N
ln N

Baumgardt 2001

● But N-body simulations show 
that the time scale for half the 
stars to escape is ≃ t

r

3/4  t
cr

1/4

● Baumgardt attributed this 
result to a population of
“potential escapers”, i.e. stars
which can remain inside the
cluster, above the escape
energy, without escaping.
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The possibility of potential escapers

Contours of the effective potential in the x,y plane
in Hill’s problem

Family f of stable periodic orbits of the
planar Hill’s problem, and their
associated quasi-periodic orbits

Axes: abscissa x
          ordinate  Γ (Jacobi integral)

Γ is -2 x energy in the rotating frame
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Family f of periodic orbits

Kate Daniel

● Lagrange points lie on the
pale blue circle (“Jacobi 
radius”)

● Tableau runs from low Γ to
high Γ (high energy to low)

● Jacobi energy is 34/3 = 4.32...
● At high Γ orbits (low energy) 

are small retrograde Keplerian 
motions (perturbed by 
external potential and 
inertial acceleration)

● These move outside the 
Jacobi radius at about Γ = 0

● Below Γ = 0 (high energy) 
the orbits are epicycles in the 
field of the Galaxy, mildly 
perturbed (and stabilised) 
by the cluster potential
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What is an escaper?

Ross+ 1997

Fukushige & H 2000

Daniel+ 2016

● Stable non-escapers can lie at arbitrary 
distances (e.g. family f)

● “Escapers” can recede to arbitrary distance and
return

● The time scale on which escapers leave the 
Jacobi radius depends strongly on energy

● Between the escape energy and zero energy the
maximum radius of non-escapers exceeds the 
Jacobi radius only slightly 
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Three-dimensional potential escapers

Survey for Γ = 3, x-y projection, from  Daniel, H and Varri, submitted
● Note Lidov-Kozai behaviour for high-inclination motions
● Suggests approximate invariants with which to describe domain of 

potential escapers

Retrograde Prograde

–--- Forbidden region ----- 
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Rate of escape of phase  volume
Zero-velocity curve for some Γ<Γ

L

Zero-velocity curve for Γ=Γ
L

¿
¿

∫ ẋ (+ v2
−2/r−3 x2

+z2
¿ dydz d ẋd ẏ d ż

F=∫ ẋδ (Γ+v2
−

2
r
−3 x2

+z2)dy dz d ẋ d ẏ d ż

● Aim to compute flux of phase-space volume across
x = r

J  
on Γ-hypersurface 

● In three dimensions this is

● This can be evaluated for Γ ≃ Γ
J 
after  linearisation near the Lagrange point

● Hence F  (Γ
J
 – Γ)2  for Γ <  Γ

J 
(with explicit constant)

● Similarly evaluate the phase space volume V inside r
J 
per unit  Γ

 
(numerical integration required)

● Hence time scale on which phase volume escapes is V/F ∼ t
cr 

 (Γ
J
 – Γ)-2 

(Fukushige & H 2000)

Movie: Ben Bar-Or
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Derivation of the escape rate
● Evolution of the distribution function of potential escapers evolves by two processes

● Relaxation, which is diffusive, on time scale t
r

● Escape, on time scale  t
cr 

 (Γ
J
 – Γ)-2 

● Describe by a toy model (Baumgardt 2001) 

(derivable from approximating the Fokker-Planck equation of collisional stellar dynamics)
● Obvous scaling  (Γ

J 
-  Γ)4 ~ t

cr
/t

r 
. Hence

● Width of distribution of Γ in the potential escapers scales as  (t
cr
/t

r 
)1/4

● Number of potential escapers scales as N(t
cr
/t

r 
)1/4

● Escape time scale in this range of Γ
J 
-  Γ scales as t

cr 
(t

cr
/t

r 
)-1/2 , = 

 
(t

cr
t
r 
)1/2

● Time for cluster to lose half its stars ~ (t
cr
t
r 
)1/2(t

cr
/t

r 
)-1/4, = t

r 
(t

cr
/t

r 
)1/4

● Same scaling as found by Baumgardt (2001) with N-body simulations

● All these results depend on the assumption that the orbit of the cluster about the Galaxy is
circular

∂ f
∂ t

=
1
tr

∂
2 f

∂Γ
2−

(ΓJ−Γ)2

t cr

f
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The case of an elliptic Galactic orbit
Circular orbit
∝ t

r 

3/4

Elliptic orbit, e = 0.5

∝ N

Baumgardt & Makino 2003

The scaling of the lifetime with N is the same
for an eccentric orbit as for a circular orbit.

But there is no known frame in which the 
equations of motion are autonomous (no 
explicit t-dependence), and no known 
integral of motion analogous to the Jacobi
integral.  Hence no escape energy.

What about Lagrange points?  In the circular
case these are
● equilibria
● critical points of the effective potential
● orbits
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Elliptical case: Lagrange points
● Use rotating coordinates, x-axis always points to centre of Galaxy
● Equations of motion

● where
● R is distance to Galactic centre
● Ω is angular velocity of motion about Galactic centre
● Φ

c
, Φ

g 
are cluster and Galactic potential, respectively

● There are no equilibria, but
● There are periodic solutions which reduce to the 

Lagrange points when eccentricity of Galactic motion  0

Periodic motions for power-law Galactic
potentials with Φ

g 
∝ R-α, α = 1 (innermost)

to α = 0.1 (outermost)
For α = 1 (Keplerian) motion is rectilinear
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Lagrange points in the elliptic Hill problem

● Rectilinear homothetic solutions of any 
eccentricity exist for the elliptic three-body 
problem

● For the elliptic Hill problem two of these 
correspond to the two Lagrange points

● Their existence becomes obvious with the use 
of rotating, pulsating coordinates and a change 
of independent variable (cf. Szebehely 1967 
§10.3 for the restricted problem)
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Equations of motion
● Equations of motion (planar case) 

where 
● ρ = (ξ,η) – pulsating, rotating coordinates
●  independent variable is ϕ, the true anomaly
●  U = - 1/r – 3ξ2/2
● Ω is unit z-vector 
●  Lagrange points at (±3-1/3, 0)
 

STRATEGY: 
● Flux of phase space per unit “energy” at the Lagrange points
● Phase-space volume per unit “energy”
● Hence time scale of escape (as a function of “energy”)
● Model effect of time-dependent external field as an additional
 kind of relaxation 

● Combine with two-body relaxation – effective time of relaxation 
● Combine with escape time to estimate escape rate of stars
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Flux at the Lagrange points
● Shifting origin to the Lagrange point and linearising there,

equations have Hamiltonian form, with Hamiltonian

● To first order in e, the single ϕ-dependent term can be 
removed by canonical transformation, H → H’

● Flux per unit energy exactly as in circular case (to first order 
in e), but
● different independent variable
● different (local) definition of energy H’

● Now attempt to calculate the time scale of escape as
t
e
 = V/F, where F is the flux per unit energy, and V is the 

volume of phase space, inside the cluster, per unit energy
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Phase space volume per unit “energy”
● In the circular case it is straightforward to 

calculate V
● Use Hamiltonian H’ to calculate the phase 

volume per unit H’ in the vicinity of the 
Lagrange points 
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Behaviour before escape
● Numerically computed orbit in the stable 

manifold of one Lagrange point (rotating, non-
pulsating frame, e = 0.01)

● Integration time = 10 Galactic orbits
● Jacobi “integral” J varies because of time-

dependent external field, in addition to two-body
relaxation

● dJ/dt = O(e)

Lagrange
point

●  During time 2π, we assume mean square 
change in J is given by

<(ΔJ)2>/J2 ~ 2π/t
r
 + 2πe2/α    (α = constant)

● effective relaxation time given by
1/t

eff 
~ 1/t

r 
+ e2/α

● transition from relaxation-dominated evolution 
to tidally-dominated evolution as t

r  
increases 

(i.e. as N increases) or as e increases
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N-body results on N-dependence of 
lifetime on an eccentric Galactic orbit 

Interpretation of figure

● figure plots remaining mass f against time
● sharp drops caused by pericentre passage
● at early times mass loss dominated by 

tidal effect
● by f = 0.6 the two largest models still evolve

similarly (tide dominant), two smaller models
strongly affected by two-body relaxation

● by f = 0.1 all models strongly affected by
relaxation
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My problem

Circular case

● Escape requires E > Ecrit

● Time scale of escape 

(= volume of phase space per unit E/flux of phase space per unit E past the Lagrange points)

∝ (E – Ecrit)-2

Elliptical case
● What is the successful route to an analogous 

result?
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My goals

Assume small orbital eccentricity e
● At first order the rate of mass loss is 

independent of e; it equals the rate of mass loss 
on a circular orbit of radius equal to the average 
of apogalactic and perigalactic distance 

● At second order the rate of mass loss depends 
on
– the relative effect of tides and two-body relaxation

– the Galactic gravitational field

Thanks to collaborators Ben Bar-Or, Kate 
Daniel, Anna Lisa Varri
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