
UTINAM
Institut

UTINAM
Institut

Chaotic capture of (dark) matter by binary systems

Guillaume Rollin1, Pierre Haag1, José Lages1, Dima Shepelyansky2

1Equipe PhAs - Physique Théorique et Astrophysique
Institut UTINAM - UMR CNRS 6213

Observatoire de Besançon
Université de Franche-Comté, France

2Laboratoire de Physique Théorique - UMR CNRS 5152
Université Paul Sabatier, Toulouse, France

– Dynamics and chaos in astronomy and physics, Luchon 2016 –

Papers :
J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRAS Letters 430, L25-L29 (2013)
G. Rollin, J. L., D. Shepelyansky, Chaotic enhancement of dark matter density in binary systems, A&A 576, A40 (2015)
P. Haag, G. Rollin, J. L., Symplectic map description of Halley’s comet dynamics, Physics Letters A 379 (2015) 1017-1022



UTINAM
Institut

UTINAM
Institut

(Dark) matter capture – Three-body problem

Possible DMP capture (or comet capture) due to Jupiter and Sun rotations around the SS
barycenter.
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Dark matter capture – Restricted circular three-body problem

Newton’s equations

mDMP � mX � m�

r̈ =
1− mX∥∥r�(t)− r

∥∥3

(
r�(t)− r

)
+

mX∥∥rX(t)− r
∥∥3

(
rX(t)− r

)
G = 1, mX + m� = 1,

∥∥ṙX
∥∥ ' 13km.s−1

= 1,
∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼
mX
m�

∥∥ṙX
∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-
ties

f (v)dv ∼ v2 exp
(
−3v2

/2u2
)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among Galactic
DMPs
Most of the capturable DMPs have close to parabolic ap-
proaching trajectories (E ∼ 0)
Direct simulation of Newton’s equations is difficult : very
elongated ellipses, not many particles can be simulated,
CPU time consuming (Peter 2009)
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Kepler map

x : Jupiter’s phase when particle at pericenter (x = ϕ/2π mod 1)
w : particle energy at apocenter (w = −2E/mDMP)

Symplectic Kepler map

w̄ = w + F(x) = w + W sin(2πx) ← energy change after a kick
x̄ = x + w̄−3/2 ← third Kepler’s law

Map already used in the study of :
I Cometary clouds in Solar systems (Petrosky 1986)
I Chaotic dynamics of Halley’s comet (Chirikov & Vecheslavov 1986)
I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : if the kick function F(x) is known the dynamics of a huge number of particles can
simulated.

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016
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Let’s make a digression ...
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Halley map – Cometary case
Kick functions of SS planets
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Rollin, Haag, J. L., Phys. Lett. A 379 (2015)
1017-1022
Our calculations match direct observation
data and previous numerical data (Yeomans
& Kiang 1981)

F(x1, . . . , x8) '
8∑

i=1

Fi(xi)

Fi(xi) = −2µi

∫ +∞

−∞
∇
(

r · ri

r3
−

1
‖r− ri‖

)
.ṙ dt

Two main contributions
I Direct planetary Keplerian potential
I Rotating gravitational dipole potential

due to the Sun movement around
Solar System barycenter
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Halley map – Cometary case
Renormalized kick function

fi(xi) = Fi(xi)/v2
i /µi

Exponential decay with q for q > 1.5ai
More precisely

fi ' 21/4
π

1/2
(

q
ai

)−1/4

exp

(
−

23/2

3

(
q
ai

)3/2
)

(Heggie 1975, Petrosky 1986, Petrosky & Broucke 1988, Roy & Haddow 2003, Shevchenko 2011,
see also Rollin’s talk yesterday)
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Halley map – Dynamical chaos

Poincaré section
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Symplectic Halley map

x̄ = x + w̄−3/2

w̄ = w + F(x)

Chaotic dynamics of 1P/Halley

“Lifetime” ∼ 107 years
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UTINAM
Institut

UTINAM
Institut

Let’s come back to (dark) matter ...
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Dark matter capture – Dark map

Kick function determination
We determine numerically the kick function for any pa-
rabolic orbit (q, i, ω)

F(x) = Fq,i,ω(x)

By nonlinear fit we obtain analytical functions.

a : Halley’s comet
b : q = 1.5, ω = 0.7, i = 0
c : q = 0.5, ω = 0., i = π/2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016
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Dark matter capture – Dark map

Kick function determination
We determine numerically the kick function for any pa-
rabolic orbit (q, i, ω)

F(x) = Fq,i,ω(x)

By nonlinear fit we obtain analytical functions.

~25%

Chance to be captured with a given
energy (w < 0↔ E > 0)

hq,i,ω(w)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016
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Dark matter – Capture cross section

wcap =
mX
m�

∥∥ṙX
∥∥2 ' 10−3

σp = π
∥∥rX

∥∥2 area enclosed by Jupiter’s orbit
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in agreement with Khriplovich & Shepelyansky 2009

I Predominance of wide encounters as suggested by Peter 2009
I Very small contribution from close encounters invalidating previous numerical results (Gould &

Alam 2001 and Lundberg & Edsjö 2004)
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Dark map – Dark matter capture
Simulation of the (isotropic) injection, the capture and the escape of DMPs during the whole lifetime
of the Solar system.
Injection of Ntot ' 1.5× 1014 DMPs with energy |w| in the range [0,∞] with NH = 4× 109 DMPs in
the Halley’s comet energy interval [0,wH ].

10
5

10
6

10
7

10
8

10
9

10
1

10
2

10
3

10
4

10
5

10
6

10
7

t

N
c
a
p

0 0.05 0.1 0.15 0.2
0

0.5

1

w
x

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

(w
)

10
-4

10
-3

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

w

(w
)

w
-3/2

(w)~alpha centauri

r<100au

Slow

Chaotization

Chaotic

component

Islands

of stability

Last invarian

KAM curve

I Equilibrium reached after a time td ∼ 107yr similar to the diffusive escape time scale of the
Halley’s comet (Chirikov & Vecheslavov 1989) −→ Equilibrium energy distribution ρ(w)

I The dynamics of dark matter particles in the Solar system is essentially chaotic
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Back to real space – Density distribution of captured DMPs

Nowadays equilibrium density distribution ( tS = 4.5× 109yr )
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I The profile of the radial density ρ(r) ∝ dN/dr is similar to those observed for galaxies
where DMP mass is dominant. Indeed ρ(r) is almost flat (increases slowly) right after
Jupiter orbit (r = 1) −→ according to virial theorem the circular velocity of visible matter is
consequently constant as observed e.g. in Rubin 1980
Virial theorem : v2

m ∼
∫ r

0 dr′ρ(r′)/r ∼ ρ(r) ∼ r2 (ρ(r)/r2) ∼
here

r2r−1.53 ∼ r1/2

Ergodicity along radial dynamics : dµ ∼ dN ∼ ρ(r)dr ∼ dt ∼ dr/vr ∼ r1/2dr
Consequently, vm ∝ r0.25 (Dark map) to compare to vm ∝ r0.35 (Rubin 1980)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016
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Back to real space – Density distribution of captured DMPs

Surface density

ρs(z, R) ∝ dN/dzdR
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ρv(x, y, z) ∝ dN/dxdydz
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How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞
0

dv v f (v)σ(v) ≈ 35ρgtSG
∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =
3MX
4πr3
X
≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solar
system, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0
dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 of
the density of actually capturable DMPs.

=⇒

The long range
interaction capture
mechanism is very
efficient for binary
systems (1+2) with

m1 � m2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016
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(Dark) matter capture in binary systems
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