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(Dark) matter capture — Three-body problem

DMP, comet, ...

Ecliptic

Possible DMP capture (or comet capture) due to Jupiter and Sun rotations around the SS
barycenter.
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Dark matter capture — Restricted circular three-body problem

mpmp <K mo, K mey
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Dark matter capture — Restricted circular three-body problem

Newton’s equations mpyp K ma K mey
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Dark matter capture — Restricted circular three-body problem

Newton’s equations mpyp K ma K mey
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Dark matter capture — Restricted circular three-body problem

Newton’s equations mpyp K ma K mey
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Energy change after a passage at perihelion (wide encounter)
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Assuming a Maxwellian distribution of Galactic DMP veloci- \
ties 0%

F(W)dv ~ Vv exp (—3v2/2u2) dv

0.04
with « ~ 220km.s~! ~ 17 (mean DMP velocity) / \
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DMP candidates
for capture
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Dark matter capture — Restricted circular three-body problem

Newton’s equations mpyp K ma K mey
. 1 —mq mo,
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G=1, my +mg =1 [b| =3kms™" =1, |[ryf =1

Energy change after a passage at perihelion (wide encounter)
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©

0.06

Assuming a Maxwellian distribution of Galactic DMP veloci- \
ties 005
F(W)dv ~ Vv exp (—3v2/2u2) dv
0.04
with « ~ 220km.s~! ~ 17 (mean DMP velocity) / \
0.03
As F < u?, not many candidates for capture among Galactic . / \
DMPs
Most of the capturable DMPs have close to parabolic ap- / \
proaching trajectories (E ~ 0) oo \
Direct simulation of Newton’s equations is difficult : very
elongated ellipses, not many particles can be simulated, ° TR P s o

CPU time consuming (Peter 2009)
DMP candidates
for capture
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Kepler map

I/ DMP. comet. ...

w
GED
Ecliptic

x : Jupiter’'s phase when particle at pericenter (x = ¢ /27 mod 1)
w : particle energy at apocenter (w = —2E/mpwmp)
Symplectic Kepler map

wo o= w+F() = w+ Wsin(2mx) < energy change after a kick

¥ x+ w3 + third Kepler's law

Map already used in the study of :
» Cometary clouds in Solar systems (Petrosky 1986)
» Chaotic dynamics of Halley’s comet (Chirikov & Vecheslavov 1986)
» Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : if the kick function F(x) is known the dynamics of a huge number of particles can
simulated. %
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Let's make a digression ...
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Halley map — Cometary case

Kick functions of SS planets
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Rollin, Haag, J. L., Phys. Lett. A 379 (2015)
1017-1022

Our calculations match direct observation
data and previous numerical data (Yeomans
& Kiang 1981)

Uranus (x10°%)
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F(xi,...,x3) >~ ZF;(X;)
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Two main contributions

» Direct planetary Keplerian potential

PIAY 4 » Rotating gravitational dipole potential
NS due to the Sun movement around
0 025 05 075 |1 0 025 05 075 1 Solar System barycente-r
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Halley map — Cometary case
Renormalized kick function

filx) = Fix) IV /i

Exponential decay with ¢ for ¢ > 1.5a;
More precisely

—1/4 23/2 3/2
e (2) e (22 2))
a; 3 a;

(Heggie 1975, Petrosky 1986, Petrosky & Broucke 1988, Roy & Haddow 2003, Shevchenko 2011,

see also Rollin’s talk yesterday) U'FC
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Halley map — Dynamical chaos

Poincaré section
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Symplectic Halley map

= x+w 32

w+ F(x)
Chaotic dynamics of 1P/Halley

5 =
Il

“Lifetime” ~ 107 years




Let's come back to (dark) matter ...
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Dark matter capture — Dark map

Kick function determination
We determine numerically the kick function for any pa-
rabolic orbit (g, i, w)

F(x) = Fy,i,w (%)
By nonlinear fit we obtain analytical functions.
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Dark matter capture — Dark map

0.002 o e
" 5
& 0 I
i Y
R . s
-0.002 Pt
0 0.25 0.5 0.75 1

Kick function determination
We determine numerically the kick function for any pa-
rabolic orbit (g, i, w)

F(x) = Fg,i,w(x)
By nonlinear fit we obtain analytical functions.

Chance to be captured with a given
energy (w < 0 <> E > 0)

hg,iye (W)
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Dark matter — Capture cross section

Weap = ::—7* ||fo ||* =~ 1077 op = |[r || area enclosed by Jupiter's orbit
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w

» Predominance of wide encounters as suggested by Peter 2009

> Very small contribution from close encounters invalidating previous numerical results (Gould &

Alam 2001 and Lundberg & Edsj6 2004) .
@O virc
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Dark map — Dark matter capture

Simulation of the (isotropic) injection, the capture and the escape of DMPs during the whole lifetime
of the Solar system.

Injection of Ny, =~ 1.5 x 10'* DMPs with energy |w| in the range [0, o] with Ny = 4 x 10° DMPs in
the Halley’s comet energy interval [0, wy].
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Slow Chaotic Islands  Last invarian
Chaotization component of stability KAM curve

» Equilibrium reached after a time z; ~ 10”yr similar to the diffusive escape time scale of the
Halley’s comet (Chirikov & Vecheslavov 1989) — Equilibrium energy distribution p(w)

@ O vlrc

» The dynamics of dark matter particles in the Solar system is essentially chaotic
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Back to real space — Density distribution of captured DMPs

Nowadays equilibrium density distribution (75 = 4.5 x 10°yr)
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> The profile of the radial density p(r) o dN/dr is similar to those observed for galaxies
where DMP mass is dominant. Indeed p(r) is almost flat (increases slowly) right after
Jupiter orbit (- = 1) — according to virial theorem the circular velocity of visible matter is
consequently constant as observed e.g. in Rubin 1980

Virial theorem :vfn ~ j;]' dr' p(r')/r ~ p(r) ~ r (p(r)/rz) o~ P25 /2
Ergodicity along radial dynamics : du ~ dN ~ p(r)dr ~ di ~ dr/v, ~ r'/?dr
Consequently, v,, o r*-% (Dark map) to compare to v, oc > (Rubin 1980)

@ O vlrc
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Back to real space — Density distribution of captured DMPs

Surface density
ps(z, R) o< dN /dzdR
where

R= VR Ty

Volume density

pv(x,y,2) o< dN /dxdydz

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016



How much dark matter is present in the Solar system ?
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How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime 75 = 4.5 x 10%yr is
My = png/ dvvf(v)o(v) & 35pytsG ||ray || My /u = 0.9 x 107 Mgy ~ Mg
0

At time 5 the mass of captured DMPs in the Solar system is

Mac = nacMi 2 % 107 Mg within r < 0.5 distancesyn.acentauri
Miooau & MovauMior & 1.3 x 107 7Mg,  within » < 100au

The captured DMP mass in the volume of the Neptune orbit radius is
My ~ ngMyc ~ 0.9 x 107" Mg =~ 1.5 x 10°g
The captured DMP mass in the volume of the Jupiter orbit radius is

Moy = o Mac = 4.6 X 107 Mg ~ 10'g

@ . U'EC
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How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime 75 = 4.5 x 10%yr is
My = png/ dvvf(v)o(v) & 35pytsG ||ray || My /u = 0.9 x 107 Mgy ~ Mg
0

At time 5 the mass of captured DMPs in the Solar system is

Mac = nacMi 2 % 107 Mg within r < 0.5 distancesyn.acentauri
Miooau & MovauMior & 1.3 x 107 7Mg,  within » < 100au

The captured DMP mass in the volume of the Neptune orbit radius is
My = ngMyc = 0.9 x 10"8M® ~ 1.5 x 10"°g
The captured DMP mass in the volume of the Jupiter orbit radius is
Moy = o Mac = 4.6 X 107 Mg ~ 10'g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

3M: . .
=g 13* ~5x 10 Pg/em’ = 1.2 x 10*p, < p, (Galactic DMP density)
T,
%
Globally, not much dark matter captured by the Solar
system, but ...

@ vk
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How much dark matter is present in the Solar system ?
The total mass of DMP passed through the System solar during its lifetime 75 = 4.5 x 10%yr is

My = png/ dvvf(v)o(v) & 35pytsG ||ray || My /u = 0.9 x 107 Mgy ~ Mg
0

At time 5 the mass of captured DMPs in the Solar system is
within r < 0.5 distancesun-o Gentauri

Mac = NacMio & 2 % 107" Mg
within r < 100au

Migoau = MiovauMior = 1.3 X 10_]7M®
The captured DMP mass in the volume of the Neptune orbit radius is
My = ngMyc = 0.9 x IO’ISMQ ~ 1.5 x 10"°g
The captured DMP mass in the volume of the Jupiter orbit radius is
Ma, 2 1m0, Mac ~ 4.6 x 107 Mg =~ 10''g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

3M.
T~ 5 x 107 Pg/em’ & 1.2 x 107*p, < p, (Galactic DMP density)

Py = 47Tr,34_
Globally, not much dark matter captured by the Solar
system, but ... The long range
Let's compare to the capturable DMP density interaction capture
N . s — mechanism is very
Pett = pg/ dvvf(v) = 1.4 x 10" "g/cm’ efficient for binary
0 systems (1+2) with

m121312 . )
@ O vrc

Huge chaotic enhancement ¢ = pa /ponr ~ 4 x 10° of
the density of actually capturable DMPs.
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(Dark) matter capture in binary systems
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G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)
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(Dark) matter capture in binary systems
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chaotic enhancement factor
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G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)
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(Dark) matter capture in binary systems
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(Dark) matter capture in binary systems
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Global
volume density
enhancement
x10*

all the galactic

e.g.
Black hole
+
Star companion
V~c/40

star

(Dark) matter capture in binary systems
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Thank You'!
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