Tales of Hierarchical Three-body

Systems

Gongjie Lit

 Harvard UniversityMain Collaborators: Smadar Naoz (UCLA), Bence Kocsis (IAS/Eotvos) Matt Holman (Harvard), Avi Loeb (Harvard)

Dynamics and Chaos in Astronomy and Physics

HiERARCHICAL THREE-BODY SYSTEMS

- Configuration:

HIERARCHICAL THREE-BODY SYSTEMS

- Configuration:

r_{2}

$$
r_{I} \ll r_{2}
$$

- Hierarchical configurations are COMMON:
- For binaries with periods shorter than io days, $>40 \%$ of them are in systems with multiplicity ≥ 3. (Tokovinin 1997)
- For binaries with period <3 days, $\geq 96 \%$ are in systems with multiplicity ≥ 3. (Tokovinin et al. 2006)
- 282 of the 299 triple systems (-94.3%) are hierarchical. (Eggleton et al. 2007)
- Hierarchical 3-body dynamics gives insight for hierarchical multiple systems.

OUTLINE

- Overview of Hierarchical Three Body Dynamics
- Examples:
- Formation of misaligned hot Jupiters
- Enhancement of tidal disruption rates

CONFIGURATION OF HIERARCHICAL 3-BODY SYSTEM

System is stationary and can be thought of as interaction between two orbital wires (secular approximation):

- Inner wires (I): formed by m_{I} and m_{J}.
- Outer wires (2): m_{2} orbits the center mass of m_{I} and m_{J}. - $\mathcal{I}_{I / 2}$: Specific orbital angular momentum of inner/ outer wire.
i : inclination between the two orbits.

KOZAI-LIDOV MECHANISM

Kozai-Lidov Mechanism
$\left(\mathrm{e}_{2}=\mathrm{o}, \mathrm{m}_{\mathrm{J}} \rightarrow \mathrm{o}\right.$)
(Kozai 1962; Lidov 1962:
Solar system objects)

- Octupole level $\mathrm{O}\left(\left(\mathrm{a}_{\mathrm{I}} / \mathrm{a}_{2}\right)^{3}\right)$ is zero.

- Quadrupole level $\mathrm{O}\left(\left(\mathrm{a}_{1} / \mathrm{a}_{2}\right) 2\right)$:
$\Rightarrow J z=\sqrt{1-e_{1}^{2}} \cos i_{1}$ conserved
(axi-symmetric potential).
$\Rightarrow>$ when $\mathrm{i}>40^{\circ}$, e_{I} and i oscillate with large amplitude.

Example of Kozai-Lidov Oscillation.

OCTUPOLE KOZAI-LIDOV MECHANISM

$e_{2} \neq 0$ (Eccentric Kozai-Lidov

 Mechanism):(e.g., Naoz et al. 2011, 2013, test particle case: Katz et al. 201I, Lithwick of Naoz 201I):

- Jz NOT constant, octupole $\neq 0$.
- when $i>40^{\circ}: e_{I} \rightarrow 1$.
- when $i>40^{\circ}: i$ crosses 90°

Cyan: quadrupole only.
Red: quadrupole + octupole. Naoz et al 2013

OCTUPOLE KOZAI-LIDOV MECHANISM

$e_{2} \neq 0$ (Eccentric Kozai-Lidov Mechanism) or $\mathrm{m}_{\mathrm{J}} \neq \mathrm{o}$:
(e.g., Naoz et al. 201I, 2013, test particle case:

Katz et al. 201I, Litbwick of Naoz 201I):

- Consequence:
- Produces retrograde objects ($i>90^{\circ}$)(e.g., Naoz et al. 20ir)
- Tidal disruption rate enhancement (e.g., Li et al. 2015)

Cyan: quadrupole only.
Red: quadrupole + octupole. Naoz et al 2013

COPLANAR FLIIP

- Starting with $i \approx 0$, $e_{1} \geq 0.6, e_{2} \neq 0$:
$e_{1} \rightarrow \mathrm{I}, i$ flips by $\approx \mathrm{I}^{\circ} \mathrm{o}^{\circ}$ (Liet al. 2014a).
=> Produces counter orbiting objects.
=> Enhance tidal disruption rates (Li et al. 2015).

DIFFERENCES BETTWEEN HIIGH/LOW I FLIP

- Low inclination flip

- For simplicity: take $\mathrm{m}_{\mathrm{j}} \rightarrow \mathrm{O}=>$ outer orbit stationary.
- z direction: angular momentum of the outer orbit.
- 个 : direction of J_{I}.
- $\uparrow: \mathrm{J}_{\mathrm{I}}=>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

DIFFERENCES BETWEEN HIGH/LOW I FLIP

- High inclination flip

- For simplicity: take $\mathrm{m}_{\mathrm{j}} \rightarrow \mathrm{O}=>$ outer orbit stationary.
- z direction: angular momentum of the outer orbit.
- 个 : direction of J_{I}.
- $\uparrow: \mathrm{J}_{\mathrm{I}}=>$ indicates flip.
- Colored ring: inner orbit. Color: mean anomaly.

ANALYTICAL OVERVIEW

- Hamiltonian has two degrees of freedom in test particle limit:

$$
\left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right)
$$

2 conjugate pairs: $\mathrm{J} \& \omega, \mathrm{Jz} \& \Omega$

$$
\mathrm{H}=-\mathrm{F}_{\text {quad }}-\varepsilon \mathrm{F}_{\text {oct }}
$$

hierarchical

$$
\epsilon=\frac{a_{1}}{a_{2}} \frac{e_{2}}{1-e_{2}^{2}}
$$

parameter:

ANALYTICAL OVERVIEW

- Hamiltonian has two degrees of freedom in test particle limit:

$$
\left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right)
$$

2 conjugate pairs: $\mathrm{J} \& \omega, \mathrm{Jz} \& \Omega$
$\mathrm{H}=-\mathrm{F}_{\text {quad }}-\varepsilon \mathrm{F}_{\text {oct }}$

$$
\begin{aligned}
F_{\text {quad }} & =-\left(e_{1}^{2} / 2\right)+\theta^{2}+3 / 2 e_{1}^{2} \theta^{2} \\
& +5 / 2 e_{1}^{2}\left(1-\theta^{2}\right) \cos \left(2 \omega_{1}\right) \\
F_{\text {oct }} & =\frac{5}{16}\left(e_{1}+\left(3 e_{1}^{3}\right) / 4\right) \\
& \times\left(\left(1-11 \theta-5 \theta^{2}+15 \theta^{3}\right) \cos \left(\omega_{1}-\Omega_{1}\right)\right. \\
& \left.+\left(1+11 \theta-5 \theta^{2}-15 \theta^{3}\right) \cos \left(\omega_{1}+\Omega_{1}\right)\right) \\
& -\frac{175}{64} e_{1}^{3}\left(\left(1-\theta-\theta^{2}+\theta^{3}\right) \cos \left(3 \omega_{1}-\Omega_{1}\right)\right. \\
& \left.+\left(1+\theta-\theta^{2}-\theta^{3}\right) \cos \left(3 \omega_{1}+\Omega_{1}\right)\right)
\end{aligned}
$$

Independent of
$\Omega_{\mathrm{I}}, \mathrm{J}_{\mathrm{z}}$ const.

Depend on both
ω_{I} and $\Omega_{\mathrm{I}} \rightarrow$
both J and J_{z} are not const.

CO-PLANAR FLIP CRITERION

- Hamiltonian (at $\mathrm{O}(i))$:
- Evolution of e_{l} only due to octupole terms:
$=>e_{1}$ does not oscillate before flip
- Depend on only J_{I} and $\omega_{\mathrm{I}}=\omega_{\mathrm{I}}+\Omega_{\mathrm{I}}$
=> System is integrable.

$$
\Rightarrow e_{1}(\mathrm{t}) \text { can be solved. }
$$

\Rightarrow The flip timescale can be derived.
=> The flip criterion can be derived.

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

ANALYTICAL RESULTS V.S. NUMERICAL RESULTS

- The flip criterion and the flip timescale from secular integration are consistent with the analytical results.

SURFACE OF SECTION

SURFACE OF SECTION

Quadrupole order dominates Octupole order stronger

resonances resonances

Quadrupole resonances:
centers at low $\mathrm{e}_{\mathrm{I}}, \omega=\pi / 2$ and $3 \pi / 2$ (e.g., Kozai i962)
Octupole resonances:
centers at high $e_{1}, \omega=\pi$ or $\pi / 2$ and $3 \pi / 2$

SURFACE OF SECTION

Low inclination clip regular
High inclination chaotic.

CHARACTERIZATION OF CHAOS

OChaotic when $\mathrm{H} \leq \mathrm{O}$ (correspond to high i cases).

Lyapunov Exponent: $\log (\lambda)$

- In chaotic region, Lyapunov timescale $\mathrm{t}_{\mathrm{L}}=(\mathrm{I} / \lambda) \approx 6 \mathrm{t}_{\mathrm{K}}$.
(t_{K} corresponds to the oscillation timescale of e_{I} and i)

$$
t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}
$$

Examples --- I. Formation of Misaligned Hot Jupiters via Kozai-Lidov Oscillations

Gredit: ESA/C. Carreau

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBITT MISALIGNMENT)

e.g., Ohta et al. 2005, Winn 2006

ROSSITER-MCLAUGHLIN METHOD (SPIN-ORBIT MISALIGNMENT)

OBSERVED SPIN-ORBITT MISALIGNMENT

Solar system spin-orbit misalignment

$$
\lesssim 7^{\circ}
$$

(Lissauer 1993)

CHALLENGES CLASSICAL PLANETARY FORMATION THEORIES

Classical planetary formation theory:
Star and planets form in a molecular cloud, and share the same direction of rotation.

FORMATION OF COUNTER ORBITIING HOT JUPITERS (KL + TIDE)

Coplanar Flip

FORMATION OF COUNTER ORBITING HOT JUPITER (KL + TIDE)

$e_{I} \rightarrow 1$ during the flip
=> $r_{p} \downarrow$, tide dominates.
$\Rightarrow e_{I} \rightarrow \mathrm{O}, a_{I} \downarrow, i, \psi \approx 180^{\circ}$.
Li et al. 2OI4a

DIFFICULTY IN THE FORMATION OF COUNTERORBITTING HOT JUPITERS

Numerical simulations including short range forces.
Most systems are tidally disrupted and a small fraction turn out to be prograde. The formation of counter-orbiting HJs in a very restricted parameter region.

fiducial model

$$
\begin{aligned}
& \mathrm{m}_{2}=0.03 \mathrm{M}_{\odot} \\
& \mathrm{a}_{2, \mathrm{i}}=500 \mathrm{AU} \\
& \mathrm{e}_{2, \mathrm{i}}=0.6 \\
& \mathrm{i}_{12, \mathrm{i}}=6^{\circ} \\
& \mathrm{t}_{\mathrm{v}, \mathrm{p}}=0.03 \mathrm{yr} \\
& \mathrm{f}=2.7 \\
& \quad \mathrm{TD} \\
& \mathrm{NM} \\
& \text { PHJ } \\
& \bullet \text { RHJ } \\
& \square \text { Li et al. }(2014)
\end{aligned}
$$

Xue \& Suto 2016

FORMATION OF MISALIGNED HOT JUPITERS (KL + TIDE) BY POPULATION SYNTHESIS

- 15% of systems produce hot Jupiters
- EKL may account for about 30% of hot Jupiters
(Naoz et al. 20ir)

FORMATION OF MISALIGNED HOT JUPITERS ($\mathbb{K L}$ + TIDE) BY POPULATION SYNTHESIS

Petrovich 2OI5 stellar obliquity ψ, λ [deg]

Population synthesis study of interaction of two giant planets.
=> a different mechanism is needed (Petrovich 2015)

FORMATION OF MISALIGNED HOT JUPITERS ($\mathbb{K} L$ + STELLAR OBLATENESS + TIDE)

Anderson et al. 2016:
$\mathrm{Mp}<3 \mathrm{M}_{\mathrm{J}}$
=> bimodal
$\mathrm{Mp} \sim 5 \mathrm{M}_{\mathrm{J}}$
=> low
misalignment (solar-type stars)
=> higher misalignment (more massive
 stars)

FORMATION OF WARM JUPITERS

EKL produces warm Jupiters (Dawson \& Chiang 2014)

EKL accounts for $<10-20 \%$ of the observed warm Jupiters (Antonini et al. 2016, Petrovich \& Tremaine 2016)

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- SMBHBs originate from mergers between galaxies.

- SMBHBs with mostly -kpc separation have been observed with direct imagine.
(e.g., Woo et al. 2014; Komossa et al. 2013, Fabbiano et al. 201ı, Green et al. 20ı0, Civano et al. 20io, Rodriguez et al. 2006, Komossa et al. 2003, Hutchings \& Neff 1989)

Multicolor image of NGC 6240. Red p soft ($0.5^{-1.5} \mathrm{keV}$), green p medium ($\mathrm{I} .5^{-}$ 5 keV), and blue p hard ($5-8 \mathrm{keV}$) X-ray band. (Komossa et al. 2003)

PERTURBATIONS ON STARS SURROUNDING SMBHB

- Identify SMBHB at -I pc separation by stellar features due to interactions with SMBHB.
(e.g., Chen et al. 2009, 20II, Wegg \& Bode 201ı, Li et al. 2015)

PERTURBATIONS ON STARS SURROUNDING SMBHB

- Identify SMBHB at ${ }^{-1}$ pc separation by stellar features due to interactions with SMBHB.
(e.g., Chen et al. 2009, 2011, Wegg \& Bode 201r, Li et al. 2015)

ENHANCEMENT OF TIDAL DISRUPTION RATES

e_{I}, max determines the closest distance:
$r_{p} \propto\left(I-e_{I}\right)$
$t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-e_{2}^{2}\right)^{3 / 2}$
$e_{\text {max }}$ reaches $\mathrm{I}^{-1 \mathrm{IO}^{-6}}$ over $-30 \mathrm{t}_{\mathrm{K}}$

Starting at $a \sim \mathrm{IO}^{6} \mathrm{R}_{\mathrm{t}}$, it's still possible to be disrupted in $\sim 30 \mathrm{t}_{\mathrm{K}}$!

SUPPRESSION OF EKL

- Eccentricity excitation suppressed when precession timescale < Kozai timescale.

$e_{I}=2 / 3, a_{2}=0.3 \mathrm{pc}, \mathrm{m}_{\mathrm{I}}=\mathrm{I} \mathrm{M}_{\odot}, e_{2}=0.7$.

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- Eccentricity excitation suppressed when precession timescale $<$ Kozai timescale.
- Stars around SMBHB: GR and NT precession.

Due to general relativity Due to stellar system self-gravity

More stars with $\mathrm{t}_{\mathrm{K}}<\mathrm{t}_{\mathrm{GR} / \mathrm{NT}}$ when perturber more massive

SUPPRESSION OF EIKL

EXAMPLES --- 2. EFFECTS ON STARS SURROUNDING SMBHB

- 57/1000 disrupted; 726/1000 scattered.
=> Scattered stars may change stellar density profile of the BHs.
=> Disruption rate can reach
$\sim 10^{-3} / \mathrm{yr}$.

- Example: $m_{l}=10^{7} \mathrm{M} \odot, m_{2}=10^{8} \mathrm{M} \odot, a_{2}$ $=0.5 \mathrm{pc}, e_{2}=0.5$, Run time: 1 Gyr .

EFFECTS OF EKM ON STARS SURROUNDING BBH

- Example: $m_{1}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M}_{\odot}, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$ (Run time: 1Gyr)

TAKE HOME MESSAGES

- Perturbation of the outer object can produce retrograde inner orbit and excite inner orbit eccentricity
- Under tidal dissipation, the perturbation of a farther companion can produce misaligned hot Jupiters
- Perturbation of a SMBH in a SMBHB can enhance the tidal disruption rate of stars to $\mathrm{IO}^{-2-3} / \mathrm{yr}$.

THANK YOU!

(
(

| |
| :--- | :--- |

MORE EXAMPLES OF HIERARCHICAL 3-BODY DYNAMICS

- For stellar systems:

Short Period Binaries

Image credit: NASA/Tod Strohmayer/Dana Berry e.g., Harrington 1969; Mazeh \&o Shabam 1979; Ford et al. 2000; Eggleton \& Kiseleva-Eggleton 200I; Fabrycky \& Tremaine 2007; Shappee \&o Thompson 2013

e.g., Perets \&ّ Fabrycky 2009; Naoz \& Fabrycky 2014

Type Ia Supernova

e.g., Katz \&o Dong 2012; Kushnir et al. 2013

MORE EXAMPLES OF HIIERARCHICAL 3-BODY DYNAMICS

- Black hole systems:

Merger of short period black hole binaries

e.g., Blaes et al. 2002; Miller \& Hamilton 2002; Wen 2003; Bode d Wegg 2014;

EFFECTS OF ERM ON STARS SURROUNDING BBH

- Example: $m_{l}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M} \odot, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$.

Run time: 1 Gyr.

Systematic Study of the Parameter Space

- Identify the resonances and the chaotic region.
- Characterize the parameter space that give rise to the interesting behaviors --- eccentricity excitation and orbital flips.

STARS SURROUNDING SMBHB

- At - Ipc separation it is more difficult to identify SMBHBs. SMBHBs can be observed with photometric or spectral features.
(e.g., Shen et al. 2013, Boroson \& Lauer 2009, Valtonen et al. 2008, Loeb 2007)

Example of multi-epoch spectroscopy (Shen et al. 2013):

active BH dominates the BL features, multi-epoch BL features => binary orbital parameters

SUPPRESSION OF EIKL

- Eccentricity excitation suppressed when precession timescale < Kozai timescale.
$\mathrm{m}_{0}=1 \mathrm{O}^{7} \mathrm{M} \mathrm{M}_{\odot}, \mathrm{m}_{2}=10{ }^{9} \mathrm{M}$

$e_{I}=2 / 3, a_{2}=0.3 \mathrm{pc}, \mathrm{m}_{\mathrm{I}}=\mathrm{I} \mathrm{M}_{\odot}, e_{2}=0.7$.
(Li et al. 2015)

SUPPRESSION OF EIKL

- Eccentricity excitation suppressed when precession timescale < Kozai timescale.

EFFECTS ON STARS SURROUNDING AN IMBH IN GrC

- Example: $m_{l}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

IMBH

EFFECTS ON STARS SURROUNDING AN IMBH IN GC

- Example: $m_{1}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7$ (Run time: 100 Myr)

- 40/1000 disrupted; 500/1000 $=>\sim 50 \%$ stars survived. scattered.
=> Disruption rate can reach $\sim 10^{-4} / \mathrm{yr}$.

EFFECTS OF ERM ON STARS SURROUNDING BBH

- Example: $m_{l}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M} \odot, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$.

Run time: 1 Gyr.

EFFECTS ON STARS SURROUNDING AN IMBH IN

 GC- Example: $m_{1}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (Run time: 100 Myr)

$\operatorname{Cos}(\mathbf{i})$

(Li et al. 2015)

SUPPRESSION OF EIKL

DIFFERENCES BETWEEN HIGH/LOW I FLIP

Low inclination flip

High inclination flip

Low inclination flips:
$e_{\mathrm{I}} \uparrow$ monotonically, inclination stays low before flip.
Flip occurs faster.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Resonances and Chaotic Regions

- The Hamiltonian $\mathrm{H}_{\text {res }}$ takes form of a pendulum.
- Two dynamical regions: libration region and circulation region, separated by separatrix.

Libration

Separatrix
Circulation

Overlap of resonances can cause chaos

Surface of Section

Example of a 2-degree freedom $\mathrm{H}(\mathrm{J}, \omega, \mathrm{Jz}, \Omega)$

(Li et al. 2014b)

- Resonant zones: points fill r -D lines. trajectories are quasi-periodic.
- Chaotic zones: points fill a higher dimension.

Surface of Section

- Surface of section of hierarchical three-body problem in the test particle limit in the $\mathrm{J}-\omega$ Plane.
- $J=\sqrt{1-e_{1}^{2}}$ (specific angular momentum);
ω : argument of periapsis

Li et al. 20I4b

Surface of Section

Resonances exist for all surfaces:

Quadrupole order dominates

Octupole order stronger

Quadrupole resonances:
centers at low $\mathrm{e}_{\mathrm{I}}, \omega=\pi / 2$ and $3 \pi / 2$ (e.g. Kozai 1962)
Octupole resonances:
centers at high $e_{I}, \omega=\pi$ or $\pi / 2$ and $3 \pi / 2$

Surface of Section

- e_{1} excitation $(J \rightarrow 0)$ are caused by octupole resonances.
- Near coplanar flip due to octupole resonances alone.
- High inclination flip due to both quadrupole and octupole order resonances.

EXAMPLES OF HIERARCHICAL 3-BODY DYNAMICS

O Exoplanetary systems:

Eccentric Orbits

e.g., Holman et al. 1997; Ford et al. 2000; Wu \&o Murray 2003;

Exoplanets with large spinorbit misalignment

Image credit: ESO/A. C. Cameron e.g., Fabrycky \& Tremaine 2007; Naoz et al. 2011, 2012; Petrovich 2014; Storch et al. 2014; Anderson et al. 2016

Summary

- Hierarchical Three Body Dynamics:
- Starting with near coplanar configuration, the inner orbit of a hierarchical $3^{-b o d y}$ system can flip by $\sim 180^{\circ}$, and $\mathrm{e}_{\mathrm{I}} \rightarrow \mathrm{I}$.
- This mechanism is regular, and the flip criterion and timescale can be expressed analytically.
- This mechanism can produce counter orbiting hot exoplanets, and can enhance collision/tidal disruption rate.
- Underlying resonances:
- Flips and e_{1} excitations are caused by octupole resonances.
- High inclination flips are chaotic, with Lyapunov timescale - $6 \mathrm{t}_{\mathrm{K}}$.

Summary

- Coplanar flip:
- Starting with near coplanar configuration, the inner orbit of a hierarchical $3^{-b o d y}$ system can flip by $\sim 180^{\circ}$, and $\mathrm{e}_{\mathrm{I}} \rightarrow \mathrm{I}$.
- This mechanism is regular, and the flip criterion and timescale can be expressed analytically.
- This mechanism can produce counter orbiting hot exoplanets, and can enhance collision/tidal disruption rate.
- Characterization of parameter space:
- Near coplanar flip and e_{1} excitations are caused by octupole resonances.
- High inclination flips are chaotic, with Lyapunov timescale - 6tk.

Potential Applications

- Captured stars in BBH systems may affect stellar distribution around the BHs (e.g., Ann-Marie Madigan, Smadar Naoz, Ryan O'Leary).
- Tidal disruption and collision events for planetary systems (e.g., Eugene Chiang, Bekki Dawson, Smadar Naoz).
- Production of supernova (e.g., Rodrigo Fernandez, Boaz Katz, Todd Thompson).
- Other aspects:
- Involving more bodies (e.g., Smadar Naoz, Todd Thompson).
- Obliquity variation of planets.

COHJ Contradict with popular Planets' Formation Theory

- Formation Theory:

- Planet systems form from cloud contraction.
- Spin of the star ends up aligned with the orbit of the planets

Analytical Overview --- Test Particle Limit

- Hamiltonian has two degrees of freedom: isolated 3-body: 6 dof $\xrightarrow{\text { secular }} 4$ dof $\xrightarrow{\text { test-particle }} 2$ dof 2 conjugate pairs: J \& $\omega, \mathrm{Jz} \& \Omega$

$$
\left(J=\sqrt{1-e_{1}^{2}}, \quad J z=\sqrt{1-e_{1}^{2}} \cos i_{1}\right)
$$

ω : orientation in orbital plane.
Ω : orientation in reference plane.

ANALYTICAL OVERVIEW

- Hamiltonian has two degrees of freedom in test particle limit:

$$
\begin{aligned}
& \left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right) \\
& 2 \text { conjugate pairs: } \mathrm{J} \& \omega, \mathrm{~J} z \& \Omega
\end{aligned}
$$

- The Hamiltonian up to the Octupole order:

$$
H=F_{\text {quad }}(J, J z, \omega)+\epsilon F_{\text {oct }}(J, J z, \omega, \Omega)
$$

Quadrupole order: Independent of Ω
=> Jz constant
ϵ : hierarchical parameter:
$\epsilon=\frac{a_{1}}{a_{2}} \frac{e_{2}}{1-e_{2}^{2}}$

Octupole order: Depend on both $\Omega \& \omega=>\mathrm{J}$ and Jz not constant

Analytical Overview

- Hamiltonian (Harrington 1968, 1969; Ford et al., 2000):
- In the octupole order: $\mathrm{H}=-\mathrm{F}_{\text {quad }}{ }^{-\varepsilon} \mathrm{F}_{\text {oct }}, \varepsilon=\left(\mathrm{a}_{\mathrm{I}} / \mathrm{a}_{2}\right) \mathrm{e}_{2} /\left(\mathrm{I}^{-} \mathrm{e}_{2}{ }^{2}\right)$

$$
\begin{aligned}
F_{\text {quad }} & =-\left(e_{1}^{2} / 2\right)+\theta^{2}+3 / 2 e_{1}^{2} \theta^{2} \\
& +5 / 2 e_{1}^{2}\left(1-\theta^{2}\right) \cos \left(2 \omega_{1}\right), \\
F_{\text {oct }} & =\frac{5}{16}\left(e_{1}+\left(3 e_{1}^{3}\right) / 4\right) \\
& \times\left(\left(1-11 \theta-5 \theta^{2}+15 \theta^{3}\right) \cos \left(\omega_{1}-\Omega_{1}\right)\right. \\
& \left.+\left(1+11 \theta-5 \theta^{2}-15 \theta^{3}\right) \cos \left(\omega_{1}+\Omega_{1}\right)\right) \\
& -\frac{175}{64} e_{1}^{3}\left((1 - \theta - \theta ^ { 2 } + \theta ^ { 3 }) \operatorname { c o s } \left(3 \omega_{1}-\Omega_{1}\right.\right. \\
& \left.+\left(1+\theta-\theta^{2}-\theta^{3}\right) \cos \left(3 \omega_{1}+\Omega_{1}\right)\right),
\end{aligned}
$$

- Independent of $\Omega_{\mathrm{r}}, \mathrm{J}_{\mathrm{z}}$ const.
- Depend on both ω_{I} and Ω_{I} \rightarrow both J and J_{z} are not const.

$$
t_{K}=\frac{8}{3} P_{i n} \frac{m_{1}}{m_{2}}\left(\frac{a_{2}}{a_{1}}\right)^{3}\left(1-\epsilon_{2}^{2}\right)^{3 / 2}
$$

Analytical Derivation for Flip Criterion and Timescale

- Hamiltonian (at $\mathrm{O}(\mathrm{i})$):
- Evolution of e_{r} only due to octupole terms:
$\Rightarrow e_{1}$ does not oscillate before flip.
- Depend on only J_{I} and $\omega_{\mathrm{I}}=\omega_{\mathrm{r}}+\Omega_{\mathrm{r}}$
=> System is integrable.
$\Rightarrow e_{I}(t)$ can be solved.
- Flip at $\mathrm{e}_{\mathrm{I}, \max }-\mathrm{I}$
=> The flip timescale can be derived.
- Flip when $\Phi_{\mathrm{r}}=180^{\circ}$
=> The flip criterion can be derived.

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

Analytical Overview

- Hamiltonian has two degrees of freedom:

$$
\left(J=\sqrt{1-e_{1}^{2}}, J z=\sqrt{1-e_{1}^{2}} \cos i_{1}, \omega, \Omega\right)
$$

2 conjugate pairs: $J \& \omega, J z \& \Omega$

- Hamiltonian (Harrington 1968, 1969; Ford et al. 2000): In the octupole order:

Interaction Energy (H) of two orbital wires:

$$
H=F_{\text {quad }}(J, J z, \omega)+\epsilon F_{\text {oct }}(J, J z, \omega, \Omega)
$$

Quadrupole order: Independent of Ω
$\Rightarrow \mathrm{Jz}$ constant

$$
\begin{gathered}
\epsilon: \text { hierarchical } \\
\text { parameter: } \\
\epsilon=\frac{a_{1}}{a_{2}} \frac{e_{2}}{1-e_{2}^{2}}
\end{gathered}
$$

Analytical Der ar

- Hamiltonian (at $O(i))$ depend on only e_{1} and $\varpi_{1}=\omega_{1}+\Omega_{1}$:
- Evolution of e_{I} only due to octupole terms:

$$
\dot{e}_{1}=\frac{5}{8} J_{1}\left(3 J_{1}^{2}-7\right) \varepsilon \sin \left(\varpi_{1}\right) \quad \grave{\Pi}_{1}=J_{1}\left(2+\frac{5\left(9 J_{1}^{2}-13\right) \varepsilon \cos \left(\varpi_{1}\right)}{\sqrt{1-J_{1}^{2}}}\right)
$$

- $\mathrm{e}_{\mathrm{I}}(\mathrm{t})$ can be solved $=>$

The flip criterion and the flip timescale can be derived:

$$
\varepsilon>\frac{8}{5} \frac{1-e_{1}^{2}}{7-e_{1}\left(4+3 e_{1}^{2}\right) \cos \left(\omega_{1}+\Omega_{1}\right)}
$$

DYNAMICS OF HIERARCHICAL THREE-BODY SYSTEMS

Quadrupole resonances:
$i>40^{\circ}: e, i$ oscillations (e.g., Kozai 1962)

Octupole resonances:
$i>40^{\circ}: e \rightarrow 1$, orbit flips (Naoz et al. 2011), flip criterion at $j_{z} \sim 0\left(i \sim 90^{\circ}\right)$ can be obtained (Katz et al. 2011)
$i \sim 0^{\circ}: e \rightarrow 1$, orbit flips over 180°,
dynamics regular, flip criterion and flip timescale can be obtained (Li et al. 2014a)

Li et al. 2014b

FLIIP CRITERION

- Averaging the quadrupole oscillations in limit $j_{z} \sim 0$, Katz et al. 2011 obtain the constant:

$$
f\left(C_{K L}\right)+\epsilon \frac{\cos i_{\text {tot }} \sin \Omega_{1} \sin \omega_{1}-\cos \omega_{1} \cos \Omega_{1}}{\sqrt{1-\sin ^{2}{ }_{1 \text { tot }} \sin ^{2} \omega_{1}}}
$$

Requiring $j_{z}=0$, during the flip:

Analytical Results v.s. Numerical Results

Why do analytical results with low inclination approximation work?
$I C: m_{I}={ }_{I} M_{\odot}, m_{2}=0 . I M_{\odot,} a_{I}=I A U, a_{2}=$ $45.7 A U, \omega_{I}=0^{\circ}, \Omega_{I}=180^{\circ}, i_{I}=5^{\circ}$.

Analytical Results v.s. Numerical Results

Why do analytical results with low inclination approximation work?

Small inclination

 assumption holds for most of the evolution.$$
\begin{aligned}
& I C: m_{I}=I M_{\odot}, m_{\mathcal{F}}=I M_{\mathcal{F},} m_{2}=0.3 M_{\odot}, \omega_{I}=0^{\circ}, \Omega_{I}= \\
& I 80^{\circ}, e_{2}=0.6, a_{I}=4 A U, a_{2}=50 A U, e_{I}=0.8, i=5^{\circ}
\end{aligned}
$$

Examples --- i. Produce Counter Orbiting Hot Jupiters (+ tide)

Question:
Does this mechanism produce a peak at $\psi \approx 180^{\circ}$? No.

Examples --- ı. Produce Counter Orbiting Hot Jupiters (+ tide)

Question: Will planet be tidally disrupted?

Li et al., 2014a

ORIGIN OF SPIN-ORBITT MISALIGNMENT

* Smooth Migration: planets move close due to interaction with proto-planetary disk.

Star tilts through magnetic interaction

> (Lai et al. 2011)
or stellar oscillation effects
(Rogers et al. 2012, 2013)

Disk tilts through inhomogeneous collapse of the molecular cloud
(Bate et al. 2010; Thies et al. 2011; Fielding et al. 2015)
or the torque from nearby stars.
(Tremaine 1989; Batygin 2012; Xiang-Gruess \& Papaloizou 2013)

ORIGIN OF SPIN-ORBITT MISALIGNMENT

OViolent Migration (Dynamical Origin): planets move close due to interactions with companion stars/planets.

Planetary orbit tilts under planet ${ }^{-}$ planet scattering
(e.g., Chatterjee et al. 2008, Petrovich 2014)
or long-term secular dynamical effects between planets or stellar companion.
(e.g., Fabrycky and Tremaine 2007; Nagasawa et al. 2008; Naoz et al. 2011, 2012; Wu and Lithwick 2011; Li et al. 2014; Valsecchi and Rasio
 2014)

Applications --- r. Produce Counter

 Orbiting Hot Jupiters (+ tide)- Hot Jupiters:
- massive exoplanets ($\mathrm{m} \geq \mathrm{m}_{\mathrm{J}}$) with close-in orbits (period: $\mathrm{I}^{-} 4$ day).
- Counter Orbiting Hot Jupiters:
- Hot Jupiters that orbit in exactly the opposite direction to the spin of their host star.
- Disagree with the classical planet formation theory: the orbit aligns with the stellar spin.

Rossiter-McLaughlin Method

http://www.subarutelescope.org/

Take Home Message

- Eccentric Coplanar Kozai Mechanism can flip an eccentric coplanar inner orbit to produce counter orbiting exoplanets

Eccentric inner orbit flips due to eccentric coplanar outer companion

Observational Links to Counter Orbiting Hot Jupiters

- Distribution of sky projected spin-orbit angle (λ) of Hot Jupiters

There are retrograde hot jupiters $\left(\lambda>90^{\circ}\right)$

It is possible to have counter orbiting planets.

Applications --- 2. Effects of EKM of Stars Surrounding BBH

- Tidal disruption rate is highly uncertain:
- It is observed to be $10^{-5}-4 /$ galaxy/yr from a very small sample by Gezari et al. 2008.
- It roughly agrees with theoretical estimates. (e.g. Wang \& Merritt 2004)
- The disruption rate may be greatly enhanced:
- due to non-axial symmetric stellar potential. (Merritt \& Poon 2004)
- due to SMBHB (Ivanov et al. 2005, Wegg \& Bode 20ir, Chen et al. 201I)
- due to recoiled SMBHB (Stone \& Loeb 20ir)

Examples --- 3. Effects of EKM of Stars Surrounding BBH

- Example: $m_{1}=10^{7} \mathrm{M}_{\odot}, m_{2}=10^{8} \mathrm{M} \odot, a_{2}=0.5 \mathrm{pc}, e_{2}=0.5, \alpha=1.75$ (stellar distribution), normalized by $\mathrm{M}-\sigma$ relation. Run time: 1 Gyr .

Examples --- 3. Effects of EKM of Stars Surrounding BBH

- Example: $m_{l}=10^{4} \mathrm{M}_{\odot}, m_{2}=4 \times 10^{6} \mathrm{M}_{\odot}, a_{2}=0.1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (stellar distribution), normalized by M- σ relation. Run time: 100Myr.

(Li, et al.

COMPARISON OF TIMESCALES

COPLANAR HIGH ECCENTRICITY MIGRATION

Population synthesis study. tv=0.ryr

Initial v.s. Final Distribution

- Example: $m_{1}=10^{6} \mathrm{M}_{\circ}, m_{2}=10^{10} \mathrm{M}_{\circ}, a_{2}=1 \mathrm{pc}, e_{2}=0.7, \alpha=1.75$ (stellar distribution), normalized by M- σ relation. Run time: 1 Gyr .

Initial Condition in i

Maximum e_{I} for different H

and ϵ

Maximum e_{I} for low i, high e_{I} case, and high i cases

Surface of Section

Low i

- Trajectories chaotic only for $\mathrm{H}=-0.5,-0.1$ at high ϵ.
- High inclination flips are chaotic.
- Overall evolution of the trajectories: evolution sensitive on the initial angles.

Surface of Section

- Surface of section in the $\mathrm{Jz}-\Omega$ plane
$J z=\sqrt{1-e_{1}^{2}} \cos i_{1} \Omega$: longitude of node
Low i, high e_{r}
High i, low e_{r}

Quadrupol e order dominates

Octupole order dominates

- All features are due to octupole effects.
- Trajectories are chaotic only possible when $\mathrm{H}=-$-0.5, -0.3, -0.I, for high ϵ.

Surface of Section

Low i, high e^{I}

Quadrupol e order dominates

Octupole order dominates

- All features are due to octupole effects.
- Trajectories are chaotic only when $\mathrm{H} \leq 0$.
- Flips are due to octupole resonances.
(Li, et al., 2014 in prep)

Applications --- 2. Tidal Disruption of Stars Surrounding BBH

- SMBHBs originate from mergers between galaxies. Following the merger, the distance of the SMBHB decreases. (Complete numerical simulations: e.g. Khan et al. 2OI2)
- SMBHBs with -kpc separation have been observed with direct imagine.
(e.g. Fabbiano et al. 201r, Green et al. 2010, Civano et al. 2010, Komossa et al. 2003, Hutchings \& Neff 1989)
- At - Ipc separation it is more difficult to identify SMBHBs. SMBHBs have been observed with optical spectra, light variability and radio lines.
(e.g. Boroson \& Lauer 2009, Valtonen et al. 2008, Rodriguez et al. 2006)
- Motivation of tidal disruption of stars by - Ipc SMBHB:

Identify SMBHB at -1 pc separation with tidal disruption rate

Effects on Stars Surrounding BBH

- Dynamics of stars around BH or BBH :
- Secular dynamics introduce instability in eccentric stellar disks around a single BH (e.g. Madigan, Levin \& Hopman 2009)
- Tidal disruption event rate can be enhanced due to BBH and the recoil of BBH (Ivanov et al. 2005, Wegg do Bode 201I, Chen et al. 201I, Stone \& Loeb 201I)
- Relic stellar clusters of recoiled BH may uncover MW formation history (e.g. O'Leary \& Loeb 2009).
- Here we study the effect of EKM to stars surrounding BBH

Effects of EKM on Stars Surrounding BBH

- Study the role of eccentric $\left(\mathbf{e}_{2} \neq 0\right)$ Kozai mechanism in the presence of general relativistic (GR) precession and Newtonian (NT) precession for stars surrounding SMBHB.
- Set the separation of the BBH at $a_{2}=1 p c, e_{2}=0.7$ and assuming $\varrho * \propto a^{-1.75}$, normalized by $\mathrm{M}-\sigma$ relation.
- $\mathrm{N} *$ is the number of stars affected by the eccentric Kozai Mechanism.
(Requirement: $\mathrm{t}_{\mathrm{GR}}<\mathrm{t}_{\text {Kozai }}$, $\left.\mathrm{t}_{\mathrm{NT}}<\mathrm{t}_{\text {Kozai }}, \varepsilon<0.1, a_{l}<\mathrm{r}_{\mathrm{RL}}\right)$.

Effects of EKM on Stars Surrounding BBH

- Example: $m_{l}=10^{6} \mathrm{M}_{\odot}, m_{2}$
$=10^{10} \mathrm{M} \odot, a_{2}=1 \mathrm{pc}, e_{2}=0.7$, Run time: 1 Gyr .
- 14/1000 disrupted; 535/1000 captured. Disruption/capture timescales are short.
\Rightarrow Captured stars may change stellar density profile of the other BH
=> With rapid diffusion, disruption rate $\sim 10^{-3} / \mathrm{yr}$.

(Li, et al., in prep)

