Chaos and fractal structures in the planar restricted three-body problem

Guillaume Rollin, José Lages, Dima Shepelyansky

School for advanced sciences of Luchon
20/09/2016

References :
G. Rollin, Dynamical chaos in the restricted three body problem, Ph.D. thesis, 2015.
G. Rollin, J. Lages, D. L. Shepelyansky, Fractal structures for the Jacobi Hamiltonian of restricted three-body problem, New Astron., 47: 97-104, 2016.
G. Rollin, J. Lages, Chaos border for particle captured by binaries, in prep.

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

The planar restricted three body problem

- In the 19th century: Poincare studied the restricted three body problem.
- The primaries M_{1} and M_{2} which move in the q_{x}, q_{y} plan.
- An object m_{3} of very low mass compared to M_{1} and M_{2}.
- The aim of our study was to explore the proprieties of the trajectory of m_{3}.
- We put our system in the sydodic reference frame Q_{x}, Q_{y}.
- Due to this transformation the hamiltonian of the system becomes autonomous.

H. Poincaré (1854-1912)

The planar restricted three body problem

The system

- The hamiltonian of the system in the synodic reference frame is the following :

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y p_{x}-p_{y} x-\left(\frac{1-\mu}{R_{\mathbf{1}}}+\frac{\mu}{R_{\mathbf{2}}}\right)
$$

- To avoid the numerical problem of the close encounter we have used the Levi-Civita regularization.
- We add an absorbing wall around the system to simulate the ejection of the particles \Rightarrow the system is open!

The algorithm

- Coded in Fortran.
- The regularization is made on the one or other one of both masses.
- Poincare section was made in the x, y space and p_{x}, x space.
- When $t=0, \dot{r}=0$.
- Poincaré section are taken when $\dot{r}=0$ and $\dot{\Phi}<0$ (angular velocity).

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

Results

- Poincaré section in x, y plan.
- Black points are the chaotic trajectories.
- Red star are $M_{1}=1-\mu$, blue star are $M_{\mathbf{2}}=\mu$.
- Red areas are the forbidden zones.
- Blue lines are the invariant KAM curves.
- We see the particles which remain in the system after $t=10$.
- Open system \Rightarrow we clearly see the fractal structures of the strange repeller.

References :

G. Rollin, J. Lages, D. L. Shepelyansky, New Astron., 47: 97-104, 2016
J. Nagler, Phys. Rev. E, 69(066218), 2004. ibid 71(026227), 2005.

Fractal structures

- We have used the "Box-Counting" method.
- We have used this method on a square ring with a square hole at its center.
- Algorithm : We split the 8 squares with different scale $b=1,1 / 2,1 / 4 \ldots$. At each step we obtain $1 / b^{2}$ square with the width $d l=b d l_{0}$.
- The dimension is given by : $D=\frac{\ln \left(N_{b}\right)}{\ln (\mathbf{1} / b)}$.

Fractal structures

- We have used the "Box-Counting" method.
- We have used this method on a square ring with a square hole at its center.
- Algorithm : We split the 8 squares with different scale $b=1,1 / 2,1 / 4 \ldots$. At each step we obtain $1 / b^{2}$ square with the width $d l=b d l_{0}$.
- The dimension is given by : $D=\frac{\ln \left(N_{b}\right)}{\ln (\mathbf{1} / b)}$.

Fractal structures

- We have used the "Box-Counting" method.
- We have used this method on a square ring with a square hole at its center.
- Algorithm : We split the 8 squares with different scale $b=1,1 / 2,1 / 4 \ldots$. At each step we obtain $1 / b^{2}$ square with the width $d l=b d l_{0}$.
- The dimension is given by : $D=\frac{\ln \left(N_{b}\right)}{\ln (\mathbf{1} / b)}$.

Fractal structures

- The fractal dimension is computed for different parameters : μ and E.
- For each panel the fractal dimension is computed for the remaining particles when $t>3, t>10, t>30, t>50$.
- The results are substantially the same and we have found : $D \sim 1.87$. CAUTION: for $t>30$ and $t>50$ the curve seem to have an "inflection" \Rightarrow low number of available points for the analysis.
- Conclusion: The fractal pattern of the strange repeller is done after $t=3$ and will not change any more.
- The fractal dimension of the invariant strange attractor formed with the particles which neither leave the system in the past nor in the future is given by $D_{0}=2(D-1)$, here : $D_{0}=1.74$

References :

G. Rollin, J. Lages, D. L. Shepelyansky, New Astron., 47: 97-104, 2016

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

Survival probability

- Survival probability is computed for different μ.
- The time is counted in number of binary rotation and in number of appearance on the Poincaré section.
- We note two behaviour.
- For the short times \Rightarrow exponential decrease $P(t) \propto e^{-t / t_{s}}$ with $1 / t_{s}=0.13$ (for P vs $n: 1 / \tau_{s}=0.07$).
- For the long times \Rightarrow algebric decrease $P(t) \propto 1 / t^{\beta}$ with $\beta=1.82$ (for P vs $n: \beta=1.49$).
- Exponential : typical behaviour of strange attractor.
- Algebric : typical behavior due to the decrease of the Poincaré recurences probability. $\beta=1.49$ is close to the the value $\beta=1.5$ found usually in symplectic map.

Survival probability for $E=-\mathbf{1 . 5}$, black curve is for $\mu=\mathbf{0 . 3}$, red curve for $\mu=\mathbf{0 . 4}$ and blue curve for $\mu=\mathbf{0 . 5}$.

Survival probability

An algebric decrease :

In green particles positions for $t>\mathbf{1 0 0}$ and $E=-1.5$. a) $\mu=\mathbf{0 . 3}$ b) $\mu=\mathbf{0 . 4}$.

- For $t>100$ particles are sticked around the KAM island.
$-\Rightarrow$ We understand that the probability decrease is no longer exponential.

Survival probability

- Same behaviour as before for the black and red curve.
- New behaviour for the blue curve which is almost only exponential.

Poincaré section for $\mu=\mathbf{0 . 3}$ and $E=\mathbf{1 . 7}$.

- Being close to islands is almost impossible \Rightarrow survival probability is exponential.

Survival probability for $\mu=\mathbf{0 . 3}$, black curve is for $E=-\mathbf{1 . 3}$, red curve for $E=-1.5$ and blue curve for $E=-1.7$.

In real space...

- A part of the spiral structure is preserved in the real space !
- The surface density shape is in agreement with previous results.
$>$ It would be interesting to explore further this kind of work \Rightarrow the structure in spiral resembles that observed in the galaxies.

Density of presence of particles in real space for $t=\mathbf{1 0}$.

References :

G. Rollin, J. Lages, D. L. Shepelyansky, New Astron., 47: 97-104, 2016
G. Rollin, J. Lages, D. L. Shepelyansky, A\&A, 576:A 40, 2015
J. Lages and D. L. Shepelyansky, MNRAS, 430(L25), 2013

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

The Kepler map

- To describe the dynamics of the particles we have used a symplectic map description : the "Kepler Map."
- The Kepler map is described by the following equations :

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} / \mathbf{2}}
\end{aligned}
$$

- w_{n} is the energy of the particle at its perihelion, x_{n} the phase of the binary at the perihelion of the particle, $F\left(x_{n}\right)$ is called the "kick function".
- Originally used to study the quasi-parabolic dynamics of comets.
- The kick function for a binary with identical

Original kick function found by Chirikov and Vesheslavov for the Halley comet and Sun-Jupiter binary.

References:

T. Y. Petrosky, Phys. Letters A, 117(328), 1986.
T. Y. Petrosky and R. Broucke, Celestial Mechanics, 42 :53-79, 1988.
B. V. Chirikov and V. V. Vecheslavov, Astron. Astrophys., 221 :146-154, 1989.
I. I. Shevchenko, The Astrophysical Journal, 799(1):8, 2015.

The kick function

a) Kick function for $\mu=\mathbf{0 . 5}$, in black $q=\mathbf{2 . 2}$, in red $q=\mathbf{2 . 4}$, in blue $q=\mathbf{2 . 6}, b$) Evolution of $F_{\max }$ with q

- We have used the same software as before to compute the amplitude evolution of the kick function with to the periatron distance q.
- The theorical evolution is given by (Shevchenko ${ }^{\prime} 15$) :

$$
F_{\max }=A q^{\mathbf{3} / 4} \exp \left\{\frac{-2^{5 / 2} q^{3 / 2}}{3}\right\}
$$

- The theorical value of A is : $A=2^{11 / 4} \pi^{1 / 2} \simeq 11.9236$
\rightarrow We have found $A \simeq 12.5583 \pm 0.04407$
References:
I. I. Shevchenko, The Astrophysical Journal, 799(1):8, 2015.

Non-symetric kick function

- The kick is non-symetric, how can we explain this fact ?
- Unlike the two body problem with a fixed q, particles which come from the infinity are
- "more attracted" at small q when they feel an decrease of w.
- "less attracted" at small q when they feel an increase of w.
- In conclusion :
- Positive part of the kick function is given by particles with a large q.
- Negative part of the kick function is given by particles with a small q.
- Consequently the kick function is non-symetric.

q vs \times for particles which come from the infinity and which should have a $q_{0}=\mathbf{2 . 2}$ in two body approximation.

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
w_{n+\mathbf{1}} & =w_{n}+F\left(x_{n}\right) \\
x_{n+\mathbf{1}} & =x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} / \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} / \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
& w_{n+\mathbf{1}}=w_{n}+F\left(x_{n}\right) \\
& x_{n+\mathbf{1}}=x_{n}+w_{n+\mathbf{1}}^{-\mathbf{1} \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

Space phase diffusion and chaos border

- The Kepler map mimics the dynamics by an iterative process.

$$
\begin{aligned}
w_{n+\mathbf{1}} & =w_{n}+F\left(x_{n}\right) \\
x_{n+1} & =x_{n}+w_{n+\mathbf{1}}^{-\mathbf{3} \mathbf{2}}
\end{aligned}
$$

- Poincaré Section in phase space :

What about the kick function during the diffusion ?

Dynamics close to $w=0$.

Dynamics close to $w=w_{c h}$.

- Can we think that the kick function is the same during all the studied dynamics?
- The answer is
- YES if μ is small (comets in SS) \Rightarrow kick function remains the same during a long time.
- NO if μ is close to 0.5 .

Kick function evolution with the energetic position of the particles.

Periastron distance evolution

- In the planar restricted three body problem, the Jacobi constant is given by $C=w+2 \ell$ where C is the Jacobi constant, w is the energy, ℓ is the angular momentum.
- Due to the constant C : when one particle undergoes an increment Δw in energy it feels a decrease $\Delta \ell=-\Delta w / 2$ of its angular momentum.
- After n iteration, we have :

$$
\begin{aligned}
w_{n} & =w_{0}+\Delta w \simeq \Delta w \\
\ell_{n} & =\ell_{0}+\Delta \ell=\ell_{0}-\frac{\Delta w}{2}
\end{aligned}
$$

where w_{0} is the first energy of the quasi-parabolic particles (only ones who can be captured) and ℓ_{0} is the first angular momentum.

- In two body approximation we have $q_{n}=\ell_{n}^{2} /\left(1+e_{n}\right)=a_{n}\left(1-e_{n}\right)$ here $a_{n}=1 / w_{n}$ is the semi-major axis of the resulting ellipse and $e_{n}=\sqrt{1-w_{n} \ell_{n}^{2}}$ is its eccentricity.
- So we can write :

$$
q_{n}=\frac{\left(\sqrt{2 q_{0}}-\frac{w_{n}}{2}\right)^{2}}{1+\sqrt{1-w_{n}\left(\sqrt{2 q_{0}}-\frac{w_{n}}{2}\right)^{2}}}
$$

Periastron distance evolution

Evolution of the periastron distance during the diffusion in w

- Black points are the diffusion in w of the periastron distance q for captured particles.
- Blue circles are the average of the w position in a small windows Δw.
- Red dashed line is the theorical evolution q_{n} seen before.

Chaos border and modified Kepler map

- The position of the chaos border can be found with the Chirikov criterion (Chi 79'). For a kick funtion $F(x)=F_{\max } \sin (4 \pi x)$ the chaos border is given by:

$$
w_{c h}=\left(6 \pi F_{m a x}\right)^{2 / 5}
$$

- When the particle rises in energy \Rightarrow the kick decrease \Rightarrow the chaos border decrease.
- The encounter between the particle and the chaos border occurs when w respects the following equation :

$$
A q(w)^{3 / 4} \exp \left\{\frac{-2^{5 / 2} q(w)^{3 / 2}}{3}\right\}-\frac{w^{5 / 2}}{6 \pi}=0
$$

- To mimic the dynamics of one particles when $\mu=0.5$, we propose a modified Kepler map with an other kick function $F(x, w)$:

References:
B. V. Chirikov Physics Letters, 52(5) :263-379, 1979

Modified Kepler map results

- Our Kepler map is in agreement with the integration of motion equations.
- Chaos border is lower with our kick function than with a fixed kick function.

a) "traditional" Kepler map. d) Our Kepler map. g) integration of motion
- The explanation of the small difference of the chaos border level with our Kepler map and the direct simulation is not still totally solved.
- Additional component in the decrease of the kick function?
- The asymmetry of the kick function?

Outline

Introduction

Fractal structures

Survival probability

Chaos border

Conclusion

Conclusion

We have seen that trapped particles in the vicinity of a binary system describe a strange repeller in phase space before their ejection.

- The dimension of the strange repeller is $D_{0}=1.74$.
- The survival probability follow two laws : exponential decrease and algebric decrease.
- The spiral structure leaves traces in the real space.
- Perspective : A comprehensive study of "gravitational billard"

- We have shown that the chaos border in the phase space (w, x) when μ is close to 0.5 moves during the particles dynamics.
- Consequently the diffusive process in phase space is affected.
- Perspective: The trajectories of a large number of particles can be computed in a very simple way for statistical studies.

Thank you for your attention!

