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The planar restricted three body problem

I In the 19th century : Poincaré studied the
restricted three body problem.

I The primaries M1 and M2 which move in the
qx , qy plan.

I An object m3 of very low mass compared to
M1 and M2.

I The aim of our study was to explore the
proprieties of the trajectory of m3.

I We put our system in the sydodic reference
frame Qx ,Qy .

I Due to this transformation the hamiltonian
of the system becomes autonomous.

H. Poincaré (1854-1912)

The planar restricted three body problem
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The system

The system

I The hamiltonian of the system in the synodic reference frame is the following :

H =
1

2

(
p2x + p2y

)
− ypx − py x −

( 1− µ
R1

+
µ

R2

)
I To avoid the numerical problem of the close encounter we have used the Levi-Civita

regularization.

I We add an absorbing wall around the system to simulate the ejection of the particles ⇒ the
system is open !
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The algorithm
I Coded in Fortran.

I The regularization is made on the one or
other one of both masses.

I Poincaré section was made in the x, y space
and px , x space.

I When t = 0, ṙ = 0.

I Poincaré section are taken when ṙ = 0 and
Φ̇ < 0 (angular velocity).

Synodic frame Algorithm
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Results
I Poincaré section in x, y plan.

I Black points are the chaotic
trajectories.

I Red star are M1 = 1− µ, blue
star are M2 = µ.

I Red areas are the forbidden zones.

I Blue lines are the invariant KAM
curves.

I We see the particles which remain
in the system after t = 10.

I Open system ⇒ we clearly see the
fractal structures of the strange
repeller.

a) µ = 0.3, E = −1.5, b) idem with zoom, c) idem with zoom, d)
µ = 0.5, E = −1.5.
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Fractal structures

Fractal analysis for b = 1, dl = 1.3, dl0 = 1.3.

I We have used the “Box-Counting” method.
I We have used this method on a square ring with a square hole at its center.
I Algorithm : We split the 8 squares with different scale b = 1, 1/2, 1/4.... At each step we obtain

1/b2 square with the width dl = bdl0.

I The dimension is given by : D =
ln(Nb)
ln(1/b)

.
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Fractal structures

Fractal analysis for b = 1/2, dl = 0.65, dl0 = 1.3.

I We have used the “Box-Counting” method.
I We have used this method on a square ring with a square hole at its center.
I Algorithm : We split the 8 squares with different scale b = 1, 1/2, 1/4.... At each step we obtain

1/b2 square with the width dl = bdl0.

I The dimension is given by : D =
ln(Nb)
ln(1/b)

.
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Fractal structures

Fractal analysis for b = 1/4, dl = 0.325, dl0 = 1.3.

I We have used the “Box-Counting” method.
I We have used this method on a square ring with a square hole at its center.
I Algorithm : We split the 8 squares with different scale b = 1, 1/2, 1/4.... At each step we obtain

1/b2 square with the width dl = bdl0.

I The dimension is given by : D =
ln(Nb)
ln(1/b)

.
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Fractal structures

I The fractal dimension is computed for
different parameters : µ and E .

I For each panel the fractal dimension is
computed for the remaining particles
when t > 3, t > 10, t > 30, t > 50.

I The results are substantially the same
and we have found : D ∼ 1.87.
CAUTION : for t > 30 and t > 50 the
curve seem to have an “inflection” ⇒
low number of available points for the
analysis.

I Conclusion : The fractal pattern of the
strange repeller is done after t = 3 and
will not change any more.

I The fractal dimension of the invariant
strange attractor formed with the
particles which neither leave the system
in the past nor in the future is given by
D0 = 2 (D − 1) , here : D0 = 1.74

Dimension analysis for Rexit = 10. a) µ = 0.3, E = −1.5, D ' 1.87
(t > 10). b) µ = 0.4, E = −1.5, D '= 1.87 (t > 10). c)

µ = 0.3, E = −1.3, D '= 1.87 (t > 10). d) µ = 0.3, E = −1.7,
D '= 1.83 (t > 10).
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Survival probability
I Survival probability is computed for

different µ.

I The time is counted in number of
binary rotation and in number of
appearance on the Poincaré section.

I We note two behaviour.

I For the short times ⇒
exponential decrease
P(t) ∝ e−t/ts with 1/ts = 0.13
(for P vs n : 1/τs = 0.07).

I For the long times ⇒
algebric decrease
P(t) ∝ 1/tβ with β = 1.82
(for P vs n : β = 1.49).

I Exponential : typical behaviour of
strange attractor.

I Algebric : typical behavior due to the
decrease of the Poincaré recurences
probability. β = 1.49 is close to the the
value β = 1.5 found usually in
symplectic map.

Survival probability for E = −1.5, black curve is for µ = 0.3, red
curve for µ = 0.4 and blue curve for µ = 0.5.
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Survival probability

An algebric decrease :

In green particles positions for t > 100 and E = −1.5. a) µ = 0.3 b) µ = 0.4.

I For t > 100 particles are sticked around the KAM island.

I ⇒ We understand that the probability decrease is no longer exponential.

15/36



Introduction Fractal structures Survival probability Chaos border Conclusion

Survival probability

I Same behaviour as before for the black
and red curve.

I New behaviour for the blue curve which
is almost only exponential.

Poincaré section for µ = 0.3 and E = 1.7.

I Being close to islands is almost
impossible ⇒ survival probability is
exponential. Survival probability for µ = 0.3, black curve is for E = −1.3, red

curve for E = −1.5 and blue curve for E = −1.7.
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In real space...

I A part of the spiral structure is
preserved in the real space !

I The surface density shape is in
agreement with previous results.

I It would be interesting to explore
further this kind of work ⇒ the
structure in spiral resembles that
observed in the galaxies.

Density of presence of particles in real space for t = 10.
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The Kepler map
I To describe the dynamics of the particles we

have used a symplectic map description :
the “Kepler Map.”

I The Kepler map is described by the
following equations :

wn+1 = wn + F (xn)

xn+1 = xn + w
−3/2
n+1

I wn is the energy of the particle at its
perihelion, xn the phase of the binary at the
perihelion of the particle, F (xn) is called the
“kick function”.

I Originally used to study the quasi-parabolic
dynamics of comets.

I The kick function for a binary with identical
masses is F (x) = A sin(4πx).

Original kick function found by Chirikov and Vesheslavov for
the Halley comet and Sun-Jupiter binary.

References :
T. Y. Petrosky, Phys. Letters A, 117(328), 1986.
T. Y. Petrosky and R. Broucke, Celestial Mechanics, 42 :53–79, 1988.
B. V. Chirikov and V. V. Vecheslavov, Astron. Astrophys., 221 :146–154, 1989.
I. I. Shevchenko, The Astrophysical Journal , 799(1):8, 2015.
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The kick function

a) Kick function for µ = 0.5, in black q = 2.2, in red q = 2.4, in blue q = 2.6, b) Evolution of Fmax with q

I We have used the same software as before to compute the amplitude evolution of the kick function with
to the periatron distance q.

I The theorical evolution is given by (Shevchenko ′15) :

Fmax = Aq
3/4 exp


−25/2q3/2

3


I The theorical value of A is : A = 211/4π1/2 ' 11.9236
I We have found A ' 12.5583 ± 0.04407

References :
I. I. Shevchenko, The Astrophysical Journal , 799(1):8, 2015.
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Non-symetric kick function
I The kick is non-symetric, how can we

explain this fact ?

I Unlike the two body problem with a fixed q,

particles which come from the infinity are

I “more attracted” at small q when
they feel an decrease of w .

I “less attracted” at small q when they
feel an increase of w .

I In conclusion :

I Positive part of the kick function is
given by particles with a large q.

I Negative part of the kick function is
given by particles with a small q.

I Consequently the kick function is
non-symetric.

Non-symetric kick function

q vs x for particles which come from the infinity and which
should have a q0 = 2.2 in two body approximation.
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Space phase diffusion and chaos border
I The Kepler map mimics the dynamics by an iterative process.

wn+1 = wn + F (xn)

xn+1 = xn + w
−3/2
n+1

I Poincaré Section in phase space :
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What about the kick function during the diffusion ?

Dynamics close to w = 0.

Dynamics close to w = wch .

I Can we think that the kick function is the same during all the
studied dynamics ?

I The answer is
I YES if µ is small (comets in SS) ⇒ kick function remains

the same during a long time.
I NO if µ is close to 0.5.

Kick function evolution with the energetic position of the particles.
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Periastron distance evolution
I In the planar restricted three body problem, the Jacobi constant is given by C = w + 2` where C

is the Jacobi constant, w is the energy, ` is the angular momentum.

I Due to the constant C : when one particle undergoes an increment ∆w in energy it feels a
decrease ∆` = −∆w/2 of its angular momentum.

I After n iteration, we have :

wn = w0 + ∆w ' ∆w

`n = `0 + ∆` = `0 −
∆w

2

where w0 is the first energy of the quasi-parabolic particles (only ones who can be captured) and
`0 is the first angular momentum.

I In two body approximation we have qn = `2n/(1 + en) = an(1− en) here an = 1/wn is the

semi-major axis of the resulting ellipse and en =
√
1− wn`2n is its eccentricity.

I So we can write :

qn =

(√
2q0 − wn

2

)2
1 +

√
1− wn

(√
2q0 − wn

2

)2
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Periastron distance evolution

Evolution of the periastron distance during the diffusion in w

I Black points are the diffusion in w of the periastron distance q for captured particles.

I Blue circles are the average of the w position in a small windows ∆w .

I Red dashed line is the theorical evolution qn seen before.
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Chaos border and modified Kepler map
I The position of the chaos border can be found with the Chirikov criterion (Chi 79’). For a kick

funtion F (x) = Fmax sin(4πx) the chaos border is given by :

wch = (6πFmax )2/5

I When the particle rises in energy ⇒ the kick decrease ⇒ the chaos border decrease.

I The encounter between the particle and the chaos border occurs when w respects the following
equation :

Aq(w)3/4 exp


−25/2q(w)3/2

3

 −
w5/2

6π
= 0

I To mimic the dynamics of one particles when µ = 0.5, we propose a modified Kepler map with
an other kick function F (x,w) :

F(x, w) = A

∣∣∣ w

2 −
√2q0

∣∣∣3/2(
1 +

√
1 − w

(√2q0 − w

2
)2)3/4 exp


−

25/2
∣∣∣ w

2 −
√2q0

∣∣∣ ( w

2 −
√2q0

)
3
(
1 +

√
1 − w

(√2q0 − w

2
)2)3/2


sin (4πx)

References :
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Modified Kepler map results

I Our Kepler map is in agreement
with the integration of motion
equations.

I Chaos border is lower with our
kick function than with a fixed
kick function.

I The explanation of the small
difference of the chaos border
level with our Kepler map and the
direct simulation is not still totally
solved.

I Additional component in
the decrease of the kick
function ?

I The asymmetry of the kick
function ?

a) “traditional” Kepler map. d) Our Kepler map. g) integration of motion

equations.
Chaos border evolution with q0 the first periastron
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Conclusion
I We have seen that trapped particles in the vicinity of a binary system describe a strange repeller in phase

space before their ejection.

I The dimension of the strange repeller is D0 = 1.74.

I The survival probability follow two laws : exponential decrease and algebric decrease.

I The spiral structure leaves traces in the real space.

I Perspective : A comprehensive study of “gravitational billard”

I We have shown that the chaos border in the phase space (w, x) when µ is close to 0.5 moves during the
particles dynamics.

I Consequently the diffusive process in phase space is affected.

I Perspective : The trajectories of a large number of particles can be computed in a very simple way for
statistical studies.
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Thank you for your attention !
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