Asteroids in three-body mean motion resonances with planets

E.A. Smirnov Pulkovo Observatory, St.-Petersburg, Russia

September 20, 2016

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

tro 0000	Identification 0000	Results and discussion	Conclusions

- An essential role in the asteroidal dynamics is played by the mean motion resonances.
- Two-body planet-asteroid resonances are widely known, due to the Kirkwood gaps.
- Besides, there are so-called *three-body resonances*.
- In the latter case the resonance represents a commensurability between the mean frequencies of the orbital motions of an asteroid and two planets (e.g. Jupiter and Saturn):

Image: A Image: A

Intro	Identification	Results and discussion	Conclusions
00000			

Three-body resonances are the linear combination of the mean frequences of the orbital motion of two planets and an asteroid:

 $m_{\mathrm{P1}}\dot{\lambda}_{\mathrm{P1}} + m_{\mathrm{P2}}\dot{\lambda}_{\mathrm{P2}} + m\dot{\lambda} \approx 0,$

where λ_{P1} , λ_{P2} , λ — derivatives of mean longitudes first and second planet and an asteroid respectively and m_{P1} , m_{P2} , m — are integers.

医子宫医子宫区

The three-body mean motion resonances seem to be the main actors structuring the dynamics in the main asteroid belt.

Nesvorny, Morbidelli, ApJ 116 (1998)

Resonant argument

To identify the resonance a special parameter called "resonant argument" is introduced. It is linear combination of the mean longitudes and the longitudes of periapsis. In planar problem it is defined by the following formula:

 $\sigma = m_{\mathrm{P1}}\lambda_{\mathrm{P1}} + m_{\mathrm{P2}}\lambda_{\mathrm{P2}} + m\lambda + p_{\mathrm{P1}}\varpi_{\mathrm{P1}} + p_{\mathrm{P2}}\varpi_{\mathrm{P2}} + p\varpi,$

where λ_{P1} , λ_{P2} , λ , ϖ_{P1} , ϖ_{P2} , ϖ — mean longitudes and longitudes of periapsis of two planets and an asteroid respectively and m_{P1} , m_{P2} , m, p_{P1} , p_{P2} , p — are integers followed by D'Alembert rule (see Morbidelli, 2002):

$$m_{\rm P1} + m_{\rm P1} + m + p_{\rm P1} + p_{\rm P2} + p = 0.$$

Order of the resonance

Intro

00000

- One more important variable is the resonant order.
- Width of the resonance, corresponding number of sub-resonances depend on this parameter (Nesvorny, Morbidelli, ApJ, 1998).
- The resonant order is given by formula:

$$q=|m_{\mathrm{P1}}+m_{\mathrm{P2}}+m|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Stage 1

Identification matrix

E.A Smirnov. Three-body resonances. Asteroids in three-body mean motion resonances with planets

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Intro	Identification	Results and discussion	Conclusions
00000	○●○○	000000000000000000000000000000000000	
Identification	matrix		

- It consists of two primary columns.
- The first one contains designations of the resonance.
- The second one contains the corresponding resonant values of the semimajor axis.

Table: An extract from the identification matrix

Resonance	$a_{ m res}$ (AU)
5J - 2S - 2	3.1746
4J - 6U - 1	2.4189
$4\mathrm{E}-7\mathrm{M}-1$	2.3641
$3\mathrm{V}-6\mathrm{E}-1$	2.3850
1M - 3J - 1	2.3464

直 ト イヨト イヨト

Stage 2

Dynamical identification

・ロン ・聞と ・ ヨン ・ ヨン

Dynamic	al identification		
00000	0000	000000000000000000000000000000000000000	00
ntro	Identification	Results and discussion	Conclusions

- First of all, each asteroid's orbit from the adopted set of ≈ 460000 objects (thanks to AstDyS) is computed for 10^5 yr (thanks to mercury6 and orbit9). The perturbations from all planets (from Mercury to Neptune) and Pluto are taken into account.
- For each asteroid we find possible set of three-body resonances and calculated related resonant arguments.
- Each argument is then analyzed automatically on the presence of libration/circulation, using the computed trajectory of the object.
- We distinguish two types of resonant libration: pure and transient.

伺下 イヨト イヨト

Identification

Results and discussion

Conclusions 00

Pure resonant asteroid 463 Lola

Figure: Resonant argument and orbital elements of pure resonant asteroid 463 Lola, resonance 4J-2S-1.

Identification

Results and discussion

Conclusions 00

Pure resonant asteroid 2096 Väinö

Figure: Resonant argument and orbital elements of pure resonant asteroid 2096 Väinö, resonance 1M+3J-3.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Identification

Results and discussion

Conclusions 00

Transient resonant asteroid 490 Veritas

Figure: Resonant argument and orbital elements of pure resonant asteroid 490 Veritas, resonance 5J-2S-2.

Identification

Results and discussion

Conclusions

Transient resonant asteroid 192 Nausikaa

Figure: Resonant argument and orbital elements of pure resonant asteroid 192 Nausikaa, resonance 3M-3J-5.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conclusions 00

Top 10 most populated three-body resonances

Resonance	$a_{ m res}$	Total	Pure
4J -6U -1	2.4189	2163	11
5J -2S -2	3.1747	1400	307
3J - 2S - 1	3.0801	1269	251
4J - 2S - 1	2.3981	1234	1051
3J $-1S$ -1	2.7530	1061	397
4J - 3S - 1	2.6235	1008	196
2J + 2S - 1	2.6151	946	46
2J + 4U - 1	2.7765	732	96
2J + 5U - 1	2.6791	732	54
3J - 6U - 1	3.1193	718	121

<ロ> <部> <き> <き> <き> <き</p>

Results and discussion

Conclusions 00

The same, without J-S and J-U

Resonance	$a_{ m res}$	Total	Pure
1V+5S-6	2.4237	670	42
4E - 7M - 1	2.3641	483	123
3V-6E-1	2.3850	450	81
1M-3J -1	2.3464	437	99
1M-2S-2	2.6575	269	31
2M-4J -3	2.5812	235	30
2M-3J-3	2.3965	214	30
1M+6S-3	2.5592	207	25
1M-1S-2	2.5331	196	30
2M-3S-4	2.5934	191	37

Identification

Results and discussion

Asteroids in three-body resonances, statistics I

Planet 1	Planet 2	T+P	% of total	Pure	% of pure
Venus	Earth	1307	0.28	35	2.68
Venus	Mars	349	0.08	14	4.01
Venus	Jupiter	342	0.07	8	2.34
Venus	Saturn	856	0.19	5	0.58
Venus	Uranus	1027	0.22	25	2.43
Earth	Mars	2988	0.65	165	5.52
Earth	Jupiter	570	0.12	33	5.79
Earth	Saturn	239	0.05	3	1.26
Earth	Uranus	1819	0.39	55	3.02
Mars	Jupiter	4714	1.02	288	6.11
Mars	Saturn	3751	0.81	197	5.25
Mars	Uranus	5644	1.22	280	4.96

Identification

Results and discussion

Asteroids in three-body resonances, statistics II

Planet 1	Planet 2	T+P	% of total	Pure	% of pure
Jupiter	Saturn	22102	4.78	1759	7.76
Jupiter	Uranus	21706	4.69	857	3.95
Jupiter	Neptune	11376	2.46%	494	4.34
Saturn	Uranus	2136	0.46	57	2.67
Uranus	Neptune	119	2.41	21	17.65
	Total	81045	17.53%	4295	5 .30%

E.A Smirnov. Three-body resonances. Asteroids in three-body mean motion resonances with planets

イロト イ部ト イモト イモト 三日

Identification 0000 Results and discussion

Conclusions 00

Number of asteroids vs planet

Table: Number of transient plus pure (T+P) three-body resonant asteroids and pure (P) resonant asteroids vs planet involved in the resonance.

Planet	T+P	% of total	Pure	% of pure
Venus	3881	0.84	87	2.24
Earth	6923	1.50	291	4.20
Mars	13446	2.91	944	7.02
Jupiter	49434	10.69	2945	5.96
Saturn	29084	6.29	2021	6.95
Uranus	32332	6.99	1274	3.94

・ 同 ト ・ ヨ ト ・ ヨ ト

ldentification

Results and discussion

Conclusions 00

Number of asteroids vs planet

Figure: Number of resonant asteroids for the planets.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Identification

Results and discussion

Conclusions 00

TNO resonant asteroids

Table: Top five most "populated" resonance with Uranus and Neptune

Re	Resonance <i>a</i> _{res}		T+P	Ρ	
3U	-7N	2	45.1133	12	2
4U	-5N	-5	44.4904	8	0
1U	-6N	7	44.0420	7	0
3U	-3N	-5	44.0558	7	1
2U	-1N	-5	43.6328	6	0

Number of asteroids with semimajor axis in [39.0, 55.0] is equal to 201, number of resonant — 75 (37.31%).

Identification

Results and discussion

Conclusions 00

Distribution of resonant TNO

Identification

Results and discussion

Conclusions 00

Distribution of asteroids in main belt

Identification

Results and discussion

Conclusions

Distribution of resonant asteroids in main belt

▲ □ ▶ ▲ □ ▶ ▲

-

Identification

Results and discussion

Conclusions

Distribution of resonant asteroids in main belt

▲ □ ▶ ▲ □ ▶ ▲

Identification

Results and discussion

Conclusions

Distribution of resonant asteroids in main belt

- 4 同 2 4 日 2 4 日

Identification

Results and discussion

Conclusions

Abundances for pure resonant asteroids

E.A Smirnov. Three-body resonances. Asteroids in three-body mean motion resonances with planets

Identification

Results and discussion

Conclusions

æ

Abundances

E.A Smirnov. Three-body resonances. Asteroids in three-body mean motion resonances with planets

Identification

Results and discussion

Conclusions

Number of asteroids vs order vs planets

Planets	0	1	2	3	4	5	6
V–E	1	82	10	225	580	153	256
V–J	50	71	64	44	14	87	12
V–U	174	346	176	136	81	48	66
E-M	260	316	234	251	892	492	543
E–J	30	145	108	68	108	6	105
E–U	141	319	322	324	299	136	278
M–J	483	929	711	1164	533	668	226
M–S	379	670	727	752	497	462	264
M–U	512	1360	813	894	628	873	564
J–S	2845	5576	2741	4620	2854	1890	1583
J–U	1436	3620	3336	5150	2856	2769	2539
S–U	123	183	161	365	425	496	383
U–N	11	17	30	14	16	13	18

E.A Smirnov. Three-body resonances. Asteroids in three-body mean motion resonances with planets

イロト イポト イヨト イヨト

3

Identification

Results and discussion

Conclusions 00

A few words about automation

- Install software in one command (it doesn't matter what technologies were used);
- distribute software without additional complications;
- deploy application to the remote/local computers and build natively clusters.
- maintain and update application on every node in the cluster.
- safely pass commands to nodes over network.

https://www.docker.com

伺 ト く ヨ ト く ヨ ト

They were right!

The three-body mean motion resonances seem to be the main actors structuring the dynamics in the main asteroid belt.

Nesvorny, Morbidelli, ApJ 116 (1998)

Conclusions

- The fraction of asteroids in three-body resonances (transient plus pure) turns out to be $\approx 17.53\%$ (5.30% of them are pure) of the total studied set of ≈ 460000 asteroids.
- There are number of asteroids in each possible planet configuration.
- Three-body resonances are "more populated" for TNO ($\approx 37\%$ instead of $\approx 18\%$).

伺 と く き と く きょ