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Chaotic orbit determination

What happens if we need to have an accurate quantitative
knowledge of chaotic orbits?

“In fact because of the exponential variety of trajectories which
exists, the rotation state at the midpoint of the interval covered
by the observations, and the principal moments of inertia, are

determined with exponential accuracy.
Thus the knowledge gained from measurements on a

chaotic dynamical system grows exponentially with the
time span covered by the observations.”

Wisdom, J.
Urey Prize Lecture:

Chaotic Dynamics in the Solar System
Icarus 72, 241-275 (1987)
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Standard Map: Definition

The standard map of the pendulum is a conservative discrete
dynamical system, defined on a 2-dimensional torus, which has
both ordered and chaotic orbits.

Sµ(x0, y0) =

{
xk+1 = xk + yk+1
yk+1 = yk − µ sin(xk ).
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The system has more regular
orbits for small µ, and more
chaotic orbits for large µ.
We choose an intermediate
value µ = 0.5, in such a way
that both ordered and chaotic
orbits are present.
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Standard map linearization

The least square parameter estimation process can be
performed by an explicit formula.

• Linearized map:

DS =

(
∂xk+1

xk

∂xk+1
yk

∂yk+1
xk

∂yk+1
yk

)
=

(
1− µ cos(xk ) 1
−µ cos(xk ) 1

)
• Linearized state transition matrix:

Ak =
∂(xk , yk )

∂(x0, y0)
; Ak+1 = DS Ak ; A0 = I

• Variational equation:

∂(xk+1, yk+1)

∂µ
= DS

∂(xk , yk )

∂µ
+
∂S
∂µ

= DS
∂(xk , yk )

∂µ
+

(
− sin(xk )
− sin(xk )

)
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Standard map orbit determination I

Observations process

• Both coordinates x and y are observed at each iteration,
and the observations are Gaussian random variables
with mean xk (yk , respectively) and standard deviation σ.

Residuals

• The residuals contain two components: a random one for
the observation error, and a systematic one because the
true value µ0 is not the same as the current guess.{

ξk = xk (µ0, σ)− xk (µ1)
ξ̄k = yk (µ0, σ)− yk (µ1),

with k = −n, . . . ,n.
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Standard map orbit determination II

• The least squares fit is obtained from the normal
equations:

C =
n∑

k=−n

BT
k Bk ; D = −

n∑
k=−n

BT
k

(
ξk
ξ̄k

)

Bk =
∂(ξk , ξ̄k )

∂(x0, y0, µ)
= −

(
Ak |

∂(xk , yk )

∂µ

)
• An iteration of differential corrections is a correction ΓD

obtained from the covariance matrix Γ = C−1.
• At convergence of the iterations to the least squares

solution (x∗, y∗, µ∗), weights should be assigned to the
residuals consistently with the probabilistic model.
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Shadowing Lemma: δ-pseudotrajectory

δ-pseudotrajectory

A δ-pseudotrajectory is a sequence of points (xk , yk ) connected
by an approximation of the map Φ, with error < δ at each step:

|Φ(xk , yk )− (xk+1, yk+1)| < δ
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Shadowing Lemma: ε-shadowing

ε-shadowing

The orbit with initial conditions (x , y) (ε, Φ)-shadows a
δ-pseudotrajectory (xk , yk ) if:

|Φk (x , y)− (xk , yk )| < ε

for every k .
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Shadowing Lemma

Shadowing Lemma
If Λ is an hyperbolic set for a diffeomorphism Φ, then there
exists a neighborhood W of Λ such that

for every ε > 0 there exists δ > 0

such that

for every δ-pseudotrajectory in W there exists a point in W
that ε-shadows the δ-pseudotrajectory.

• An hyperbolic set is (rougly) an invariant set with every
orbit having a positive and a negative Lyapounov exponent.

• There is an L > 0, function of the Lyapounov exponents,
such that δ < ε/L.
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Shadowing Lemma and least squares solution I

To connect orbit determination and the Shadowing Lemma, we
need to show first that the observations xk (µ0, σ), yk (µ0, σ) are
a δ-pseudotrajectory for the dynamical system Sµ∗ :
• µ∗ is the value of the dynamical parameter found from the

least squares solution
• δ =

√
2|µ0 − µ∗|+ Kσ
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(x,y) Example of a

δ-pseudotrajectory.

Initial conditions:
x0 = 3, y0 = 0, µ0 = 0.5.

Options:
δµ = 10−1, σ = 10−3.
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Shadowing Lemma and least squares solution II

• We select ε > Kσ: K is a number such that, at
convergence, no larger norm |(ξk , ξ̄k )| is found among the
residuals for −n ≤ k ≤ n

• The orbit with initial conditions (x∗,y∗) ε-shadows the
δ-pseudotrajectory formed by the observations (xk , yk ).

Summary

• The observations are a pseudotrajectory because of
errors and systematics due to imperfect knowledge of the
dynamics.

• The least squares solution is the shadowing of the
observations.

• The Shadowing Lemma is a minimization of the infinite
dimensional space of all orbits, while the orbit
determination is a minimization of the norm of a finite
number of residuals.
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Computability Horizon
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• Initial conditions: x0 = 3, y0 = 0, µ0 = 0.5
• Positive Lyapounov exponent is χ ' 0.091, and the

Lyapounov time is tL = 1/χ ' 11.
• The numerical instability at k ' 200 occurs because

exp(200/tL) ∼ 108.
• The inversion of the normal matrix C fails.
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Meaning of the computability horizon
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• The computability horizon is ' 600 iterations of S.
• The computability horizon is an absolute barrier to the

determination of a least squares orbit.
• We need to admit that we can only solve for a
δ-pseudotrajectory.
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Results: with and without dynamical parameter
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• Least squares solution for up to 600/700 iterates in
quadruple precision, by using a progressive method.

• If the solutions has a fixed µ = µ0, the improvement in
accuracy is exponential in k .

• If we solve for 2 initial conditions and µ, the improvements
is not exponential in at least two variables (including µ).
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Loss of accuracy when adding a dynamical parameter
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• The much lower accuracy in the determination of µ and at
least one initial condition is not due to lack of sensitivity.

• Correlations grow.
• Orbit determination is degraded by aliasing.
• This is a finite-time analog of the shadowing lemma.
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Results: chaotic orbit, power law improvement
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• Power law accuracy improvement with the number n of
iterations like na with a = −0.675 for µ, a = −0.833 for x ,
while for y a power law is not appropriate.

• The slopes are sensitive to the initial conditions.
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Results: ordered case, power law improvement

• Initial conditions: x0 = 2, y0 = 0, µ0 = 0.5
• The computability horizon disappears.
• The Lyapounov exponent could be zero.

F. Spoto Chaotic orbit determination Luchon (2016 Sept. 19)



Results: ordered case, gaussian statistics
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• The difference between the case with 2 parameters and
the one with 3 disappears.

• In a log-log plot we find an accuracy improvement na with
a = −0.504,−0.504,−0.488 for µ, x , y respectively.

• We conjectured that the exponent is actually −0.5.
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Conclusions

Orbit determination is possible only within the
computability horizon.

If a parameter is estimated, the least squares solution is a
finite time span shadowing of the observations

Chaotic orbit: the precision of the solution can grow only as a
power law na with −1 < a < 0.

Ordered orbit: the computability horizon is not a problem and
the precision improvement is na with a ' −1/2.

How soon will we find practical problems of dynamical
astronomy in which we need to use these concepts and

preliminary results?
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Example from impact monitoring
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• The twin Virtual Impactors (VI) (connected patches of
initial conditions colliding with Earth) for asteroid (101955)
Bennu in year 2182.

• Orbits compatible with the observations (up to 2011) and a
Yarkovsky model.

• Vertical axis is along the projection of Earth’s velocity onto
the TP.
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Example from impact monitoring
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Eigenvalues of the state transition matrix

• State transition matrix for the integral flow of the equations
of motion for (101955) Bennu, after the ca of 2182.

• The eigenvalues are 6, 2 real and 4 complex, always in
couples λ, 1/λ.
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Determination of Yarkovsky effect
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• Prediction on the Target Plane of an encounter in the 2185
with a Yarkovsky dynamical parameter estimated, and
without it.

• The keyholes for impact in the year 2185 to 2196 are all in
the possible range of values with Yarkovsky.
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