
Topological structure of
the final motions and

a search for periodic orbits
in the free-fall three-body problem

Kiyotaka TANIKAWA
National Astronomical Observatory of Japan,

Mitaka, Tokyo, 181-8588 Japan
tanikawa.ky@nao.ac.jp

Contents
1, Introduction and Motivation
2. Assertions
3. The free-fall problem
4. Search for (stable) periodic orbits
5. Concluding remarks

1



1 Introduction and Motivation

The equations of motion are

mi
d2ri

dt2
=

∂U

∂ri
, i = 1, 2, 3 (1)

where mi, ri, i = 1, 2, 3 are the masses and po-
sition vectors of the three bodies. U is the po-
tential with

U = G

(
m1m2

r12
+

m2m3

r23
+

m3m1

r31

)
. (2)
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There is an old question.

Question. How various orbits occupy the phase
space of the general three-body problem? Which
orbits occupy positive areas?

This question was asked after the proofs of
non-integrability of the three-body problem by
Bruns and Poincaré in the end of the 19th cen-
tury.

If we cannot follow analytically individual so-
lutions, then we follow qualitatively the groups
of solutions.
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Figure 1: Division of the phase space by various final mo-
tions. Chazy (1922,1929), Alekseev(1976,1981). H: Hyper-

bolic motions; HP: Hyperbolic-Parabolic motions; HE:
Hyperbolic-Elliptic motions; PE: Parabolic-Elliptic mo-

tions; OS: Oscillatory motions; and B: Bounded mo-
tions.

Then, the Russian school (Hil’mi, Merman and oth-

ers) after Chazy connected the initial motions and final

motions.

4



Settings of the problem

Planar problem

Planar problem with zero angular momentum
Stable periodic orbits: Figure-8 orbit.

Planar problem with zero initial velocities
(The free-fall problem)

Collinear problem

We consider the free-fall problem. The sys-
tem is considered most unstable among others.
In particular, the equal mass case is the most
unstable among other combinations of masses.

Question. What is the structure of B ∪ OS
in the free-fall problem?

5



2 Assertions

Assertion 1. If there are no stable periodic
orbits, B ∪ OS is a Cantor-like set in the f-f
problem.

Figure 2: Topology of the final motions of the f-f problem. In case

no stable periodic orbits exist.
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Let S be the collection of the stable regions
of stable periodic orbits.

Assertion 1′. If there are stable periodic or-
bits, B ∪ OS\S is a Cantor-like set in the f-f
problem.

Figure 3: Topology of the final motions of the f-f problem. In case
stable periodic orbits exist.

In both cases, crucial is the abundance of
triple collisions (Section 3.4 in this report).
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Assertion 2. Triple collisions are dense in
B ∪ OS (resp. B ∪ OS\S).

Assertion 3. Binary collisions are dense in
B ∪ OS (resp. B ∪ OS\S).

Assertion 4. OS are dense in B ∪ OS (resp.
B ∪ OS\S).

We do not give proofs in this talk. Later we
give evidence for Assertion 2.

We ask:

Are there stable periodic orbits?

The is the motivation of a search for
periodic orbits
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3 The free-fall problem

3.1 Definition of the problem
(cf. Agekyan & Anosova 1967; Tanikawa et al. 1995)

Figure 4: The geometry of the free-fall problem. (a) The initial
condition plane. (b) The shape space.
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3.2 Symbols and symbol sequences
(Tanikawa & Mikkola 2008, 2015; Montgomery 1998)

Figure 5: Definition of symbols

We denote a symbol sequence s as

s = . . . s−3s−2s−1•s1s2s3 . . . (3)

where si is either 1, 2, 3, 4, 5, or 6.

s =• s1s2s3 . . . (4)

k-cylinder

s =• s1s2s3 . . . sk ∗ ∗ ∗ with arbitrary ∗ ∗∗ (5)
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3.3 Division of the initial condition plane

Figure 6: The structure of the initial condition plane. (a) 3-cylinders •162...
and •161..., (b) Division by 4-cylinders.
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Figure 7: An orbit and symbol sequence. Left:162, right:161.
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Figure 8: 18 digits, i.e. 18-cylinders.
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3.4 Some properties of orbits

3.4.1 Collision curve

A collision curve is a curve of initial conditions of orbits

which experience binary collision. Collision curves are the

stable (resp. unstable) manifolds of the binary collision

manifold (Llibre 1982).

Property 1. Boundaries of cylinders are formed with

collision curves. (Tanikawa et al. 1995; Tanikawa & Mikkola

2008, 2015).

Proof. Suppose that cylinders A =• · · · 1 ∗ ∗∗ and

B =• · · · 2 ∗ ∗∗ have a common boundary. In A, body 1

passes through between bodies 2 and 3, while in B, body

2 passes through between bodies 1 and 3. Then at the

boundary, bodies 1 and 2 necessarily collide.

*———*——* +——+——–+

3 1 2 1 2 3

A B
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3.4.2 Code

A code is a shortest word (finite sequcence of symbols) of

a periodic sequence.

Property 2. Any code has the following form:

s1s2 . . . s2k−1s2k

with s2k = s1 − 3,

s2k−1 = s2 + 3,

. . . .

Proof. A periodic sequence can be written as

. . . s1s2 . . . s2k−1s2k•s1s2 . . . s2k−1s2k . . .

past ⇐= =⇒ future

The triangles are the same for s1 and s2k. However, the

directions of syzygy crossings are opposite.
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Example. 1615341 4162434 (a periodic orbit due to Orlov

& Iasko 2015)

Property 3.

(1) If half the period ends at the positive side, then the

length of the code is 4k for positive k.

(p) s1 (n) s2 (p) s3 (n) . . . (p)s2k−1(n)s2k

(p)

(p)s4k(n)s4k−1(p)s4k−2(n) . . . (p)s2k+2(n)s2k+1

(2) if half the period ends at the negative side, then the

length of bthe code is 2k for positive k.

(p) s1 (n) s2 (p) s3 (n) . . . (p)s2k−1

(n)

(p)s4k−2(n)s4k−3(p)s4k−4(n) . . . (p) s2k

The shortest candidate is ’1634’. However, this does

not exist. The next candidates are ’161434’, ’162534’,

and ’163634’. It seems that these are not existent. The

period is too short.
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3.4.3 Triple collision point

A triple collision point is a point whose orbit ends in triple

collision.

Property 4. Triple collision points are obtained as in-

tersections of different types of collision curves.

Proof. Suppose that a collision curve in which bodies i

and j collide and a collision curve in which bodies i and

k collide intersect. Then at intersections, bodies i, j, and

k collide.

(Almost all) cylinders have triple collision

points on their boundaries.

Figure 9: The structure of the initial condition plane. (a) 3-cylinders •162...
and •161..., (b) Division by 4-cylinders.
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4 Search for periodic orbits

4.1 Procedures of search for periodic
orbits

We propose a one-dimensional search along cer-

tain curves in the plane.

1) Orbits which experience binary collisions.

2) Orbits which do not experience collisions.

The preceding works adopt two dimensional searches:

Szebehely & Peters (1967): masses 3:4:5;

Orlov & Iasko (2015): the free-fall problem;

Suvakov & Dmitrasinovic (2011,2013,2015);

Dmitrasinovic & Suvakov (2015):

the case of zero-angular-momentum;

Rose (2015): the case of zero-angular-momentum.
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4.2 A perodic orbit by Szebehely & Peters

(1967)

The Pythagorean problem:

Put the three masses on the vertices of the Pythagorean

triangle 3:4:5, and start integrations with zero initial

velocities.
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Figure 10: The free-fall problem with mass 3:4:5. Left panel: the so-called
Pythagorean orbit. Right panel: A periodic orbit with collision close to the
Pythagorean orbit.
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Figure 11: The free-fall problem with mass 3:4:5. Left panel: The
Pythagorean orbit is in a small box. Right panel: Enlargement of the box.
The rightcross corresponds to the Pythagorean orbit, and the left cross cor-
responds to the periodic orbit dixcovered by SP(1967). Colored regions are
cylinders up to and including 16 digits.
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4.3 Perodic orbits by Orlov & Iasko (2015)

Figure 12: The equal-mass free-fall problem. Crosses indicate the

positions of periodic orbits inside D: I-16, I-17, I-18, and I-19.
Colored regions are cylinders.
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Figure 13: The equal-mass free-fall problem. A periodic orbit inside D: I-16
(Orlov & Iasko 2015).

The code is
1615341 4162434

of length 14.
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Figure 14: The equal-mass free-fall problem. A periodic orbit inside D: I-17
(Orlov & Iasko 2015).

The code is
1626151 4243534

of length 14.
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Figure 15: The equal-mass free-fall problem. A periodic orbit inside D: I-18
(Orlov & Iasko 2015).

The code is
1626151

4243534

of length 12.
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Figure 16: The equal-mass free-fall problem. A periodic orbit with collision
inside D: I-19 (Orlov & Iasko 2015).

The code is

16261515342615
24342 51624

15351624243534

of length 34.
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4.4 One-dimensional search along curves

Procedure 1(orbits with collision).

Periodic orbits which experience binary collision are on

the collision curves. So, look for them on the arc of

collision curves between two triple collisions.
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Procedure 2(orbits without collision).

Partial Free-Fall point (PFF point): A point

whose orbit experiences in some future a standstill of one

of the bodies, and which is the closest to the initial con-

dition plane along its orbit.

Partial Free-Fall curve (PFF curve): A curve

formed with PFF points in the phase spece of the f-f

problem.
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Figure 17: The equal-mass free-fall problem. Periodic orbitis I-17 and I-18
(Orlov & Iasko 2015).
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Conjecture. There are PFF curves in the full phase

space of the f-f problem. These passes through periodic

points in the initial condition plane. So, there are approx-

imate PFF curves as shadows of PFF (SPFF) curves.
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Figure 18: Evidence for the Shadow of the PFF curves which

passes I-17 and I-18.
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4.5 Stability of periodic orbits

Periodic orbits with collision are expected to be unsta-

ble because the future of the orbits are different in the

different sides of the collision curves.
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5 Concluding remarks

• We have shown that B ∪ OS (resp. B ∪ OS\S) is a

Cantor-like set. The structure of the non-escape final

motions depends on the stability of periodic orbits.

•The search for periodic orbits can be done one-dimensionally

along curves.

• The free-fall problem has variety of initial conditions de-

pending on the combinations of masses such as mi →
0 or mi, mj → 0. The discussions on the stability of

periodic orbits may be very difficult.
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